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Abstract. The duality between values and orderings is a powerful tool
to discuss relationships between various information-theoretic measures
and their permutation analogues for discrete-time finite-alphabet sta-
tionary stochastic processes (SSPs). Applying it to output processes of
hidden Markov models with ergodic internal processes, we have shown
in our previous work that the excess entropy and the transfer entropy
rate coincide with their permutation analogues. In this paper, we dis-
cuss two permutation characterizations of the two measures for general
ergodic SSPs not necessarily having the Markov property assumed in
our previous work. In the first approach, we show that the excess en-
tropy and the transfer entropy rate of an ergodic SSP can be obtained
as the limits of permutation analogues of them for the N -th order
approximation by hidden Markov models, respectively. In the second
approach, we employ the modified permutation partition of the set of
words which considers equalities of symbols in addition to permutations
of words. We show that the excess entropy and the transfer entropy rate
of an ergodic SSP are equal to their modified permutation analogues,
respectively.

1 Introduction

This paper concerns permutation characterizations of information-theoretic measures
for discrete-time finite-alphabet stationary stochastic processes (SSPs). The permu-
tation entropy was first introduced by Bandt and Pompe [1] as a simple complexity
measure for time series. It has been shown that significant amount of the informa-
tion contained in time series can be captured by orderings of values through both
applications to real-world time series data ([2] and references therein) and theoretical
developments [3–8].

In our previous work, we showed that a combinatorial discussion on the relation-
ship between the set of all words and the set of all permutations reveals a certain
aspect of the relationship between information-theoretic measures and their permu-
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tation analogues for SSPs. It is called the duality between values and orderings [9].
By making use of the duality, we obtained a new proof of the equality between the
entropy rate and the permutation entropy rate [9] for all SSPs. For ergodic Markov
SSPs, we proved the equality between the excess entropy (a measure of complexity
[10]) and the permutation excess entropy [9], the mutual information expression of the
permutation excess entropy [11], and the equality between the transfer entropy rate
(a measure of magnitude and direction of information flow [12,13]) and the symbolic
transfer entropy rate [14]. Later these results were extended to SSPs that are out-
put processes of discrete-time finite-state finite-alphabet stationary hidden Markov
models (HMMs) with ergodic internal processes [15].

The aim of this paper is to give permutation characterizations of the excess entropy
and the symbolic transfer entropy rate for general ergodic SSPs not necessarily having
the Markov property assumed in our previous work. We take two approaches for the
purpose. The first approach is based on the N -th order approximation of an SSP by
HMM. We show that the excess entropy for an ergodic SSP can be calculated as the
limit of the permutation excess entropy of the N -th order approximation of the SSP
by HMM. The similar result for the symbolic transfer entropy rate is also proved.
In the second approach, we employ the modified permutation partition of the set of
words which considers equalities of symbols in addition to permutations of words. In
recent years, several types of modification on the permutation entropies have been
proposed [16–18]. The one considered here is based on [16]. We show that the excess
entropy and the transfer entropy rate of an ergodic SSP coincide with their modified
permutation analogues, respectively.

This paper is organized as follows. In Section 2, we summarize necessary back-
ground on information-theoretic measures for SSPs. In Section 3, we review the du-
ality between values and orderings. In Section 4, we discuss the relationship between
the three information-theoretic measures mentioned above and their permutation
analogues for ergodic SSPs in terms of the approximation by HMM. In Section 5, we
show that the three information-theoretic measures are equal to their modified per-
mutation analogues, respectively, for ergodic SSPs. Finally, in Section 6, we indicate
a future direction of the study.

2 Information-Theoretic Measures for Discrete-Time
Finite-Alphabet Stationary Stochastic Processes

In this section, we review information-theoretic measures for discrete-time finite-
alphabet stationary stochastic processes considered in this paper.

2.1 Discrete-Time Finite-Alphabet Stationary Stochastic Processes

Let X = {X1, X2, · · · } be a discrete-time finite-alphabet stationary stochastic pro-
cesses over a finite alphabet A (in short, SSP X over A). X1, X2, · · · are stochastic
variables on a probability space taking their values in A. Since X is assumed to be
stationary, namely, we have

Pr{X1 = x1, X2 = x2, · · · , XL = xL} = Pr{Xk = x1, Xk+1 = x2, · · · , XL+k−1 = xL}

for any word x1:L := x1x2 · · ·xL ∈ AL = A× · · · ×A︸ ︷︷ ︸
L

and for L, k ∈ N, we can define

the probability of the occurrence of the each word of length L by

p(x1:L) = Pr{X1 = x1, X2 = x2, · · · , XL = xL}.
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An SSP X over A is said to be ergodic [19] if the relative frequency of each word
x1:L converges to the probability p(x1:L) in probability, namely, for any word x1:k of
length k ≥ 1, any ϵ > 0 and any δ > 0, there exists a natural number K such that if
L > K, then

Pr{|Fx1:k,L − p(x1:k)| < δ} > 1− ϵ,

where Fx1:k,L is the stochastic variable defined by the number of the occurrence of
the word x1:k in the sequence X1, X2, · · · , XL divided by L− k + 1.

