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110, 289-312) is addressed. An interface between defining a
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1 INTRODUCTION

One of the most important problems in complex systems research is how
to address relationships between the collection of parts and wholeness in a
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system. A major approach to this problem is modeling systems by computer
simulations such as cellular automata [1], coupled map lattices [2] or random
Boolean networks [3]. In these models, first one collects individual parts of
a system that cannot be divided anymore. Next local interactions between
the individual parts are defined. Finally one finds some global phenomena
appeared through huge number of iterations of the local interactions with the
aid of computer simulations. These global phenomena are analyzed in the
name of self-organization or emergence. It is said that such constructed and
observed globalness can be understood as a whole that cannot be resolved by
the collection of parts [2]. However, what are “self” or “emergence” con-
structed and understood here? It seems that we can get the totally opposite
conclusion from the fact that we can construct wholeness by computer simu-
lations. That is, a whole can be reduced to a collection of parts by the huge
number of repetitions of computations. Although this speculation is naive,
it entails the difficulty addressing the gap between parts and a whole in the
realm of computer simulations since computer simulations always start from
collections of parts [4]. Consequently the question how we can internalize
wholeness into each parts in a system arises. In this paper, we concern a con-
struction of an interface between parts and wholeness in each computational
step of one-dimensional maps.

Some authors start from accepting wholeness that cannot be resolved to a
collection of parts. For example, Pattee [5] distinguished semantic processes
such as measurement from formal processes such as computation. He ad-
dressed that it is difficult to distinct the former from the latter in computer
simulations and functions of semantic processes are limited. Rosen [6] de-
fined organisms which are distinct from machines in terms of the closure of
efficient causations. He showed that the (M,R) systems which are models of
organisms cannot be simulated by Turing machines [7]. Obviously, the dis-
tinctions between formal processes and semantic processes or between ma-
chines and organisms are parallel to the distinction between a collection of
parts and wholeness.

An approach to the problem of the gap between parts and wholeness called
internal measurement [8, 9] is comparable to that of Pattee or Rosen except
for one point. However, the excepted point is quite essential. That is, the
distinction between parts and a whole can hold, but at the same time, it is des-
tined to be relative in the framework of internal measurement theory. The idea
of internal measurement is similar to a line of thought proposed by Wittgen-
stein, which is called “language game” [10]. A language game is a dynam-
ically changing network of words in which they define or are defined each
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other indefinitely. The meaning of each word constraints its use on one hand,
the use of a word is latently open to indefinite environment on the other hand.
Here we can also see a parallelism between the distinction between the mean-
ing of a word and the use of a word and the distinction between a collection
parts and wholeness. It is easy to see that the use of a word refers to the whole
environment in which the meaning of the word is relevant. Wittgenstein clung
neither the meaning of a word nor the use of a word. He focused on a series
of performances over the meaning of a word or the use of a word. In other
words, he found a process that resolves a gap between parts and wholeness
but at the same time generates a new gap between them.

One of the authors proposed formal model of internal measurement in pre-
vious works [11, 12]. The gap between parts and wholeness is replaced by
a interface between defining a map as a fixed point and using a map in this
model. A “language game” over defining a map and using a map is formally
constructed and results in a dynamically changing interface between them.
In this paper, we concern a generalization of the existing formal model of
internal measurement.

The organization of this paper is as follows. First we review the existing
formal model of internal measurement in section two. Next we discuss how
to generalize the existing model in terms of an interface between fixed points
and an adjunction in section three. Finally we apply the generalized procedure
of formal model of internal measurement to one-dimensional maps in section
four. We examine what kinds of interfaces between parts and wholeness can
be constructed by applications to concrete one-dimensional maps.

2 A REVIEW OF FORMAL MODEL OF INTERNAL MEASURE-
MENT

In this section we review the existing formal model of internal measure-
ment [11, 12]. We start from the distinction between objects and observers.
Consider a system consisting of objects and observers. We concern a descrip-
tion of the objects including its observers. Descriptions that include both ob-
jects and observers are said to be needed for living systems or social systems
[13, 14]. However, it is also said that an essential difficulty caused by having
different two levels, that is, objects and observers, in a description is hard to
remove [15]. The idea of internal measurement addresses this difficulty from
different angle. This idea does not attach our minds to giving a simultaneous
description of both objects and observers but leads us to a description of a
“language game” on the system.
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FIGURE 1
A sketch of the “language game” that alternates making a distinction and invalidating the dis-
tinction between objects and observers. See text for details.

