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Abstract. In this paper we address network motifs found in information
processing biological networks. Network motifs are local structures in
a whole network on one hand, they are materializations of a kind of
wholeness to have biological functions on the other hand. We formalize
the wholeness by the notion of sheaf. We also formalize a feature of
information processing by considering an internal structure of nodes in
terms of their information processing ability. We show that two network
motifs called bi-fan (BF) and feed-forward loop (FFL) can be obtained
by purely algebraic considerations.
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1 Introduction

Network motifs are local structures found in various biological networks more
frequently than random graphs with the same number of nodes and degrees [5,
6]. They are considered to be units of biological functions [2]. Their significance
in biological networks such as gene transcription regulations, protein-protein
interactions and neural networks are widely discussed (e.g. [2] and references
therein). In general, what kinds of network motifs are found depends on the
nature of each biological network. However, some common motifs are found in
different kinds of biological networks. In particular, motifs called feed-forward
loop (FFL) and bi-fan (BF) are common in both gene transcription regulation
networks and neural networks [5]. It is pointed out that both networks are in-
formation processing networks [5]. There is already an explanation by natural
selection about what kinds of motifs arise [9], however, the relationship between
motifs and information processing is not yet clear.

In this paper, we investigate the relationship between motifs and information
processing by abstract algebra such as theories of sheaves, categories and topoi [7,
8]. It is crucial to represent motifs and information processing by suitable ways.
Our formalism is based on two simple ideas. The first idea is that although motifs
? Corresponding Author.



2 Wholeness and Information Processing in Biological Networks

are local structures in a whole network, motifs themselves are coherent wholes
to have biological functions. This fact is formalized as a condition related to
sheaves, in which coherent parts are glued uniquely as a whole. The second idea
is that in information processing networks each node has two roles, receiver and
sender of information. Information is processed between reception and sending.
Therefore nodes in information processing networks can be considered to have an
internal structure in terms of information processing ability. We assume a simple
internal structure and formalize it by so-called Grothendieck construction.

This paper is organized as follows. In section 2, the idea that motifs as coher-
ent wholes are formalized by sheaves. However, we will see that no interesting
consequence on the emergence of network motifs can be derived by only this
idea. In section 3, we assume that each node of an information processing net-
work has information processing ability and their hypothetical simple internal
structure is presented. Integrating this idea and the idea described in section 2,
we will derive network motifs FFL and BF as conditional statements. Finally in
section 4, we give conclusions.

2 Motifs as coherent wholes

The basic structure of networks is just a correspondence between a set of nodes
and a set of arrows. Finding motifs in a given network implies introduction of a
kind of wholeness. Nodes and arrows in a motif make a coherent whole. In this
section we describe this wholeness mathematically.

All networks in this paper are assumed to be directed graphs. A directed
graph G consists of a quadruplet (A,O, ∂0, ∂1). A is a set of arrows and O is a
set of nodes. ∂0, ∂1 are maps from A to O. ∂0 is a source map that sends each
arrow to its source node. ∂1 is a target map that sends each arrow to its target
node. A network motif is given by a directed graph M = (MA,MO, ∂M

0 , ∂M
1 ).

We assume that for any node x ∈ MO there exists an incoming arrow to x or an
outgoing arrow from x (that is, there is no isolated node in M). The category
of directed graph Grph is defined as follows. Objects are directed graphs and
morphisms are homomorphisms of directed graphs.

Let G be a directed graph that represents a real network. Given a motif M ,
we would like to find all local structures found in G that are the same pattern
as M . How they can be described mathematically? First let us consider nodes
and arrows as local structures of directed graphs. The set of nodes in G can
be identified with the set of homomorphisms of directed graphs from the trivial
directed graph consisting of a single node without arrows {∗} to G

Hom({∗}, G).