Let {XN}N∈N be a sequence of SSPs over a common alphabet A and X an SSP
over A. The probability of the occurrence of the words for XN is denoted by pN and
that for X by p. {XN}N∈N is said to converge weakly to X [20,21] if

lim
N→∞

pN (x1:L) = p(x1:L)

for any L ≥ 1 and word x1:L ∈ AL. We write XN ⇒ X when XN converges weakly
to X.

2.2 Discrete-Time Finite-State Finite-Alphabet Stationary Hidden Markov
Models

A discrete-time finite-state finite-alphabet stationary hidden Markov model (in short,
HMM) [22] is a quadruple (Σ,A, {T (a)}a∈A, µ), where Σ and A are finite sets called
state set and alphabet, respectively, {T (a)}a∈A is a family of |Σ|×|Σ|matrices indexed
by elements of A where |Σ| is the size of state set Σ, and µ is a probability distribution
on the state set Σ satisfying the following three conditions:

(i) T
(a)
ss′ ≥ 0 for any s, s′ ∈ Σ and a ∈ A,

(ii)
∑

s′,a T
(a)
ss′ = 1 for any s ∈ Σ,

(iii) and µ(s′) =
∑

s,a µ(s)T
(a)
ss′ for any s′ ∈ Σ.

Here, T
(a)
ss′ is the probability of the transition emitting symbol a from state s to state

s′. µ(s) is the probability that the system is in state s. Any probability distribution
satisfying the condition (iii) is called a stationary distribution. The |Σ| × |Σ| matrix
T :=

∑
a∈A T (a) is called state transition matrix. The ternary (Σ,T, µ) defines the

underlying Markov chain. The condition (iii) is equivalent to the following condition:

(iii’) µ(s′) =
∑

s µ(s)Tss′ .

Two SSPs are induced by an HMM (Σ,A, {T (a)}a∈A, µ). The first one comes
from the underlying Markov chain and is called an internal process. We denote it by
S = {S1, S2, · · · }. The alphabet for S is Σ. The joint probability distributions are
given by

Pr{S1 = s1, S2 = s2, · · · , SL = sL} := µ(s1)Ts1s2 · · ·TsL−1sL

for any s1, · · · , sL ∈ Σ and L ≥ 1. The second process X = {X1, X2, · · · } with the
alphabet A is defined by the joint probability distributions

Pr{X1 = x1, X2 = x2, · · · , XL = xL} :=
∑
s,s′

µ(s)
(
T (x1) · · ·T (xL)

)
ss′

for any x1, · · · , xL ∈ A and L ≥ 1. We call it output process. Both the internal and
output processes are stationary because µ satisfies (iii).
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The internal process S of an HMM (Σ,A, {T (a)}a∈A, µ) is ergodic if and only if the
state transition matrix T is irreducible [23]: for any s, s′ ∈ Σ there exists k > 0 such
that (T k)ss′ > 0. If the internal process S is ergodic, then the stationary distribution
µ is uniquely determined by the state transition matrix T by the condition (iii’). It is
known that if the internal process S is ergodic, then the output process X is so, but
not vice versa [24].

There are two types of hidden Markov models depending on the way how outputs
are emitted: from edges or states. The HMM defined here is edge emitting type.
However, we can convert a hidden Markov model in one of the two classes to the
one in the other class without changing the output process [22]. In particular, any
discrete-time finite-alphabet finite-order stationary Markov process can be described
as an output process of an HMM defined here.

2.3 Approximation of SSP by HMM

Any SSP can be approximated by a sequence of HMMs in the sense of weak conver-
gence. Let X be an SSP over A and p the corresponding probability of the occurrence
of words. For each natural numberN , we construct an HMM (Σ(N), A, {T (N),(a)}a∈A, µ

(N))
by setting Σ(N) = AN , (

T (N),(a)
)
ss′

= p(xN+1|x1:N )

for s = x1:N , s′ = x2:N+1 and a = xN+1, where

p(xN+1|x1:N ) =

{
p(x1:N+1)/p(x1:N ) if p(x1:N ) ̸= 0

0 otherwise,

and µ(N)(x1:N ) = p(x1:N ). It is straightforward to confirm that the conditions (i), (ii)
and (iii) for HMM hold. We denote the output process of (Σ(N), A, {T (N),(a)}a∈A, µ

(N))
and the corresponding probability of the occurrence of the words by X(N) and p(N),
respectively. We call X(N) the N -th order approximation of X.

