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Abstract We study the stochastic dynamics of the
quasispecies model with inverse Bayesian inference un-
der environmental uncertainty. Inverse Bayesian infer-

ence is introduced through the correspondence between
Bayesian inference and the replicator equation. We con-
sider environmental uncertainty that is not modeled as

the stochastic fitness called uncertainty of the second
order. This is in contrast to uncertainty of the first or-
der that can be subsumed by the stochastic fitness. The

difference between these two kinds of uncertainty is dis-
cussed in the framework of categorical Bayesian proba-
bility theory. We analytically show that if the time-scale

of inverse Bayesian inference is sufficiently larger than
that of Bayesian inference, then the quasispecies mod-
el exhibits a noise-induced transition. The theoretical

result is verified by numerical simulation.

Keywords Bayesian inference · replicator equation ·
quasispecies model · category theory · Fokker-Planck
equation · noise-induced transition

1 Introduction

According to Bayesian coding hypothesis of cognitive
processes, brains encode perceptual information about
uncertain environment by probability distributions and

use them to perform an approximately Bayes-optimal
cognitive computation [10,4]. Inverse Bayesian infer-
ence proposed by Arecchi [1] is a process that com-

pensates Bayesian inference by updating the stochastic
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model in Bayesian inference which usually remains un-
changed. It is based on Pöppel’s complementary model
of temporal perception [13,14]: There exists a content-

independent temporal window of a few seconds consti-
tuting “subjective present” within which the identity of
a perception is produced and maintained. Beyond that

temporal window, perceptual changes are allowed. In
Arecchi’s theory, perception formation based on syn-
chronization of neuronal activity called apprehension

corresponds to Bayesian inference, while judgment for-
mation based on comparison among multiple apprehen-
sion processes encoded on a language corresponds to

inverse Bayesian inference. It is argued that the latter
is responsible for creative processes [1]. However, the
original presentation of inverse Bayesian inference the-

ory by Arecchi himself is rather informal and has room
for interpretation. Gunji et al. [7,6] proposed several
mathematical models of inverse Bayesian inference and

investigated their behavior by mainly numerical simula-
tion. However, its mathematical nature is still obscure.

In this paper, we reformulate inverse Bayesian infer-
ence in its simplest form and study its dynamics the-
oretically. In particular, we introduce inverse Bayesian

inference to the quasispecies model [3] through the cor-
respondence between Bayesian inference and the repli-
cator equation [8] where stochastic models correspond

to fitness. The dynamical behavior of the quasispecies
model equipped with inverse Bayesian inference under
environmental uncertainty is investigated. Environmen-

tal uncertainty can be conceived at two different levels.
If it is modeled as the stochastic fitness, namely, if it
is subsumed by the stochastic model of Bayesian infer-

ence, we call it uncertainty of the first order. Otherwise,
it is called uncertainty of the second order. It will be
shown that if environmental uncertainty is of the second

order and if the time-scale of inverse Bayesian inference
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is sufficiently larger than that of Bayesian inference, the

quasispecies model exhibits a noise-induced transition.
We reveal the mechanism of the transition by deriv-
ing and solving the Fokker-Planck equation governing

the time evolution of the density of individuals when
the number of replicating units is two. Our theory is
verified by numerical simulation.

2 Model

In Bayesian inference, knowledge about the world is

updated by repeatedly replacing the prior probability
P (h) of the hypothesis h by the posterior probability
P (h|d) given the data d. The posterior probability is

computed by the following Bayes’ theorem:

P (h|d) = P (d|h)P (h)

P (d)
, (1)

where P (d|h) is the stochastic model, namely, the con-

ditional probability that the data d is observed given
the hypothesis h and P (d) =

∑
h P (d|h)P (h) is the

marginal likelihood.