As the same way, the set of arrows in G can be identified with the set of homo-
morphisms of directed graphs from the directed graph with two distinct nodes
and a single arrow between them {n0 → n1} to G

Hom({n0 → n1}, G).
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By the analogy with the above identifications, we define the set of all local
structures in G that are the same pattern as M by the set of homomorphisms
of directed graphs from M to G

Hom(M, G).

The above three Hom’s can be treated at the same time by the technique
called Grothendieck construction. We describe this in the next subsection.

2.1 Grothendieck Construction

Let M be a motif. We define a finite category CM as follows. We have three
objects 0, 1, 2. The set of morphisms is generated by identities, two morphisms
m0,m1 from 0 to 1 and morphisms uf from 1 to 2 for each f ∈ MA with relations
ufmi = ugmj(i, j ∈ {0, 1}) when ∂M

i f = ∂M
j g.

0
m0

⇒
m1

1
uf→ 2

We define a functor E from CM to Grph. The correspondence of objects is
defined by

E(0) = {∗}, E(1) = {n0 → n1}, E(2) = M.

The correspondence of morphisms is determined by

E(m0)O(∗) = n0, E(m1)O(∗) = n1, E(uf )A(→) = f for f ∈ MA.

Here we denote a homomorphism of directed graphs D by a pair of maps D =
(DA, DO), where DA is a map between the set of morphisms and DO is a map
between the set of nodes.

The functor E defines a functor RE from Grph to the category SetsC
op
M of

presheaves on CM , where Sets is the category of sets. Given a directed graph G
we define

RE(G) = Hom(E(−), G).

Grothendieck construction [8] says that a tensor product functor is defined
as a left adjoint functor to RE . Here we do not go into general theory but just
give a concrete representation of the left adjoint LE . Let F be a presheaf on CM .
Omitting the calculation, we obtain LE by

LE(F ) = F ⊗CM
E ∼= F (1)

F (m0)

⇒
F (m1)

F (0).

From this one can see that the composition LERE is isomorphic to the iden-
tity functor on Grph. In general, the reverse composition RELE is not iso-
morphic to the identity functor on SetsC

op
M . However, if we define a suitable

Grothendieck topology JM on CM and consider the category of all JM -sheaves
Sh(CM , JM ) then the composition RELE can become isomorphic to the identity
on Sh(CM , JM ). Thus we can obtain an equivalence of categories Sh(CM , JM ) '
Grph. We describe the topology JM in the next subsection.
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2.2 Grothendieck Topologies

By defining a Grothendieck topology J on a small category C, we can obtain
a system of covering in C and consequently address relationships between parts
and whole [8]. J sends each object C in C to a collection J(C) of sieves on C.
A set of morphisms S is called sieve on C if any f ∈ S satisfies cod(f) = C and
the condition f ∈ S ⇒ fg ∈ S holds. Let S be a sieve on C and h : D → C
be any morphism to C. Then h∗(S) = {g|cod(g) = D, hg ∈ S} is a sieve on D.
If R = {fi}i∈I is a family of morphisms with cod(fi) = C for any i ∈ I then
(R) = {fg|dom(f) = cod(g), f ∈ R} is a sieve on C.

Definition 1 A Grothendieck topology on a small category C is a function that
sends each object C to a collection J(C) of sieves on C such that the following
three conditions are satisfied.

(i)maximality tC ∈ J(C) for any maximal sieve tC = {f |cod(f) = C}.
(ii)stability If S ∈ J(C) then h∗(S) ∈ J(D) for any morphism h : D → C.
(iii)transitivity For any S ∈ J(C), if R is any sieve on C and h∗(R) ∈ J(D)

for all h : D → C ∈ S then R ∈ J(C).

We call a sieve S that is an element of J(C) a cover of C.
Let M be a motif and CM be the category defined by the previous subsection.

We define a Grothendieck topology JM on CM by

JM (0) = {t0}, JM (1) = {t1}, JM (2) = {t2, SM = ({uf}f∈MA
)}.