By construction, we have

p(N)(x1:L) = p(x1:L) (1)

for any word x1:L when L ≤ N , and

p(N)(xL+1|x1:L) = p(N)(xL+1|xL−N+1:L) = p(xL+1|xL−N+1:L) (2)

for any word x1:L+1 when L ≥ N . From (1), we have X(N) ⇒ X.
It can be shown that if X is ergodic, then X(N) is also ergodic for any N [19].

2.4 Entropy Rate, Excess Entropy and Transfer Entropy Rate

Let X be an SSP over A. Its entropy rate is defined by

h(X) = lim
L→∞

H(X1:L)/L, (3)

where

H(X1:L) = −
∑

x1:L∈AL

p(x1:L) log2 p(x1:L)
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is the Shannon entropy with respect to the occurrence of words of length L. It is
well-known that h(X) exists for any SSP [25]. It is also well-known that

h(X) = lim
L→∞

H(XL+1|X1:L)

and the convergence is monotone-decreasing. The entropy rate is a measure of average
uncertainty of values per unit time.

If X(N) is the N -th order approximation of X, then we have [19]

h(X(N)) = H(XN+1|X1:N ). (4)

It follows that

h(X) = lim
N→∞

h(X(N)). (5)

The excess entropy is a measure of complexity or global correlation existing in a
process [26–31]. It is defined by [10]

E(X) = lim
L→∞

(H(X1:L)− h(X)L)

=
∞∑

L=1

(H(XL|X1:L−1)− h(X)) . (6)

Since each term in the infinite sum in (6) is non-negative, either E(X) exists or it
diverges. E(X) always exists if X is an output process of an HMM [24].

The excess entropy can be written as the mutual information between the past
and future [10]:

E(X) = lim
L→∞

I(X1:L;XL+1:2L), (7)

where I(Y;Z) is the mutual information between two stochastic variables Y and Z.
Since the excess entropy can be written as

E(X) = sup
L≥1

{I(X1:L;XL+1:2L)} (8)

and I(X1:L;XL+1:2L) is continuous with respect to the weak convergence of SSP, the
excess entropy is lower-semi continuous with respect to the weak convergence of SSP
[24]. Namely, if XN ⇒ X, then we have

E(X) ≤ lim inf
N→∞

E(XN ). (9)

Now, let X(N) be the N -th order approximation of an SSP X. By (1), (2) and (4),
we have

E(X(N)) =
N∑

L=1

(H(XL+1|X1:L)−H(XN+1|X1:N )) (10)

≤
N∑

L=1

(H(XL+1|X1:L)− h(X))

≤ E(X).
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Since E(X(N)) is a monotone increasing function of N by (10), if E(X) exists, then
so does limN→∞ E(X(N)) and

lim
N→∞

E(X(N)) ≤ E(X). (11)

Since X(N) ⇒ X, we have

lim
N→∞

E(X(N)) = E(X) (12)

by (9) and (11). It also holds that if one side of the equality (12) diverges, then the
other side also diverges.

The transfer entropy rate is a measure of the magnitude and direction of infor-
mation flow between two jointly distributed stochastic processes [12,13]. Let

(X,Y) = {(X1, Y1), (X2, Y2), · · · }

be a bivariate SSP over a finite alphabet AX ×AY , where Xi takes its values in AX

and Yi takes its values in AY . We denote the joint probability of the occurrence of
words x1:L1 ∈ AL1

X and y1:L2 ∈ AL2

Y for L1, L2 ≥ 1 by p(x1:L1 , y1:L2).
The transfer entropy rate from Y to X is defined by

t(X|Y) = h(X)− h(X|Y), (13)

where h(X|Y) is the conditional entropy rate of X given Y defined by

h(X|Y) = lim
L→∞

H(XL+1|X1:L, Y1:L), (14)

which always exists. It is straightforward to see that t(X|Y) satisfies

0 ≤ t(X|Y) ≤ h(X)

and t(X|Y) = 0 if X1:L is independent of Y1:L for all L ≥ 1.
Let (X(N),Y(N)) be the N -th order approximation of (X,Y). By the similar way

as in the univariate case, we can show that

h(X|Y) = lim
N→∞

h(X(N)|Y(N)). (15)

Consequently, we have

t(X|Y) = lim
N→∞

t(X(N)|Y(N)). (16)

3 Duality between Values and Orderings

In this section, we summarize the results in our previous work on the duality between
values and orderings [9] which will be used in later sections.