Inverse Bayesian inference described in [1] can be
summarized as follows: First, a hypothesis h∗ with the
maximum posterior probability is selected after Bayesian

inference. The value of the maximum posterior proba-
bility is denoted by P (h∗). Next, the left-hand side of
Eq. (1) is replaced by P (h∗). If it is solved for P (d|h),
then we obtain an update equation for the stochastic
model

P (d|h) = P (h∗)P (d)

P (h)
. (2)

However, it is difficult to study inverse Bayesian infer-

ence mathematically in the form originally proposed by
Arecchi [1]. First, since P (d|h) is not necessarily nor-
malized, namely,

∑
d P (d|h) ̸= 1 for h ̸= h∗ in general, a

normalization procedure should be introduced. Second,
it is obscure whether Eq. (2) is applied to all h or those
satisfying certain conditions. Finally, although inverse

Bayesian inference is supposed to work in a larger time-
scale than that of Bayesian inference, Eq. (2) does not
involve such time-scale separation. The first and second

problems are caused by the assumption that h∗ is se-
lected between Bayesian inference and inverse Bayesian
inference. In this paper, we abandon the selection of h∗

to avoid these problems and consider a simple form of
inverse Bayesian inference: Eq. (1) is just solved for
P (d|h)．Of course, other formulations are possible. For

example, Gunji et al. [6] proposed a different formula-
tion avoiding these three problems: Inverse Bayesian in-
ference was implemented by replacing the least optimal

hypothesis with an empirical probability of data. The

first and second problems are avoided by the definition

of this scheme. The third problem is resolved because
replacement of the least optimal hypothesis has little
influence on the choice of the most optimal hypothesis

when a given data time series is stationary. It works at
a longer time scale than Bayesian inference. It was nu-
merically shown that when there is an abrupt change in

statistics of the data, this form of inverse Bayesian in-
ference can adapt to the change efficiently [6]. However,
its mathematical analysis seems to be difficult since its

concrete implementation needs some ad hoc assump-
tions. Here, we focus on a simplified setting where a
systematic mathematical analysis is feasible.

Let us rewrite Eq. (1) as

Pt+1(h) =
Pt(d|h)Pt(h)

Pt(d)
(3)

where subscript t denotes time step. The update equa-

tion representing inverse Bayesian inference in the sense
of this paper is

Pt+1(d|h) =
Pt+1(h)Pt(d)

Pt(h)
= Pt(d|h). (4)

This just manifests the time-invariance of the stochas-
tic model. However, if the environmental uncertainty is

conceived as that of second order, a non-trivial change
of inference dynamics occurs as we show below. To fix
the third problem, we will introduce a parameter con-

trolling the time-scale of inverse Bayesian inference rel-
ative to that of Bayesian inference.

The replicator equation is a basic equation for evo-
lutionary dynamics of organisms [12]．Let us consider
a population consisting of N replicating units such as

genotypes or phenotypes. We denote the density of in-
dividuals of type i by xi (xi ≥ 0,

∑N
i=1 xi = 1) and put

x = (x1, x2, . . . , xN ). The discrete from of the replica-

tor equation is defined by

x′
i =

fixi

f(x)
, (5)

where fi is the fitness of type i. In general, fi is a func-

tion of x. However, we only consider the case when fi
does not depend on x for simplicity. f(x) =

∑N
i=1 fixi

is the mean fitness. x′
i is the density of type i at the nex-

t generation. If mutation between types is introduced,
then Eq. (5) becomes the quasispecies model [3]. Let qij
be the mutation probability from type j to type i, then

the discrete form of the quasispecies model is defined
by

xi(t+ 1) =

∑N
j=1 qijfjxj(t)

f(x(t))
, (6)
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Fig. 1 Time evolution of x. (a) α = 0.900, (b) α = 0.990 and (c) α = 0.999. The values of other parameters are a = 0.9,
b = 0.2, r = ln 1.2 and σ2 = 0.005.

Table 1 Correspondence between Bayesian inference (1) and
the replicator equation (5).

Bayesian Inference Replicator Equation

Prior Probability P (h) State xi

Stochastic Model P (d|h) Fitness fi
Marginal Likelihood P (d) Mean Fitness f(x)

Posterior Probability P (h|d) State x′
i

where generation is denoted by t and xi(t) is the density

of type i at generation t.

Harper [8] pointed out the correspondence between

Bayesian inference and the replicator equation shown
in Table 1. Indeed, the former can be seen as a special
case of the latter when the fitness is allowed to change

stochastically [15]. Uncertainty of environment yield-
ing the stochastic change is modeled by the stochastic
model (= the fitness). This kind of uncertainty is called

uncertainty of the first order. However, it is not nec-
essarily that environmental uncertainty can be always
captured by stochastic models. Such unmodeled uncer-

tainty is called uncertainty of the second order. If we
only consider Bayesian inference, then which perspec-
tive we take does not affect the dynamics of x. However,

in the following, it will be shown that if we introduce
inverse Bayesian inference into the quasispecies model
through the correspondence in Table 1, then a quali-

tative change can occur in the stochastic dynamics of
x.