Indeed, JM satisfies the above three axioms. First maximality is obvious. Second,
stability is satisfied since v∗(ti) = tj for any arrow v : j → i and v∗(SM ) = tj
for any v : j → 2. Finally, for transitivity, suppose that for any sieve R on i and
v : j → i ∈ ti, v∗(R) ∈ JM (i) holds for each ti ∈ JM (i). By putting v = idi we
obtain R ∈ JM (i). For SM ∈ JM (2), suppose that v∗(R) ∈ JM (j) holds for any
sieve R on 2 and any v : j → 2 ∈ SM . By putting v = uf , we obtain

u∗f (R) = {v|ufv ∈ R} ∈ JM (1).

Hence {v|ufv ∈ R} = t1. This implies that uf = uf id1 ∈ R. Since this holds for
any f ∈ MA, we have SM = ({uf}f∈MA

) ⊆ R, which means R = SM or R = t2.
In both cases R ∈ JM (2).

2.3 Sheaves

Roughly speaking, sheaves are mechanism that glue coherent parts into a unique
whole [8].

Definition 2 Let C be a small category and J be a Grothendieck topology on C.
Let F be a presheaf on C and S ∈ J(C) be a cover of an object C. A matching
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family of F with respect to S is a function that sends each element f : D → C
of S to an element xf ∈ F (D) such that

F (g)xf = xfg

holds for all g : D′ → D. An amalgamation for such a matching family is an
element x ∈ F (C) such that

F (f)x = xf

for all f ∈ S. A presheaf F on C is called sheaf with respect to J (in short, J-
sheaf) if any matching family with respect to any cover S ∈ J(C) for any object
C has a unique amalgamation.

A sieve S on an object C can be identified with a subfunctor of Yoneda
embedding Hom(−, C). Hence a matching family of a presheaf F with respect
to S is a natural transformation S → F . We denote the collection of matching
family of F with respect to S by Match(S, F ).

The condition of sheaf can be restated as follows. Given a Grothendieck
topology J on a small category C, a presheaf F on C is J-sheaf if and only if the
map

κS : F (C) → Match(S, F ) : x 7→ F (−)x

is bijective for any object C and any cover S ∈ J(C).

2.4 The Category of Directed Graphs as a Grothendieck Topos

Now we derive a condition in which a presheaf on CM becomes JM -sheaf. Yoneda’s
lemma says that F (i) ∼= Match(ti, F ) holds by κti

for any presheaf F on CM .
Hence we just consider whether

F (2) ∼= Match(SM , F )

holds by κSM
for SM ∈ JM (2). We have the following proposition.

Proposition 3 Match(SM , F ) ∼= Hom(M, LE(F )).

Proof. Let a natural transformation µ : SM → F be given. Components of µ are

µ2 = ∅ : SM (2) = ∅ → F (2),
µ1 : SM (1) = {uf |f ∈ MA} → F (1),
µ0 : SM (0) = {ufmi|f ∈ MA, i ∈ {0, 1}} → F (0).

We define a homomorphism of directed graphs d : M → LE(F ) by

dA : MA → F (1) : f 7→ µ1(uf ),
dO : MO → F (0) : n 7→ µ0(ufmi) for n = ∂M

i f.
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dO is a well-defined map by the definition of CM .
Conversely, suppose a homomorphism of directed graphs d : M → LE(F ) is

given. A matching family µ : SM → F is defined by

µ1 : SM (1) → F (1) : uf 7→ dA(f),
µ0 : SM (0) → F (0) : ufmi 7→ dO(∂M

i f).

It is clear that these constructions are the inverse of each other. ¤

By the proposition, a necessary and sufficient condition that a presheaf F on
CM is a JM -sheaf is that the map

τ : F (2) → Hom(M, LE(F )) : α 7→ dα

is a bijection. dα is a homomorphism of directed graphs defined by

dα
A : MA → F (1) : f 7→ F (uf )α,

dα
O : MO → F (0) : n 7→ F (ufmi)α for n = ∂M

i f.