Let S0 be an object andS1 be an observer. Assume thatS1 observesS0

by a measurement processT . We express this situation byS0
T−→ S1 (Fig-

ure 1(i)). Here we are only interested inS1’s measurement onS0, so we
write S1 = T (S0). If we distinguish the observerS1 from the measure-
ment processT , S1 can be also an object and can be observed by another

observerS2 by the measurement processT . Thus we getS1
T−→ S2 and

S2 = T (S1) (Figure 1(ii)). By the same way, an observerSn that observes
an objectSn−1 by the measurement processT with Sn = T (Sn−1) is con-
structed forn = 1, 2, 3, · · ·. As a result we have an infinite regression of

observers:S0
T−→ S1

T−→ S2
T−→ · · · T−→ Sn−1

T−→ Sn
T−→ · · · (Figure

1(iii)). Once we derive the infinite sequence of observers, we are destined to
consider an observerS∞ that observes eachSn since we intend to construct
a description that includes any level of objects and observers. How can we
get the observerS∞? If n goes to infinity inSn = T (Sn−1) formally, we get
S∞ = T (S∞) (Figure 1(iv)). We can regard this equation as the definition
of S∞. If S∞ exists, thenS∞ is derived as a fixed point ofT . S∞ has the
status of both an object and an observer. HenceS∞ has a paradoxical status
in terms of the position in which we make a distinction between objects and
observers. However, once we recognizeS∞ as a fixed point ofT , we can
say that a system that contains both objects and observers can be described
asS∞ which paradoxically shows indistinguishability between objects and
observers.

We first mentioned that we do not describe a system but describe a “lan-
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FIGURE 2
A simple example of formal model of internal measurement. Contraction mappingT defined by
a observed datum at timet (xt, xt+1) is regarded as a measurement process. A functionS∞ is
obtained as a fixed point ofT . S∞ is used as the time evolution rule at the next time stept + 1.

guage game” on the system. It’s now time to concern this point. We focus on
the aspect thatS∞ is open to a use in indefinite environment. For example,
as we will see below, we can getS∞ as a subset ofX × X for a setX for
specificT . If we regardS∞ as a map fromX to X and apply it to a point
in X, we can obtain a new objectS

′
0 (Figure 1(v)). Although we get a con-

clusion that the distinction between objects and observers is invalidated by
the fixed point ofT , the distinction is recovered by using the fixed point in
another way. Thus we get a form of “language game” that alternates making
a distinction and invalidating the distinction between objects and observers.

Now we give a simple example, one-dimensional time evolutionary system
(Figure 2). We concern a system that takes its state inX = [0, 1], the interval
of real numbers from 0 to 1. We assume that the system changes its state in
discrete time steps. Letxt be the state at timet andf t be the time evolution
rule from timet to t+1. If we know the rulef t in advance, we can obtain the
state at timet+1 by applying it toxt, that is,xt+1 = f t(xt). Here we concern
the reverse direction. Given a state pair(xt, xt+1), the question how we can
know the rulef t arises. Of course, if we do not have any condition, there
exist infinitely many rules which sendxt to xt+1. Therefore in order to get
f t uniquely, we must define a meta-rule for obtaining the time evolution rule.
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We define a meta-rule by a measurement process for the state pair(xt, xt+1)
in the product of state spaceX×X. The measurement process is expressed as
a coarse graining ofX×X. LetT1, T2 be maps fromX×X toX×X defined
as follows. For(x, y) ∈ X ×X, defineT1(x, y) = (xtx, xt+1y), T2(x, y) =
((1 − xt)x + xt, (1 − xt+1)y + xt+1). PutT (A) = T1(A) ∪ T2(A) for a
subsetA of X ×X. We regard this contraction mappingT as a measurement
process. Consider the following sequence:S0 = X × X, S1 = T (S0) =
T (X×X), · · · , Sn = T (Sn−1) = Tn+1(S0), · · ·. The setS∞ which satisfies
T (S∞) = S∞ is a nowhere differentiable continuous function fromX to X.
Thus the fixed pointS∞ of T can be used as a map fromX to X. We regard
this map as the time evolution rule at timet + 1, that is,f t+1. Consequently,
we get a new state pair(xt+1, f t+1(xt+1)) = (xt+1, xt+2).