3.1 Partition Induced by Permutations

Let An be the set of integers from 1 to n, namely, An = {1, 2, · · · , n}. We regard An

as a totally ordered set by the usual ‘less-than-or-equal-to’ relationship of numbers.
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A permutation of length L is a bijective map from the set {1, 2, · · · , L} to itself.
The set of all permutations of length L ≥ 1 is denoted by SL. We denote a permutation
π of length L by the sequence π(1)π(2) · · ·π(L). The number of ascents, places with
π(i) < π(i+1), of a permutation π ∈ SL is denoted by Asc(π). For example, if π ∈ S5

is given by π(1)π(2)π(3)π(4)π(5) = 24153, then Asc(π) = 2.

Consider a word x1:L of length L over the alphabet An, namely, x1:L ∈ AL
n . We

define the permutation type of the word x1:L as a unique permutation π ∈ SL such
that xπ(i) ≤ xπ(i+1) and π(i) < π(i+ 1) when xπ(i) = xπ(i+1) for i = 1, 2, · · · , L− 1.
Thus, the permutation type of x1:L is the sequence of indexes when x1, x2, · · · , xL

are re-ordered in the increasing order. For example, the permutation type of x1:5 =
23121 ∈ A5

3 is π(1)π(2)π(3)π(4)π(5) = 35142 because x3x5x1x4x2 = 11223.

By sending each word of length L over the alphabet An to its permutation type,
we define the map ϕn,L : AL

n → SL. For example, the map ϕ2,3 : A3
2 → S3 is given by

A3
2

ϕ2,3 // S3

111 �
,,ZZZZZZZ

ZZZZZ

112 � // 123
121 � // 132
122

)

44iiiiiiiiiiii
213

211 � // 231
212

)

44iiiiiiiiiiii
312

221
$

22dddddddddddd 321.
222

>

??~~~~~~~~~~~~~~~~~~

The map ϕn,L gives rise to a partition of the set AL
n by its fibers, namely, two

words x1:L and y1:L are contained in the same block of the partition if and only
if ϕn,L(x1:L) = ϕn,L(y1:L). The size of each block, namely, the size of the inverse
image of each permutation π ∈ SL is given by the following binomial coefficient [15,
32]:

|ϕ−1
n,L(π)| =

(
n+Asc(π)

L

)
. (17)

Thus, the size of the inverse image of a permutation of length L is determined solely
by the number of ascents. Since the number of permutations of length L with k ascents

is given by the Eulerian number
⟨

L
k

⟩
, we have the following equality with respect to

the partition of AL
n by permutation:

nL =

L−1∑
k=L−n

⟨
L

k

⟩(
n+ k

L

)
(18)

which is known as Worpitzky’s identity [33].

The equality (18) should be compared with the similar equality (37) which is
obtained from the modified permutation partition defined in Section 5. In the former,
the size of each block in the partition of AL

n depends on L, the length of words. In
contrast, it is independent of L in the latter. As we will see in subsequent sections,
this difference leads to that in the asymptotic behaviors of the differences between
the block entropy and its permutation/modified permutation analogues.
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3.2 Duality

We define the map µn,L : ϕn,L

(
AL

n

)
⊆ SL → AL

n by the following procedure: first,

given a permutation π ∈ ϕn,L

(
AL

n

)
⊆ SL, we decompose the sequence π(1) · · ·π(L)

of length L into maximal ascending subsequences defined as follows: a subsequence
ij · · · ij+k of a sequence i1 · · · iL is called a maximal ascending subsequence if it is as-
cending, namely, ij ≤ ij+1 ≤ · · · ≤ ij+k, and neither ij−1ij · · · ij+k nor ijij+1 · · · ij+k+1

is ascending. Second, if π(1) · · ·π(i1), π(i1+1) · · ·π(i2), · · · , π(ih−1+1) · · ·π(L) is the
decomposition of π(1) · · ·π(L) into maximal ascending subsequences, then we define
word x1:L ∈ AL

n by

xπ(1) = · · · = xπ(i1) = 1, xπ(i1+1) = · · · = xπ(i2) = 2,

· · · , xπ(ih−1)+1 = · · · = xπ(L) = h.

Note that h = L−Asc(π)− 1. Finally, we define µn,L(π) = x1:L.
By construction, we have ϕn,L ◦ µn,L(π) = π for all permutations π ∈ ϕn,L

(
AL

n

)
.

For example, the permutation type of x1:5 = 21313 ∈ A5
3 is π(1)π(2)π(3)π(4)π(5) =

24135. The decomposition of 24135 into maximal ascending subsequences is 24, 135.
We obtain µn,L(π) = x1x2x3x4x5 = 21212 by putting x2x4x1x3x5 = 11222.