In other words, a presheaf F on CM is JM -sheaf if and only if

RELE(F ) ∼= F

holds. Since LERE is isomorphic to the identity functor on Grph, RE(G) is
always JM -sheaf for any directed graph G. If we denote the category of JM -
sheaves on CM by Sh(CM , JM ) then we obtain an equivalence of categories

Sh(CM , JM ) ' Grph.

2.5 Sheafification

Given a presheaf F on CM , what is the best sheaf which “approximates” the
presheaf F? The technique which answers this question is called sheafification
[8]. In this subsection we calculate the sheafification of presheaves on CM by a
procedure so-called Grothendieck’s ‘+’-construction.

Let F be a presheaf on a small category C and J a Grothendieck topology
on C. A new presheaf F+ is defined by

F+(C) = colimS∈J(C)Match(S, F ).

The colimit is taken by the reverse inclusion order defined on J(C). This colimit
can be described as follows. Elements of the set F+(C) are equivalence classes
of matching families µ ∈ Match(S, F ). Two matching families µ ∈ Match(S, F )
and ν ∈ Match(T, F ) are equivalent if and only if there exists a covering sieve
R ∈ J(C) such that R ⊆ S ∩ T such that µ|R = ν|R.

In general, F+ is not a J-sheaf but it is known that (F+)+ is a J-sheaf.
However, we shall prove that F+ is already a JM -sheaf for a presheaf F on CM

in what follows.
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By Yoneda’s lemma, we have

F+(i) = colimS∈JM (i)Match(S, F ) ∼= Match(ti, F ) ∼= F (i)

for i = 0, 1. For F+(2), since µ|SM
∈ Match(SM , F ) for any µ ∈ Match(SM , F ),

µ is equivalent to µ|SM
. Besides, because two different elements in Match(SM , F )

belong to different equivalence classes,

F+(2) = colimS∈JM (2)Match(S, F ) ∼= Match(SM , F ) ∼= Hom(M, LE(F )).

This implies that F+ ∼= RE(LE(F )) which means F+ is a JM -sheaf. Since
sheafification of a presheaf is unique up to isomorphisms, we can calculate a
sheafification of presheaves on CM with respect to the topology JM by applying
RELE to them.

3 Information Processing Networks

Let us recall the points in the previous section. Network motifs are coherent
wholes. By defining a suitable category and a topology on it, we can address the
relationships between parts and whole by sheaves.

In section 2, an object in Grph is considered to represent a real network.
On the other hand, an object in SetsC

op
M is constructed artificially in relation to

finding a motif from the outside of the network. The construction would describe
the wholeness of motifs in a mathematically favorable way as an equivalence of
categories, however, it does not provide any suggestion what kinds of motifs arise
in real networks.

In this section we focus on information processing biological networks such as
gene transcription regulation networks or neural networks. We extract a common
property of information processing networks in terms of information processing
ability and integrate the property into the setting in section 2.

3.1 Information Processing Pattern

In information processing networks, each node in a network can be both a re-
ceiver and a sender of information. It processes information between reception
and sending. Hence it should be considered to have an internal structure in
terms of its information processing ability. One of the simplest candidates for
the internal structure is a directed graph consisting of two different nodes and
a single arrow between them. The arrow corresponds to information processing,
the source of the arrow corresponds to reception of information and the target
of the arrow corresponds to sending of information. Suppose two nodes in an in-
formation processing network are connected by an arrow. How can we describe
this situation with the proposed internal structure of nodes? If we identify the
sending of information at the source node with the reception of information at
the target node then we could describe the situation by simply identifying the
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Fig. 1. Broken ellipses denote two nodes at the network level. They have an internal
structure that represents information processing ability. A broken curved arrow denotes
an arrow connecting them in the network.

target of the arrow corresponding to the source node with the source of the arrow
corresponding to the target node. The situation is depicted in Fig. 1.

Now we integrate the above idea into Grothendieck construction in section
2. We make use of the fact that the category of directed graphs is isomorphic to
a presheaf category defined by the following diagram.

