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Abstract

A new information-theoretic complexity measure of coupling among multiple time series is pro-

posed based on ordinal patterns. We regard ordinal patterns extracted from time series as total orders

and exploit their algebraic properties to introduce a multiplication among them. The result of the

multiplication is in general a partial order. A Kullback-Leibler divergence for the partial orders gives

rise to a complexity measure of coupling in the sense that it vanishes in two extreme cases: when

time series are uncoupled and when they are identical. The performance of the proposed complexity

measure is tested on two model multivariate dynamical systems and its advantage over the existing

complexity measures is discussed.
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1 Introduction

When analyzing time series data, it is important to adopt a symbolization technique that is both simple

and robust to get reliable results efficiently. Ordinal pattern analysis is a candidate of such technique in

which a block of numerical values in time series is symbolized as a permutation called ordinal pattern that

encodes the order relationship among numerical values in the block [6, 1]. Mapping the order relationship

among numerical values in a given time series to ordinal patterns is a simple task and they are invariant

under the presence of noise that does not change the order relationship. Various measures based on

ordinal patterns have been effectively used to analyze real-world time series such as physiological and

economic data [22, 3, 5, 10].

Ordinal pattern analysis has been extended to multivariate setting. For example, Hempel et al. [8]
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proposed a permutation-based measure to detect coupling directionality from short time series called

inner composition alignment. Given two time series, the first one is reordered in the increasing order and

the second one is re-ordered according to the same order as the first one. The degree of monotonicity of

the reordered second time series and its entropy have been used for coupling analysis [8, 19, 23].

Ordinal patterns have an extra advantage due to its intrinsic algebraic nature when analyzing multi-

variate time series. Since permutations of the same length can be regarded as elements of a symmetric

group, a binary operation can be defined among them: the composition of permutations in the symmetric

group [13]. Thus, we obtain an ordinal pattern from multiple ordinal patterns originating from multi-

variate time series by composing them as elements in the symmetric group. Amigo et al. [4] proposed

the notion of transcript based on this viewpoint and applied it to defining complexity of coupling among

multiple time series [4], measuring coupling directionality between two time series [14] and dimensional

reduction to calculate multi-information [2].

Ordinal patterns can be regarded as carrying a different type of algebraic structure. They can be also

seen as total orders on the set of time indices. In this paper, we propose a permutation-based entropy for

multivariate time series based on this viewpoint. We introduce a multiplication among ordinal patterns

by taking the intersection of them as total orders. The multiplication does not necessarily yield a total

order but gives rise to a partial order in general. This multiplication enables us to define a new complexity

measure of coupling among multiple time series.

This paper is organized as follows. In Sec. 2, we first review two existing complexity measures of

coupling based on ordinal patterns and then introduce our new one. In Sec. 3, we compare performance

of our new measure with existing two ones in two model multivariate dynamical systems. Finally, in

Sec. 4, we summarize the results and give a conclusion.

2 Methods

In this section, we first recall the definition of permutation entropy. Second, we review coupling complexity

based on transcript and statistical complexity. Finally, we introduce our new complexity measure of

coupling among multiple time series called partially ordered permutation complexity.

2.1 Permutation entropy

Let {xt}t = {. . . , xt−1, xt, xt+1, . . . } be a realization of a sequence of real-valued random variables {Xt}t =

{. . . , Xt−1, Xt, Xt+1, . . . }. In practical applications, one has to choose an appropriate time delay before

a symbolization scheme is applied but here we assume that it has already chosen and set it as the unit
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of time steps. For a block of length L at time t denoted by xt−L+1:t := (xt−(L−1), xt−(L−2), . . . , xt), if

xs+π0 ≤ xs+π1 ≤ · · · ≤ xs+πL−1
, (1)

where s = t− (L− 1), then we say that xt−L+1:t is of type π := ⟨π0, π1, . . . , πL−1⟩. π is called an ordinal

L-pattern. For ties in Eq. (1), we use a convention that determines a unique ordinal L-pattern of xt−L+1:t.

Here, we define xs+i ≤ xs+j when xs+i = xs+j and i < j.

In the following, we assume that the underlying process {Xt}t is stationary. Let p(π) be the probability

distribution of the ordinal L-pattern π. The random variable of ordinal L-pattern is denoted by Π. The

permutation entropy of order L is defined as [6]

H(Π) = −
∑
π

p(π) log2 p(π), (2)

where we omit the normalization constant.