Let us put

Bn,L := {x1:L ∈ AL
n : there exists π ∈ SL such that ϕ−1

n,L(π) = {x1:L}}

and

Cn,L := {π ∈ SL : |ϕ−1
n,L(π)| = 1}.

Then, the duality between values and orderings can be stated as follows [9](Lemma
5 and Theorem 9 (iv); see also Theorem 1 in [15]):

Theorem 1 ϕn,L restricted on Bn,L is a map into Cn,L, µn,L restricted on Cn,L is
a map into Bn,L, and they form a pair of mutually inverse maps. Furthermore, we
have

Bn,L = {x1:L ∈ AL
n : for any 1 ≤ i ≤ n− 1 there exist 1 ≤ j < k ≤ L

such that xj = i+ 1, xk = i}, (19)

and

Cn,L = {π ∈ SL : Asc(π) = L− n}.

When n = 2 and L = 3, the duality

B2,3

ϕ2,3 //
C2,3

µ2,3

oo

is given by

121 oo ///o/o/o/o/o/o/o 132
211 ll

,,,l,l,l,l
,l,l,l 213

212 rr
222r2r2r2r2r2r2r
231

221 oo ///o/o/o/o/o/o/o 312.
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Let X be an SSP over the alphabet An and p the corresponding probability of the
occurrence of the words. The probability of the occurrence of a permutation π ∈ SL

is given by

p∗(π) =
∑

x1:L∈ϕ−1
n,L(π)

p(x1:L).

Let αX,L be the probability that we observe in X a permutation of length L which
is not a member of the set Cn,L, namely,

αX,L =
∑

π ̸∈Cn,L

p∗(π),

and βx,X,L be the probability that symbol x does not appear in a word of length
⌊L/2⌋ realized in X, namely,

βx,X,L =
∑
xj ̸=x,

1≤j≤⌊L/2⌋

p(x1:⌊L/2⌋),

where L ≥ 1, x ∈ An and ⌊a⌋ is the largest integer not greater than a.
We have the following lemma on the relationship between αX,L and βx,X,L [9]

(Lemma 12):

Lemma 1 Let X be an SSP over An and ϵ be a positive real number. If βx,X,L < ϵ
for any x ∈ An, then we have αX,L < 2nϵ.

3.3 A Lemma for HMM

If X is the output process of an HMM, then we have the following expression for
βx,X,L:

βx,X,L = ⟨µ
(
T − T (x)

)N
,1⟩,

where 1 = (1, 1, · · · , 1) and ⟨· · · , · · · ⟩ is the usual inner product in the Euclidean
space. If the internal process of the HMM is ergodic, then it can be shown that the
largest eigenvalue of the matrix T(x) := T − T (x) is less than 1 [15]. Thus, we have
the following lemma [15].

Lemma 2 Let X be the output process of an HMM over the alphabet An. Then, if the
internal process S of the HMM is ergodic, then for any x ∈ An there exists 0 < γx < 1
and Cx > 0 such that βx,X,L < Cxγ

L
x for any L ≥ 1.

4 Permutation Entropies

In this section, we discuss the relationship between information-theoretic measures
and their permutation analogues for SSPs. In particular, we focus on three measures,
entropy rate, excess entropy and transfer entropy rate.
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4.1 Fundamental Inequalities

We can give a bound for the difference between the block Shannon entropy with
respect to words of length L and that with respect to permutations of length L for an
SSP X over An. The crucial point is that the size of inverse image of each permutation
is given by the binomial coefficient (17). This fact leads to the following bound [9]:

Lemma 3 Let X be an SSP over An and p the corresponding probability of the oc-
currence of the words. Then, we have

0 ≤ H(X1:L)−H∗(X1:L) ≤ αX,Ln log2(L+ n), (20)

where

H(X1:L) = −
∑

x1:L∈AL
n

p(x1:L) log2 p(x1:L)

and

H∗(X1:L) = −
∑
π∈SL

p∗(π) log2 p∗(π).

The bivariate version is as follows:

Lemma 4 Let (X,Y) be a bivariate SSP over An1 × An2 and p the corresponding
joint probability of the occurrence of the words. Then, we have

0 ≤ H(Xa:b, Yc:d)−H∗(Xa:b, Yc:d)

≤ (αX,b−a+1 + αY,d−c+1) (n1 log2(b− a+ 1 + n1) + n2 log2(d− c+ 1 + n2)) , (21)

where

H(Xa:b, Yc:d) = −
∑

(xa:b,yc:d)∈Ab−a+1
n1

×Ad−c+1
n2

p(xa:b, yc:d) log2 p(xa:b, yc:d),

H∗(Xa:b, Yc:d) = −
∑

(π1,π2)∈Sb−a+1×Sd−c+1

p∗(π1, π2) log2 p∗(π1, π2).

and

p∗(π1, π2) =
∑

xa:b∈ϕ−1
n1,b−a+1(π1),

yc:d∈ϕ−1
n2,d−c+1(π2)

p(xa:b, yc:d).