•
s

⇒
t
•

We define a pattern M by a directed graph

• e0→ • e1→ •.
This pattern is not a motif in the sense in section 2 but is defined in terms
of the internal information processing ability of nodes. It represents a specific
information processing pattern associated with an arrow in a network. We call
the pattern M information processing pattern. The motifs in section 2 are defined
by an external observer who describes the local structure of networks. On the
other hand, the information processing pattern M is defined in terms of an
internal perspective on information processing and is relevant to how the specific
local structures of information processing networks (BF and FFL) appear as we
explain bellow.

Let C∗M be a finite category with two objects 1, 2. We have just two morphisms
corresponding to e0, e1 from 1 to 2 other than identities. The two morphisms are
also denoted by e0, e1 since there would be no confusion. C∗M is a subcategory
of CM . We denote the restriction of the functor E : CM → Grph to C∗M by the
same symbol E. Note that a presheaf on C∗M can be seen as a directed graph
F = (F (2), F (1), F (e0), F (e1)). A functor RE from Grph to SetsC

∗
M

op ∼= Grph
can be defined by the same way as in section 2. By Grothendieck construction,
RE has a left adjoint LE . We again just give a concrete description of the left
adjoint omitting the calculation.

Let F be a presheaf on C∗M . We have

LE(F ) = F ⊗C∗M E ∼= F (1)
∂F
0

⇒
∂F
1

F (1)× {0, 1}/ ∼,

where ∼ is an equivalence relation on F (1) × {0, 1} generated by the following
relation R on F (1)× {0, 1}. For (a, 1), (b, 0) ∈ F (1)× {0, 1}

(a, 1)R(b, 0) ⇔ ∃α ∈ F (2) s.t. a = F (e0)α, b = F (e1)α,
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(a) (b)

Fig. 2. If real arrows exist then dotted arrows must exist. (a)bi-fan (BF). (b)feed-
forward loop (FFL) with a loop.

that is, (a, 1)R(b, 0) if and only if there is an arrow from a to b. We define
∂F

i (a) = [(a, i)] (i = 0, 1) for a ∈ F (1), where [(a, i)] is an equivalence class that
includes (a, i). The adjunction obtained here is the same one derived heuristically
in [3].

3.2 A Derivation of Network Motifs

The wholeness of network motifs is represented by sheaves in section 2. However,
it is not useful to consider sheaves in the setting in this section since the category
C∗M loses information how arrows are connected in M . Instead, we adopt the
condition RELE(F ) ∼= F for a representation of the wholeness. This is equivalent
to the condition of sheaf in the setting of section 2. Recall that a presheaf F
on C∗M can be seen as a directed graph F = (F (2), F (1), F (e0), F (e1)). We now
consider that presheaves on C∗M correspond to real networks. Objects in Grph
are supposed to have only auxiliary roles. Roles of the presheaf category and
Grph are reversed from those in section 2.

A necessary and sufficient condition that a binary directed graph F satisfies
RELE(F ) ∼= F is already obtained in [3]. If we write a → b when there exists an
arrow from a to b in F then the condition can be stated as follows.

If a → b ← c → d then a → d.

The necessary part is explained in the next paragraph. This implies that if three
arrows in F make a sub-pattern of bi-fan (BF) then they are indeed included in
a BF (Fig. 2 (a)). If one of four arrows in a BF is a loop then the BF becomes a
feed-forward loop (FFL) with a loop (Fig. 2 (b)). Such type of FFL with a loop
at the relay point is often observed in real biological networks [1]. Thus we can
derive both BF and FFL as conditional statements from algebraic descriptions
of wholeness and information processing.