2.2 Transcript and Coupling complexity

An ordinal L-pattern π is a permutation on the set {0, 1, . . . , L − 1} and can be seen as an element of

the symmetric group SL of order L,

π = ⟨π0, π1, . . . , πL−1⟩ =

 0 1 . . . L− 1

π0 π1 . . . πL−1

 ∈ SL (3)

The group operation in SL is the composition of permutations:

πσ =

 0 1 . . . L− 1

π0 π1 . . . πL−1


 0 1 . . . L− 1

σ0 σ1 . . . σL−1

 (4)

=

 0 1 . . . L− 1

σπ0 σπ1 . . . σπL−1

 = ⟨σπ0 , σπ1 , . . . , σπL−1
⟩

for π, σ ∈ SL, where the first factor of the composition is written on the left. Given α, β ∈ SL, the

L-transcript from α to β [13] is a unique τ ∈ SL such that

τα = β. (5)

Namely, τ = βα−1 where α−1 is the inverse of α.

Let {x(n)
t }t be a collection of N time series (n = 1, 2, . . . , N). Let πn be an ordinal L-pattern of
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x
(n)
t−L+1:t and τn the L-transcript from πn to πn+1. In the following, the subscript of an ordinal L-

pattern signifies the index of time series. We have τnπn = πn+1 for n = 1, 2, . . . , N − 1. The probability

distribution of the L-transcripts τ1:N−1 := (τ1, τ2, . . . , τN−1) is

pT (τ1:N−1) =
∑

π1:N∈Ω(τ1:N−1)

pJ (π1:N ), (6)

where π1:N := (π1, π2, . . . , πN ), pJ(π1:N ) is the joint probability distribution of the ordinal L-patterns

π1, π2, . . . , πN and

Ω(τ1:N−1) = {π1:N ∈ (SL)
N | τnπn = πn+1(1 ≤ n ≤ N − 1)}. (7)

Let

H(Π1:N ) = −
∑
π1:N

pJ(π1:N ) log2 pJ (π1:N ) (8)

be the Shannon entropy of the joint probability distribution pJ and

H(T1:N−1) = −
∑

τ1:N−1

pT (τ1:N−1) log2 pT (τ1:N−1) (9)

the Shannon entropy of the transcript probability distribution pT . Π1:N and T1:N−1 denote random vari-

ables such that Prob{Π1:N = π1:N} = pJ(π1:N ) and Prob{T1:N−1 = τ1:N−1} = pT (τ1:N−1), respectively.

Note that H(T1:N−1) = 0 if Π1 = Π2 = · · · = ΠN .

Amigó et al. [4] introduced the coupling complexity Ct as a measure of complexity of coupling among

multiple time series. It is defined as

Ct = min
1≤n≤N

H(Πn)− (H(Π1:N )−H(T1:N−1)) . (10)

They showed that Ct ≥ 0 and the following two properties hold [4]:

(a) If Πn (1 ≤ n ≤ N) are uniform and independent random variables, then Ct = 0.

(b) If Π1 = Π2 = · · · = ΠN , then Ct = 0.

Thus, Ct vanishes in the two extreme cases: (a) one in which time series are uniformly random and

independent and (b) the other in which they are completely synchronized. These properties justify that

one calls Ct the coupling complexity, because Ct can take a maximum value between the two extreme

cases.
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2.3 Statistical complexity

The idea of statistical complexity is that a measure of complexity can be obtained by multiplying the

Shannon entropy by a measure of ‘disequilibrium’ [11]. Let pn(πn) be the marginal probability distribution

of the ordinal L-pattern in n-th time series. We consider the product pI :=
∏

1≤n≤N pn of the marginal

probability distributions as the ‘equilibrium’ distribution pE . Following Rosso et al. [16], the degree of

‘disequilibrium’ is measured by the Jensen-Shannon divergence between pJ and pE :

Q[pJ , pE ] = H[(pJ + pE)/2]−H[pJ ]/2−H[pE ]/2, (11)

where H[p] denotes the Shannon entropy of a given probability distribution p. Note that we have

H[pJ ] = H(Π1:N ) etc. We use both notations interchangeably in the following. The statistical complexity

Cs is defined as [16]

Cs = Q[pJ , pI ]H[pJ ]. (12)

Here, we omit the normalization constant [16] because we do not compare complexity of different systems.

When {x(n)
t }t are independent, Cs = 0 holds since pJ = pI and thus Q[pJ , pI ] = 0. However, Cs does

not necessarily vanish for completely synchronized time series.