A proof for the general multivariate version of the inequality is given in [15].

4.2 Permutation Entropy Rate

For an SSP X over An, the permutation entropy rate is defined by

h∗(X) = lim
L→∞

H∗(X1:L)/L. (22)

h∗(X) is a measure of average uncertainty of orderings per unit time. Amigó et al. [3,
5] proved the equality

h(X) = h∗(X) (23)

for any SSP X over An by applying the ergodic decomposition of the entropy rate.
As an alternative proof, we pointed out that the equality follows immediately from
the inequality (20) in our previous work [9].
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4.3 Permutation Excess Entropy

The permutation excess entropy of an SSP X over An is defined by 1

E∗(X) = lim sup
L→∞

(H∗(X1:L)− h∗(X)L)

= lim sup
K→∞

(
K∑

L=1

(H∗(XL|X1:L−1)− h∗(X))

)
, (24)

where H∗(XL|X1:L−1) = H∗(X1:L)−H∗(X1:L−1).
We have

E∗(X) ≤ E(X) (25)

for any SSP X over An. However, the equality cannot hold in general if the process is
not ergodic [9]. At present, we do not know whether the equality holds for all ergodic
SSPs or not. However, if X is the output process of an HMM over An with an ergodic
internal process, then we have the following equalities by Lemma 1, Lemma 2 and
Lemma 3 [15]:

E(X) = E∗(X) = lim
L→∞

I∗(X1:L;XL+1:2L), (26)

where I∗(X1:L;XL+1:2L) = H∗(X1:L) +H∗(XL+1:2L)−H∗(X1:L, XL+1:2L).
Now, let X be an ergodic SSP over An and X(N) its N -th order approximation.

Since X(N) is the output process of a HMM over An with an ergodic internal process,
we have

E(X(N)) = E∗(X(N)) (27)

by (26). By (12) and (27), we obtain

E(X) = lim
N→∞

E(X(N)) = lim
N→∞

E∗(X(N)). (28)

Thus, E(X) can be calculated as the limit of E∗(X(N)) when X is an ergodic SSP
over An.

4.4 Symbolic Transfer Entropy Rate

Let (X,Y) be a bivariate SSP over the alphabet An1 × An2 . The symbolic transfer
entropy rate [14,15] from Y to X is defined by

t∗(X|Y) = h∗(X)− h∗(X|Y), (29)

where

h∗(X|Y) = lim sup
L→∞

H∗(XL+1|X1:L, Y1:L)

and

H∗(XL+1|X1:L, Y1:L) = H∗(X1:L+1, Y1:L)−H∗(X1:L, Y1:L).

1 In [9] we defined E∗(X) = limL→∞ (H∗(X1:L)− h∗(X)L) when it exists. Here, we de-
fine it as the limsup which always exists including infinity. The same remark holds for the
definition of the symbolic transfer entropy rate.
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Note that the symbolic transfer entropy rate is not the rate of the original symbolic
transfer entropy [34] but that of the transfer entropy on rank vectors introduced by
[35] to improve its performance.

If (X,Y) is a bivariate ergodic SSP over An1 ×An2 , then we have [14]

h(X|Y) ≤ h∗(X|Y), (30)

which implies that

t∗(X|Y) ≤ t(X|Y). (31)

If (X,Y) is the output process of an HMM over An1×An2 with an ergodic internal
process, we have the following equality by Lemma 1 and Lemma 2 and Lemma 4 [15]

t(X|Y) = t∗(X|Y). (32)

Combining (16) and (32), if (X,Y) is a bivariate ergodic SSP over An1 ×An2 and
(X(N),Y(N)) is its N -th order approximation, then we have

t(X|Y) = lim
N→∞

t(X(N)|Y(N)) = lim
N→∞

t∗(X(N)|Y(N)). (33)

Namely, as in the case of permutation excess entropy, t(X|Y) can be calculated as
the limit of t∗(X(N)|Y(N)) when (X,Y) is a bivariate ergodic SSP over An1 ×An2 .

5 Modified Permutation Entropies

In this section, we discuss modified permutation entropies. In recent years, several
types of modified permutation entropies have been proposed for suitable entropy
estimation for specific real-world time series data [16–18]. Here, we focus on that
introduced by [16] and study its theoretical aspect.