First, we consider the case when environmental un-
certainty is conceived as that of the first order. In this
case, fi in the replicator equation is a stochastic vari-

able. By inverse Bayesian inference expressed as Eq. (4),
fi is time-invariant. As one of the simplest cases, let us
consider

fi(t) = eri+ξi(t). (7)

Here, ri is the average of the logarithm of the fitness
fi(t). We assume that ξi(t) ∼ N(0, σ2

i ) and ξi(t) and
ξj(t

′) are independent for all t ̸= t′ and all i, j.

Next, let us regard environmental uncertainty as
that of the second order. In this case, it is external
to the fitness(= the stochastic model). The replicator

equation now becomes

xi(t+ 1) =
eξi(t)fi(t)xi(t)

f̃(x(t))
, (8)

where f̃(x(t)) =
∑N

j=1 e
ξj(t)fj(t)xj(t).

By putting Pt+1(d|h) = fi(t+ 1), Pt+1(h) = xi(t+
1), Pt(h) = xi(t) and Pt(d) = f̃(x(t)) in Eq. (4), we

obtain

fi(t+ 1) =
xi(t+ 1)f̃(x(t))

xi(t)
= fi(t)e

ξi(t). (9)

This is the inverse Bayesian inference counterpart of the
replicator equation under environmental uncertainty of
the second order.

The difference between uncertainty of the first order
and that of the second order can be made clearer when
they are interpreted in categorical Bayesian probability

theory [2]. In categorical Bayesian probability theory,
one works with a category P whose objects are certain
measurable spaces and whose morphisms are condition-

al probabilities between them. Modeling environmental
uncertainty as that of the first order corresponds to
extending a measurable space to a larger one. On the

other hand, uncertainty of the second order can be re-
garded as introducing a stochastic transformation on
the set of conditional probabilities. Let H be the set of

hypotheses and D the set of data. For simplicity, let us
consider the case when both H and D are finite set-
s. The set of morphisms from H to D is denoted by

P(H,D). Then, a morphism in P is just a |D| × |H|
stochastic matrix. In regard to the replicator equation,
H = {1, 2, . . . , N} and D is a singleton set {•}. The
latter expresses a static environment. P(H,D) should
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Fig. 2 Stationary probability distribution of x. The theoretical line (18) and the result of numerical simulation are compared.
(a) α = 0.900, (b) α = 0.990 and (c) α = 0.999. The values of other parameters are the same as those in Fig. 1. The numerical
probability distributions were obtained from the frequency of x over 220 time steps after discarding initial 10000 time steps in
a single trial from a random initial condition.

be extended to the set of non-negative matrices which

is denoted by P̃(H,D) since the fitness is not normal-
ized. The N -tuple of fitness f = (f1, f2, . . . , fN ) con-
stitutes a morphism from H to D. The fitness fi is
the “conditional probability” given i. Let us extend D

to a larger set E, where E is the set of different envi-
ronments. A morphism from H to E is a non-negative
matrix F := (fei)e∈E, i∈H where fei is the fitness of i

in environment e. F is the stochastic fitness resulting
from uncertainty of the first order. On the other hand,
uncertainty of the second order can be expressed as

a stochastic transformation U : P̃(H,D) → P̃(H,D).
In the above case considered for the replicator equa-
tion, U [f(t)] =

(
fi(t)e

ξi(t)
)
1≤i≤N

. If U is combined

with inverse Bayesian inference (4), it yields Eq. (9):
f(t + 1) = U [f(t)]. Note that D remains a singleton

set. In summary, uncertainty of the first order operates
at the object level, but that of the second order does at
the morphism level.

In order to discuss the time-scale of inverse Bayesian
inference relative to that of Bayesian inference, we ex-

tend Eq. (9) as follows:

fi(t+ 1) =
(
fi(t)e

ξi(t)
)α

fi(0)
1−α, (10)

where 0 ≤ α ≤ 1. α = 1 recovers Eq. (9) and fi(t) =

fi(0) when α = 0. If we put ri := ln fi(0) when α = 0,
Eq. (8) becomes the replicator equation under environ-
mental uncertainty of the first order.