We can interpret the emergence of bi-fan as the stabilization of informa-
tion processing pattern M . Let F be a directed graph. For nodes x, y ∈ F ,
(x, 1)R(y, 0) means that there exists an arrow from x to y, x → y. Suppose
a → b ← c → d in F . This implies that

(a, 1)R(b, 0), (c, 1)R(b, 0) and (c, 1)R(d, 0).
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By the construction of the equivalence relation from R,

(a, 1)R(b, 0) = (b, 0)R−1(c, 1) = (c, 1)R(d, 0)

implies (a, 1)R(d, 0), which means a → d. We here use the reflexive law twice,
the symmetric law once and the transitive law twice. The reflexive law guaran-
tees the identity of symbol (x, i). (x, i) represents a role (e0 or e1) in information
processing pattern M . The symmetric law here could be seen as a kind of feed-
back if we interpret an arrow in a network as a transduction of information,
since the symmetric law reverses the relation (c, 1)R(b, 0) which means c → b
in the network. Finally, the transitive law provides the compositions of relations
R and R−1, which are interpreted as propagation of information transduction
and feedback. Thus by the construction of the equivalence relation from R,
roles (a, 1), (b, 0), (c, 1) and (d, 0) in M are integrated as a whole and stabilized.
Hence we would like to say that information processing pattern M is stable in
F if RELE(F ) ∼= F holds.

3.3 Another Derivation of the Fixed Point Condition

The condition RELE(F ) ∼= F says that F is a fixed point of RELE up to an
isomorphism of directed graphs. We have just obtained the fixed point condition
in relation to the sheaf condition, however, we can derive the fixed condition
independent of the sheaf condition. In this subsection we outline the derivation
briefly. The details will be presented elsewhere.

Recall that the information processing pattern M represents how two nodes
are connected by an arrow at the network level. Hence each connection between
two nodes by an arrow at the network level can be seen as an image of M by
RE . This condition can be generalized to any directed graph F :

F ∼= RE(G) for some directed graph G.

We can prove that this condition is equivalent to the fixed point condition
RELE(F ) ∼= F . Note that ‘∼=’ in ‘F ∼= RE(G)’ refers to a directed graph iso-
morphism in general, however, ‘∼=’ in ‘RELE(F ) ∼= F ’ stands for that a specific
directed graph homomorphism which is a component of the unit of the adjunc-
tion ηF : F → RELE(F ) is an isomorphism.

The proof proceeds roughly as follows. Suppose RELE(F ) ∼= F holds. Then
we obtain F ∼= RE(G) by putting G = LE(F ). Conversely, suppose F ∼= RE(G)
for some directed graph G. If RE

∼= RELERE holds then we have F ∼= RE(G) ∼=
RELERE(G) = RELE(RE(G)) ∼= RELE(F ). Hence it is sufficient to prove
RE

∼= RELERE . However, one can show that ηRE(G)RE(εG) = idRELERE(G)

for any directed graph G where η and ε are the unit and the counit of the
adjunction, respectively. We also have RE(εG)ηRE(G) = idRE(G), which is just
one of the two triangular identities for the adjunction. To be precise, we also need
LE

∼= LERELE by the natural transformations appeared in the other triangular
identity, which can be also checked in our adjunction, for the complete proof.
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4 Conclusions

In this paper we derive network motifs found in information processing biologi-
cal networks from purely algebraic considerations on wholeness and information
processing. We first consider the wholeness of network motifs as sheaves on a
finite Grothendieck site. This is an external description of the wholeness of net-
work motifs that is not useful to consider the emergence network motifs. Hence
we need a kind of internal perspective. We introduce an information processing
pattern defined in relation to internal information processing ability of nodes.
We show that the wholeness of the information processing pattern is materialized
as network motifs such as BF and FFL.

We can generalize the idea of information processing pattern described in this
paper. The generalization is presented in [4]. Another example of information
processing pattern which seems to be relevant to real networks will be found in
[4]. Note that information processing patterns defined in this paper are called
intrinsic motifs in [4].

The notion of natural computation would be closely related to the idea of
information processing pattern introduced in this paper. In this respect, an infor-
mation processing pattern might be seen as a formal representation of a compu-
tation performed by nature per se. We believe that algebraic methods including
category and topos theory are useful to grasp the formal aspects of natural
computation.
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