2.4 Partially ordered permutation complexity

The ordinal L-patterns πn (1 ≤ n ≤ N) can be seen as a total order on the set {0, 1, . . . , L− 1}. Recall

that a partial order on a set P is a binary relation ≤ on P satisfying the following three axioms: (i)

x ≤ x, (ii) if x ≤ y and y ≤ x then x = y, and (iii) if x ≤ y and y ≤ z then x ≤ z, for all x, y, z ∈ P [18].

A set P equipped with a partial order ≤ is called a partially ordered set and is denoted by (P,≤). Given

a partial order ≤ on P , if x ≤ y or y ≤ x hold for all x, y ∈ P , then ≤ is called a total order.

Let µ be the function sending each N -tuple of total orders π1:N on {0, 1, . . . , L − 1} to the partial

order defined by the intersection ∩
1≤n≤N

πn =: µ(π1:N ), (13)

where we take the intersection by regarding each πn as a binary relation on {0, 1, . . . , L − 1}. We call

µ(π1:N ) the partial ordinal L-pattern induced by π1:N . For example, let

π1 = ⟨0, 2, 1⟩ =


1 1 1

0 1 0

0 1 1
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and

π2 = ⟨1, 0, 2⟩ =


1 0 1

1 1 1

0 0 1

 ,

where total orders as binary relations are represented as matrices. µ(π1, π2) can be obtained by the

component-wise multiplication of the matrices representing π1 and π2:

µ(π1, π2) =


1 0 1

0 1 0

0 0 1

 .

The partial order µ(π1, π2) includes only one non-equality relation between 0 and 2 and hence is not a

total order.

Given a partial order ≤ on a set P , it is known that there exists a family of total orders on P {≤i}i∈I

such that ≤=
∩

i∈I ≤i. The family {≤i}i∈I is called a realization of ≤. The integer

k = min{|I| | {≤i}i∈I is a realization of ≤} (14)

is called the dimension of the partially ordered set (P,≤) and is denoted by dim(P,≤) [18]. Hiraguchi’s

theorem [9] states that

dim(P,≤) ≤ ⌊|P |/2⌋ (15)

for every finite partially ordered set (P,≤) with |P | ≥ 4, where ⌊x⌋ is the largest integer which does not

exceed x. It is easy to see that if |P | ≤ 3, then dim(P,≤) ≤ 2. It is also known that there exists a partial

order that satisfies the equality in Eq. (15) [18]. Thus, if max{2, ⌊L/2⌋} ≤ N , then every partial order

on {0, 1, . . . , L− 1} can arise as a partial ordinal L-pattern.

The partial ordinal L-pattern µ(π1:N ) is an ‘integrated’ symbol for the collection of time series {x(n)
t }t

(1 ≤ n ≤ N) in contrast to the ‘atomic’ symbol π1:N because it encodes the relationship between πn’s.

Let pP (ξ) be the probability distribution of the partial ordinal L-pattern ξ, namely,

pP (ξ) =
∑

π1:N∈µ−1(ξ)

pJ(π1:N ). (16)

Let us consider the non-integrated part of H(Π1:N ) defined as the difference between the Shannon entropy

of atomic symbol H(Π1:N ) and that of integrated symbol H(Ξ):

Hp = H(Π1:N )−H(Ξ), (17)
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where Ξ is the random variable of partial ordinal L-pattern. Hp can be written as the average entropy

of atomic symbol per integrated symbol:

Hp =
∑
ξ

pP (ξ)

−
∑

π1:N∈µ−1(ξ)

pJ(π1:N )

pP (ξ)
log2

pJ (π1:N )

pP (ξ)

 . (18)

Indeed, Hp is the conditional entropy of Π1:N given Ξ because the joint probability of π1:N and ξ is

pJ (π1:N ) if π1:N ∈ µ−1(ξ) and is otherwise 0. As in the case of H(T1:N−1), Hp vanishes for completely

synchronized time series.

The multi-information [12, 21, 17] of N -tuple of ordinal L-patterns is defined as

I(Π1:N ) =
∑
π1:N

pJ(π1:N ) log2
pJ (π1:N )

pI(π1:N )
. (19)

I(Π1:N ) is the amount of information for atomic symbol. The amount of information for integrated

symbol (partial ordinal L-pattern) can be quantified by the following Kullback-Leibler divergence [7]:

I(Ξ) :=
∑
ξ

pP (ξ) log2
pP (ξ)

q(ξ)
, (20)

where q(ξ) =
∑

π1:N∈µ−1(ξ) pI(π1:N ). In the same way as in Hp, we can introduce the non-integrated part

of the amount of atomic information I(Π1:N ) as the difference Cp := I(Π1:N ) − I(Ξ). It is the average

amount of information of atomic symbol per integrated symbol:

Cp =
∑
ξ

pP (ξ)Iξ, (21)

where

Iξ =
∑

π1:N∈µ−1(ξ)

pJ(π1:N )

pP (ξ)
log2

pJ(π1:N )/pP (ξ)

pI(π1:N )/q(ξ)
. (22)

Cp has the following properties:

(a’) If Πn (1 ≤ n ≤ N) are independent random variables, then Cp = 0.