Let ri(t) := ln fi(t). Then, Eq. (10) is

ri(t+ 1) = αri(t) + (1− α)ri + αξi(t). (11)

Thus, ri(t) is an AR(1) process with mean ri and vari-
ance α2σ2

i /(1 − α2) for α < 1. Its characteristic time-
scale is τ = −1/ lnα.

We can introduce inverse Bayesian inference into
the quasispecies model in the same way. xi(t + 1) is

replaced by the i-th element of vector Q−1x(t + 1) in

Eq. (9). Here, Q = (qij) is the mutation matrix and we

assume that its inverse Q−1 exists. Q−1 always exists

when the non-diagonal elements of Q are sufficiently
small. The resulting equation governing time evolution
of ri is the same as that for the replicator equation.

In summary, equation of the quasispecies model with
inverse Bayesian inference is

xi(t+ 1) =

∑N
j=1 qije

rj+ξj(t)xj(t)∑N
j=1 e

rj+ξj(t)xj(t)
(12)

under environmental uncertainty of the first order and

xi(t+ 1) =

∑N
j=1 qije

rj(t)+ξj(t)xj(t)∑N
j=1 e

rj(t)+ξj(t)xj(t)
, (13)

ri(t+ 1) =αri(t) + (1− α)ri + αξi(t) (14)

under environmental uncertainty of the second order.

3 Results

In this section we study dynamical behavior of Eqs. (13)
and (14) when N = 2. Since

∑N
i=1 xi(t) = 1 holds for

the quasispecies model Eq. (6) due to
∑N

i=1 qij = 1,
Eqs. (13) and (14) can be simplified as follows. If we

put x := x1, then x2 = 1 − x. Let q11 = a and q12 = b
(0 < b < a < 1). Note that the other components of the
mutation matrix Q are given by q21 = 1 − q11 = 1 − a

and q22 = 1 − q12 = 1 − b. Let r(t) := r1(t) − r2(t)
and r := r1 − r2. We can assume r ≥ 0 without loss of
generality. For ξ(t) := ξ1(t) − ξ2(t) and σ2 := σ2

1 + σ2
2 ,

ξ(t) ∼ N(0, σ2) holds. From these notations, Eqs. (13)
and (14) when N = 2 reduce to

x(t+ 1) =
aer(t)+ξ(t)x(t) + b(1− x(t))

er(t)+ξ(t)x(t) + (1− x(t))
, (15)

r(t+ 1) =αr(t) + (1− α)r + αξ(t). (16)
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Fig. 3 The two terms in the right-hand side of the Fokker-Planck equation (21). (a) The drift term A(x) (22). (b) The diffusion
term B(x) (23). The values of parameters are the same as those in Fig. 1.

When ξ(t) can be ignored in Eq. (15) and conse-
quently we can assume that r(t) = r, it has a unique
globally stable fixed point x∗ satisfying

r = ln
(1− x)(x− b)

x(a− x)
. (17)

x∗ can be obtained explicitly by solving the quadratic
equation Eq. (17):

x∗ =
aer − b− 1 +

√
(aer − b− 1)2 + 4b(er − 1)

2(er − 1)
.

The other solution is discarded since it is negative.
Hence, we can expect that x(t) fluctuates around x∗

at stationarity when both σ2 and the variance of r(t)
are small (γ := α2σ2/(1 − α2) ≪ 1). In Fig. 1 (a),
we can observe such behavior by numerical simulation

(x∗ = 0.744 . . . in Fig. 1). However, if α is increased
while fixing σ2, a qualitative change in the dynamics of
x(t) seems to occur. As shown in Figs. 1(b) and (c),

x(t) switches stochastically between a neighborhood of
x = b and that of x = a if α is sufficiently large. Such
change of dynamical behavior can also be seen by plot-

ting the frequency distribution of x(t). The distribution
changes from a unimodal type peaked at x = x∗ to a
bimodal type peaked around x = b and x = a (Fig. 2).