5.1 Partition Induced by Permutations and Equalities

Let us consider the partition of the set of all words of length L over the alphabet An

induced by permutations and equalities. We define the map

ηn,L : AL
n → TL := SL × {0, 1}L−1 (34)

by ηn,L(x
L
1 ) = (π, e1, · · · , eL−1) where π is the permutation type of x1:L and

ei =

{
1 if xπ(i) = xπ(i+1),

0 otherwise

for i = 1, 2, · · · , L− 1. If Proj : TL → SL is the projection onto SL, we have

ϕn,L = Proj ◦ ηn,L. (35)
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Thus, ηn,L defines a finer partition of the set AL
n than that defined by ϕn,L. For

example, when n = 2 and L = 3, the map η2,3 : A3
2 → T3 is given by

A3
2

η2,3 // η2,3(A3
2) ⊆ T3

111 � // (123, 1, 1)

112 � // (123, 1, 0)

121 �
,,ZZZZZZ

ZZZZZZZ (123, 0, 1)

122
$

22ddddddddddddd (132, 1, 0)

211 � // (231, 1, 0)

212 � // (213, 0, 1)

221 � // (312, 0, 1).

222 ���

�� 33hhhhhhhh

For any σ = (π, e1, · · · , eL−1) ∈ ηn,L(A
L
n), if

∑L−1
i=1 ei = L− k, then we have

|η−1
n,L(σ)| =

(
n

k

)
. (36)

Indeed, if
∑L−1

i=1 ei = L − k, then there are k blocks for which xπ(i) have the same
values in each block and have different values between blocks. Since the set of possible
values to be assigned to each block is An, the number of words of length L over the

alphabet An that are mapped to the same σ with
∑L−1

i=1 ei = L− k is the number of
combinations choosing k values from An.

The number of ways to divide the set {1, 2, · · · , L} into k nonempty blocks is given

by the Stirling number of the second kind
{

L
k

}
and the number of permutations of

k blocks is k!. Consequently, we obtain the following equality with respect to the
partition of AL

n by the fibers of ηn,L [32]:

nL =
n∑

k=1

{
L

k

}
k!

(
n

k

)
, (37)

where
{

L
k

}
k! is the number of blocks with size

(
n
k

)
in the partition.

5.2 Modified Permutation Entropy Rate

Let X be an SSP over An and p the corresponding probability of the occurrence of
the words. The modified permutation entropy rate is defined by

hm(X) = lim
L→∞

Hm(X1:L)/L, (38)

where

Hm(X1:L) = −
∑
σ∈TL

pm(σ) log2 pm(σ)

and

pm(σ) =
∑

x1:L∈η−1
n,L(σ)

p(x1:L)
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for σ ∈ TL. By definition,H∗(X1:L) = H(ϕn,L(X1:L)) andHm(X1:L) = H(ηn,L(X1:L)).
Hence, by (35), we have

H∗(X1:L) ≤ Hm(X1:L) ≤ H(X1:L).

Consequently, by (23), we obtain

h∗(X) = hm(X) = h(X). (39)

5.3 Fundamental Inequalities

Lemma 5 Let X be an SSP over An and p the corresponding probability of the oc-
currence of the words. Then, we have

0 ≤ H(X1:L)−Hm(X1:L) ≤ αX,Ln log2 n. (40)

Proof. We have

0 ≤ H(X1:L)−Hm(X1:L)

=
∑

σ∈TL,pm(σ)>0,

|η−1
n,L(σ)|>1

pm(σ)

−
∑

x1:L∈η−1
n,L(σ)

p(x1:L)

pm(σ)
log2

p(x1:L)

pm(σ)

 .

By (36) and
(
n
k

)
≤ nn, we have

−
∑

x1:L∈η−1
n,L(σ)

p(x1:L)

pm(σ)
log2

p(x1:L)

pm(σ)
≤ log2

(
n

k

)
≤ n log2 n

for each σ ∈ TL such that
∑L−1

i=1 ei = L− k. Since∑
σ∈TL,

|η−1
n,L(σ)|>1

pm(σ) ≤
∑

π∈SL,

|ϕ−1
n,L(π)|>1

p∗(π) = αX,L,

the claim follows.
□

Similarly, we have the following bivariate version.