(b’) If Π1 = Π2 = · · · = ΠN , then Cp = 0.

Thus, Cp can be seen as a measure of complexity of coupling among multiple time series like Ct. We call

Cp partially ordered permutation complexity. Note that the premise in (a’) is weaker than that of (a). On

the other hand, (a’) holds for Cs. However, (b’) does not hold for Cs in general. Thus, Cp combines the

desirable aspects of both Ct and Cs.

7



0

0.2

0.4

0.6

0.8

1

1.2

0 0.05 0.1 0.15 0.2 0.25 0.3

C
o
m
p
le
x
it
y

k

Cp
Ct
Cs

Figure 1: Cp, Ct and Cs for Eq. (23) are plotted against the coupling strength k. The vertical dotted
line is k = 0.036.

3 Results

In this section, we calculate complexity measures of coupling among multiple time series described in

Sec. 2 for two synthetic data and compare their performance. We take L = 4 in all the numerical

experiments below. We checked that L = 5 also yields qualitatively similar results.

The first example is the following two non-identical coupled Rössler systems [15]:

ẋ1,2 = −w1,2y1,2 − z1,2 + k(x2,1 − x1,2),

ẏ1,2 = w1,2y1,2 + 0.165y1,2,

ż1,2 = 0.2 + z1,2(x1,2 − 10), (23)

where w1 = 0.99 and w2 = 0.95. Amigó et al. [4] investigated complexity of coupling in this system by

Ct and a measure similar to Cs. The aim here to study this system is to reproduce their results and

compare them with Cp. So, we numerically simulated Eq. (23) in the coupling strength range 0 ≤ k ≤ 0.3

in the same setting. The fourth-order Runge-Kutta method with an increment δt = 0.001 was used to

solve Eq. (23) from the initial condition: x1(0) = −0.4, y1(0) = 0.6, z1(0) = 5.8, x2(0) = 0.8, y2(0) = −2

and z2(0) = −4. For each k, we sampled data every 10 increments and generated a time series of length

218. Ordinal L-patterns were extracted from x1 and x2 time series with a time delay δ = 150 [13]. In the

uncoupled case (k = 0), the two systems show independent chaotic oscillations.

As the value of k increases, the system Eq. (23) exhibits two kinds of synchronization behaviors [15].

The first one is phase synchronization which starts to appear from k ≈ 0.036. When the two Rössler

systems are phase synchronized, the phases of them are locked while the amplitudes of them are still

almost uncorrelated and change chaotically. The second one is a stronger form of synchronization known
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Figure 2: Cp, Ct and Cs for Eq. (24) are plotted against the coupling strength D in the range 0.284 <
D < 0.5. The vertical dotted line is D = 0.432.
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Figure 3: Decompositions of Cp (Left), Ct (Middle) and Cs (Right) for Eq. (24) into appropriate terms.

as lag-synchronization which starts at k ≈ 0.14. In this regime, x1(t) = x2(t+ T ) holds for some T ≥ 0.

Thus, once a synchronization behavior emerges, the form of synchronization becomes ‘simpler’ as the

coupling strength increases [4].

Fig. 1 shows the three complexity measures Cp, Ct and Cs of coupling between x1 and x2. As k

is increased, all of them gradually increase from k = 0, abruptly increase around the onset of phase

synchronization k ≈ 0.036 and gradually decrease after taking maximum values. Thus, our new measure

Cp is as useful as Ct and Cs as a measure of complexity of coupling between x1 and x2 in this system.

In addition to differences in their scales and the exact values of k at which they take maximum values,

quantitative differences among the three measures are as follows: When k approaches 0, both Cp and

Cs converge to 0 as we expect from their definitions. However, Ct does not. On the other hand, for

large k, Cp and Ct decrease faster than Cs. Thus, it seems that Cp has both advantages of Cs and

Ct: Cp converges to 0 as the correlation between time series is lost and it is sensitive enough to clearly

discriminate the continuous change of the strength of coupling for large k in the range shown in Fig. 1.
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Figure 4: Cp, Ct and Cs for the coupling between x1 and x2 in Eq. (24) are plotted against the coupling
strength D. Labels are denoted with ∗ to indicate that they are bivariate versions.