In the following, we theoretically investigate the rea-
son why such transition phenomenon of the distribution
of x occurs. In the limit of α → 1, the time-scale of

r(t) becomes extremely larger than that of x(t). Conse-
quently, r(t) can be regarded as a constant in Eq. (15).
Moreover, if σ2 is sufficiently small, then we can ex-

pect that x(t) approximately satisfies Eq. (17) with the
left-hand side replaced by r(t). On the other hand, the
stationary distribution of r(t) is given by a normal dis-

tribution with mean r and variance γ, which is denoted

by P s
R(r). Hence, the stationary distribution of x is ap-

proximately

P s(x) = P s
R(r(x))

dr

dx
, (18)

where r(x) = ln((1−x)(x−b)/(x(a−x))) and dr/dx =

−1/(1− x) + 1/(x− b)− 1/x+1/(a− x). In Fig. 2, E-
q. (18) is compared with numerical simulation. One can
see that they agree well. Thus, the transition from the

unimodal distribution to the bimodal one can be under-
stood as follows: r = r(x) is an increasing function of
x and diverges to the negative infinity as x approaches

to x = b and diverges to the positive infinity as x ap-
proaches to x = a. Since the variance of r diverges as
α → 1, the probability of x concentrates around x = b

and x = a where the expansion rate of the change of
variables from x to r by Eq. (18) is large.

This transition phenomenon can be understood in

a different point of view. First, we can approximate
the discrete-time AR(1) process (16) by the following
continuous-time Ornstein-Uhlenbeck process since our

interest is the situation where the time-scale of r(t) is
large, namely, τ ≫ 1:

dz = (lnα) zdt+ bdWt, (19)

whereWt is the Wiener process, z(t) := r(t)−r and b :=

ασ
√
2 lnα/ (α2 − 1). Next, we can derive a stochastic

differential equation governing time evolution of x by
applying Ito’s formula to the change of variables from

z to x:

dx =

(
(lnα) z

dx

dz
+

1

2
b2
d2x

dz2

)
dt+ b

dx

dz
dWt. (20)

Finally, the corresponding Fokker-Planck equation for
the probability distribution of x is derived as [5]

∂P (x, t)

∂t
= − ∂

∂x
(A(x)P (x, t)) +

1

2

∂2

∂x2
(B(x)P (x, t)) ,
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(21)

where

A(x) = − z(x)

γz′(x)
− z′′(x)

z′(x)3
(22)

and

B(x) =
2

z′(x)
. (23)

Here, ′ denotes differentiation with respect to x and we
performed a time-scale transformation ((lnα−1)γt is re-

placed by t). One can check that the unique stationary
solution of Eq. (21) is Eq. (18). The drift term A(x)
and the diffusion term B(x) are shown in Fig. 3 (a)

and (b), respectively. For each value of α, there exists a
unique x∗∗ such that A(x∗∗) = 0 in the interval (b, a).
If we ignore the diffusion term, then x is attracted to

x∗∗. However, as α → 1, the attractive force to x∗∗

becomes small. On the other hand, the diffusion term
is bell-shaped on (b, a) and thus takes smaller values

around both ends of (b, a). Moreover, it does not de-
pend on α. Consequently, as α → 1, the effect of the
diffusion term becomes dominant and the boundaries of

(b, a) work as quasi-absorbing states. Such mechanism
of the transition from a unimodal distribution to a bi-
modal distribution due to the effect of a multiplicative

noise is known as Noise-Induced Transition (NIT) [9].
It was recently revisited in the field of theoretical biol-
ogy and is also called Noise-Induced Symmetry Break-

ing [11]．Note that the stochastic switching behavior
yielded by NIT is different from that resulting from a
bistable potential. The former can occur even when the

deterministic part of the model equation has a unique
globally stable stationary solution as in Eq. (15). On
the other hand, the latter requires two different locally

stable stationary solutions.
Here, only the case of N = 2 was theoretically an-

alyzed. We conjecture that the same mechanism is re-

sponsible for generating the swiching behavoir in higher
dimensional cases N > 2. In Fig. 4, we show an exam-
ple of time evolution of x for N = 3 when the switching

behavior is observed. In general, it is known that the
solutions of the quasispecies model converge to a unique
stationary solution when the matrixW := (qije

rj ) has a

unique largest eigenvalue [12]. For the values of param-
eters in Fig. 4, Eq. (13) has a unique globally stable
stationary solution (x∗

1, x
∗
2, x

∗
3) ≈ (0.407, 0.324, 0.269)

when all fluctuation terms ξi(t) can be ignored and
ri(t) = ri (Stationary solutions can be obtained by solv-
ing a cubic equation derived from Eq. (13). The other

two solutions contain negative components and hence
are discarded). Thus, the switching behavior in Fig. 4
cannot be explained by stochastic jumps between mul-

tiple locally stable stationary solutions.
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Fig. 4 Time evolution of x for N = 3 with the switching
behavior. Parameters are: α = 0.999, σ2 = 0.001, r1 = ln 1.2,
r2 = ln 1.1, r3 = 0, qii = 0.8 and qij = 0.1 for 1 ≤ i ̸= j ≤ 3.