Lemma 6 Let (X,Y) be a bivariate SSP over An1 × An2 and p the corresponding
joint probability of the occurrence of the words. Then, we have

0 ≤ H(Xa:b, Yc,d)−Hm(Xa:b, Yc:d)

≤ (αX,b−a+1 + αY,d−c+1) (n1 log2 n1 + n2 log2 n2) , (41)

where

Hm(Xa:b, Yc:d) = −
∑

(σ1,σ2)∈Tb−a+1×Td−c+1

pm(σ1, σ2) log2 pm(σ1, σ2)
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and

pm(σ1, σ2) =
∑

xa:b∈η−1
n1,b−a+1(σ1),

yc:d∈η−1
n2,d−c+1(σ2)

p(xa:b, yc:d).

Lemma 5 and Lemma 6 seem to be similar to Lemma 3 and Lemma 4 in their
apparent forms, respectively, however, there is a significant difference with respect
to the asymptotic behavior. Namely, say, the bound given in Lemma 3 has O(logL)
diverging term, while that in Lemma 5 is at most a constant. This distinct property
of the modified permutation entropy allows to establish equalities between the usual
information-theoretic measures and their modified permutation analogues for ergodic
SSPs as we illustrate in the next subsection.

5.4 Modified Permutation Excess Entropy and Modified Symbolic Transfer
Entropy Rate

The modified permutation excess entropy and the modified symbolic transfer entropy
rate are defined similarly with the permutation excess entropy and the symbolic
transfer entropy rate, respectively: letX be an SSP over An. Themodified permutation
excess entropy is defined by

Em(X) = lim sup
L→∞

(Hm(X1:L)− hm(X)L)

= lim sup
K→∞

(
K∑

L=1

(Hm(XL|X1:L−1)− hm(X))

)
, (42)

where Hm(XL|X1:L−1) = Hm(X1:L)−Hm(X1:L−1).
Let (X,Y) be a bivariate SSP over An1

× An2
. The modified symbolic transfer

entropy rate from Y to X is defined by

tm(X|Y) = hm(X)− hm(X|Y), (43)

where

hm(X|Y) = lim sup
L→∞

Hm(XL+1|X1:L, Y1:L)

and

Hm(XL+1|X1:L, Y1:L) = Hm(X1:L+1, Y1:L)−Hm(X1:L, Y1:L).

Lemma 7 Let X be an ergodic SSP over An and p the corresponding probability of
the occurrence of the words. Then, for any x ∈ An such that p(x) > 0, we have
βx,X,L → 0 as L → ∞.

Proof. Let x ∈ An satisfy p(x) > 0. By the ergodicity of X, we have for any ϵ > 0

Pr{|Fx,N − p(x)| < ϵ} → 1

as L → ∞, where N = ⌊L/2⌋ and Fx,N is the stochastic variable defined by the
number of the occurrence of the symbol x in the sequence X1, X2, · · · , XN divided
by N . Recalling

βx,X,L =
∑
xj ̸=x,
1≤j≤N

p(x1:N ),
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we can write

βx,X,L = Pr

{
Fx,N

N
= 0

}
.

Hence, by taking ϵ = p(x)/2, we obtain

βx,X,L ≤ 1− Pr

{
p(x)

2
<

Fx,N

N
<

3p(x)

2

}
→ 0

as L → ∞.
□

By combining Lemma 1, Lemma 5 and Lemma 7, we obtain the equality between
the excess entropy and the modified permutation excess entropy for ergodic SSPs.

Theorem 2 Let X be an ergodic SSP over An. Then, we have

E(X) = Em(X) = Im(X1:L;XL+1:2L), (44)

where Im(X1:L;XL+1:2L) = Hm(X1:L) +Hm(XL+1:2L)−Hm(X1:L, XL+1:2L).

Similarly, the combination of Lemma 1, Lemma 6 and Lemma 7 establishes the
equality between the transfer entropy rate and the modified symbolic transfer entropy
rate for bivariate ergodic SSPs.

Theorem 3 Let (X,Y) be a bivariate ergodic SSP over An1 ×An2 . Then, we have

t(X|Y) = tm(X|Y). (45)

6 Discussions

In this final section, we shall indicate a future direction of the study along the present
work.

As we have shown in Section 5.1, the equality (37) holds for the partition of the set
of all words of length L over a finite alphabet induced by permutations and equalities.
This can be seen as an instance of the umbral composition in the theory of the
sequences of binomial type [36,37]. The partition itself is a set-theoretic interpretation
of (37). It is known that the set-theoretic interpretation of the equality like (37) can be
systematically given [38] based on the theory of combinatorial species [39]. Thus, the
result obtained here on the modified permutation entropies suggests a possibility of
general pattern analysis extending the ordinal pattern analysis, namely, there might
be a modified permutation entropy for a certain class of sequences of binomial type.

We would like to thank the anonymous referee for giving invaluable comments which signif-
icantly improve the manuscript.
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