The second example is a system of three coupled identical chaotic maps defined by

x1(t+ 1) = (1− 2J)f(x1(t)) + J (f(x2(t)) + f(x3(t))) ,

x2(t+ 1) = (1− 2J)f(x2(t)) + J (f(x3(t)) + f(x1(t))) ,

x3(t+ 1) = (1− 2J)f(x3(t)) + J (f(x1(t)) + f(x2(t))) , (24)

where f(x) = 3.8x(1 − x) and J = (1 − e−D)/3 [20]. D is a parameter representing the strength of

coupling among the three variables. We generated time series of length 217 for each D by iteratively

solving Eq. (24) with a small additive noise of amplitude 10−12 to avoid artificial numerical convergence

and calculated the complexity measures with N = 3.

The system Eq. (24) exhibits two kinds of synchronization behavior [20]: one is partial synchronization

in which two of the three components are synchronized and the remaining one is desynchronized (D2
c <

D < D1
c where D2

c ≈ 0.201 and D1
c ≈ 0.284) and the other is complete synchronization in which all

the three components are synchronized (D0
c < D where D0

c ≈ 0.432). These characteristic values of D

are determined by the points where the transverse Lyapunov exponents for partial synchronization and

complete synchronization change their sign. Here we focus on the range D1
c < D < 0.5 where break down

of complete synchronization of the three chaotic oscillators occurs as D is decreased and a ‘complex’

behavior is observed as D approaches D1
c from above: intermittent switching behavior among three

broken partial synchronization attractors with power law statistics. The parameter region D2
c < D < D1

c

has a window structure where oscillation of each component is periodic. Since our primary interest

is complexity of the relationship among chaotic time series, we exclude this region from the following

analysis.

Fig. 2 shows Cp, Ct and Cs in the range 0.284 < D < 0.5. They exhibit a similar behavior around
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D0
c . As D is decreased from above, all of them begin to increase from the constant values in the complete

synchronization regime. In our numerical simulation, the onsets are slightly above D0
c due to the added

noise. However, Cp behaves differently from Ct and Cs around D1
c . We can see that when D approaches

D1
c from above, Cp increases while the other two measures decrease. To see what causes the different

behavior of Cp from Ct and Cs, we decompose each measure into appropriate terms (Fig. 3): Cp is the

sum of two partial complexity terms I(Π1,2,3)−I(Π1,Ξ2,3) and I(Π1,Ξ2,3)−I(Ξ1,2,3), Ct is the difference

between mini=1,2,3 H[pi] and H[pJ ]−H[pT ], and Cs is the product of Q[pJ , pI ] and H[pJ ]. Here, Ξi1,...,ik

is the random variable of partial ordinal L-patterns µ(πi1 , . . . , πik). Two other different decompositions

can be made in the case of Cp but they yield almost the same result since the system Eq. (24) is symmetric

with respect to exchanges of variables. From the middle and the right panels of Fig. 3, one can see that

the behaviors of Ct and Cs are dominated by the entropy terms which decrease as D is decreased in

the region close to D1
c . On the other hand, as D is decreased, Cp increases due to the “upper level”

complexity term I(Π1,Ξ2,3)− I(Ξ1,2,3) which is the complexity of the relationship between Π1 and Ξ2,3

(Fig. 3, left). The involvement of all the three components seems to be essential for the behavior of Cp.

Indeed, Cp for the relationship between Π1 and Π2 does not increase as D approaches D1
c from above

(Fig. 4). Ct and Cs behave similarly. This suggests that the behavior of Cp reflects three component

relationships that cannot be captured by either Ct or Cs.

4 Conclusion

In this paper, we proposed a new measure of complexity for coupling among multiple time series called

partially ordered permutation complexity Cp. It is based on the intersection of ordinal L-patterns regarded

as total orders which yields an integrated symbol for the whole system (a partial ordinal L-pattern) that

is in general a partial order.

We numerically studied the behavior of Cp in a bivariate and a trivariate dynamical systems by com-

paring it with two existing complexity measures of coupling Ct and Cs. In the first case, the performance

of Cp is qualitatively comparable with Ct and Cs. In the second case, Cp can reflect a ‘complex’ behavior

unique in the trivariate system that cannot be detected by Ct and Cs.

Our results demonstrated the advantage of Cp in analyzing complexity of coupling among a small

number of time series. However, as N increases, the number of non-trivial partial ordinal L-patterns

would typically tend to decrease for a fixed L. Hence, further theoretical development would be necessary

for practical measurement of complexity of coupling among a large number of time series. This is out of

the scope of this paper and is left as future work.
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