4 Discussion

The aim of this paper was to explore mathematical na-
ture of inverse-Bayesian inference. We introduced in-

verse Bayesian inference to the quasispecies model through
the correspondence between Bayesian inference and the
replicator equation and investigated its dynamical be-

havior in uncertain environment. We pointed out that
there are two kinds of the way to conceive environmen-
tal uncertainty. Uncertainty of the first order is the one

that is modeled by the stochastic model of Bayesian in-
ference. Uncertainty of the second order is the one that
is not. When they are interpreted in the categorical

Bayesian probability theory, the former operates at the
object level and the latter does at the morphism level.
It was shown that NIT occurs in the quasispecies model

with inverse Bayesian inference under uncertainty of the
second order when the time-scale of inverse Bayesian
inference is sufficiently larger than that of Bayesian in-

ference. On the other hand, such a qualitative change
of dynamical behavior never occurs under uncertainty
of the first order. In our model, the power of inverse

Bayesian inference exhibits only when it is combined
with uncertainty of the second order.

In Arecchi’s theory, change of hypothesis constitut-

ing an aspect of creative cognitive processes is consid-
ered as a jump from one peak to another peak on a
multimodal fitness landscape [1]. In contrast, our theo-

ry predicts that stochastic switching between hypothe-
ses can occur even on a unimodal fitness landscape if
uncertainty of the second order is at work. In real-world

cognitive processes involving creative jumps, the mech-
anism of switching could be different case-by-case. The
two mechanisms can be distinguished by measuring how

average time to reach from one hypothesis to another
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hypothesis called mean first passage time depends on

control parameters [11]. Thus, although our theory pre-
sented in this paper is abstract, it proposes a different
scenario that can in principle be tested by experiments.

Acknowledgements The author is grateful to the anony-
mous reviewers for their helpful suggestions. The author was
partially supported by JSPS KAKENHI Grant Number 18K03423.

References

1. Arecchi, F.T.: Phenomenology of consciousness: from ap-
prehension to judgement. Nonlinear Dynamics, Psychol-
ogy and Life Sciences 15, 359–375 (2011)

2. Culbertson, J., Sturtz, K.: A categorical foundation for
Bayesian probability. Applied Categorical Structures 22,
647–662 (2014)

3. Eigen, M.: Selforganization of matter and the evolution of
biological macromolecules. Naturwissenshaften 58, 465–
523 (1971)

4. Friston, K.: The free-energy principle: a unified brain the-
ory? Nature Reviews Neuroscience 11, 127–138 (2010)

5. Gardiner, C.W.: Handbook of Stochastic Methods, 3rd
ed. Springer, Berlin (2004)

6. Gunji, Y.P., Shinohara, S., Haruna, T., Basios, V.: In-
verse Bayesian inference as a key of consciousness featur-
ing a macroscopic quantum logical structure. BioSystems
152, 44–65 (2017)

7. Gunji, Y.P., Sonoda, K., Basios, V.: Quantum cognition
based on an ambiguous representation derived from a
rough set approximation. BioSystems 141, 55–66 (2016)

8. Harper, M.: The replicator equation as an inference dy-
namic (2009). ArXiv:0911.1763v3

9. Horsthemke, W., Lefever, R.: Noise-Induced Transitions.
Springer-Verlag, Berlin (1984)

10. Knill, D.C., Pouget, A.: The Bayesian brain: the role of
uncertainty in neural coding and computation. TRENDS
in Neurosciences 27, 712–719 (2004)

11. Kobayashi, T.J.: Connection between noise-induced sym-
metry breaking and an information-decoding function
for intracellular networks. Physical Review Letters 106,
228,101 (2011)

12. Nowak, M.: Evolutionary Dynamics: Exploring the Equa-
tion of Life. Belknap Press (2006)
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