Seeing the above coarse graining process, one might recall an approach
that is called symbolic dynamics. A symbolic dynamics constructed by a
Markov partition of a dynamical system concerns how much information
about given dynamical system can be preserved [16]. In contrast, the coarse
graining process proposed here entails information loss about the time evo-
lution rule at the previous time step. In this sense, the measurement process
defined by the coarse graining can be regarded as an abstract representation
for incompleteness of measurement in the real world [17].

There are some applications of formal model of internal measurement for
complex systems or biological modeling: an interactive system consisting
of many elements [11], a model of fish schooling [17, 18] or a model of
punctuated equilibrium in thoroughbred evolution [19]. As we mentioned
in introduction, this paper does not concern applications but a generalization.
Developing a generalization can be not only helpful to understand the essence
of the formal model of internal measurement but also benefit for considering
wider applications. In next section, we re-organize formal model of internal
measurement based on an adjunction and make a path for a generalization.

3 TOWARD A GENERALIZATION

We concern how to generalize the existing formal model of internal mea-
surement in this section. First we see that the operations of obtaining fixed
points or using fixed points can be positioned in a more general and formal
framework. Formally, obtaining a fixed pointP can be described by defining
the fixed point as an object that satisfiesT (P ) = P for an operatorT . In con-
trast, using an object cannot be described formally in general since we cannot
define how to use an object definitely in indefinite environment. Therefore
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we consider a restricted case here; a formal way of describing how to use a
map.

We concern maps from a setA to a setB. Then an adjunctionHom({∗}×
A,B) ' Hom({∗}, BA) holds [20], where{∗} is a singleton set,Hom(Y, Z)
is the set of maps from a setY to a setZ, BA is the set of maps fromB
to A and' is a bijection defined by the following map;φ : Hom({∗} ×
A,B) → Hom({∗}, BA) with φ(f) = f̂ for a mapf : {∗} × A → B,
wheref̂(∗) = f

′
andf

′
(x) = f(∗, x) for x ∈ A. In choosing an element

of Hom({∗}, BA) it goes that we get a map fromA to B as an operation
that transform inputs to outputs (Figure 3. right hand side). On the other
hand, each element inHom({∗} × A,B) defines a map fromA to B as a
collection of input-output pairs(x, y), x ∈ A, y ∈ B (Figure 3. left hand
side). The adjunction says that defining a map as an operation is equivalent
to defining the map as a collection of input-output pairs. In other words, a
function as a whole is equivalent to a function as a collection of parts. How
can we interpret a use of a map in this framework? Given a mapf from A

to B, we define an element ofHom({∗} × A,B) f∗ asf∗(∗, x) = f(x) for
x ∈ A and an element ofHom({∗}, BA) f̂ as f̂(∗) = f . Then we have
f∗(∗, x) = ev(f̂(∗), x) for anyx ∈ A, whereev is a map fromBA × A to
B defined byev(f, x) = f(x) for f ∈ BA andx ∈ A. The mapev is called
evaluation map in category theory. By definition,f∗(∗, x) = ev(f̂(∗), x)
is equivalent tof(x) = ev(f, x). Hence using a mapf , that is, applying
f ∈ BA to a ∈ A means applying the evaluation map to the pair(f, x). On
the other hand, the existence of evaluation mapev is equivalent to holding the
adjunctionHom({∗}×A,B) ' Hom({∗}, BA) [20]. Therefore we interpret
the use of a mapf ∈ BA as a change of view points for the mapf from the
right hand side of the adjunction to the left hand side.

Now we can see the interface between obtaining a fixed point and using a
fixed point as an interface between obtaining a fixed point and holding an ad-
junction. We re-examine the example in section two in terms of alteration be-
tween obtaining a fixed point and holding an adjunctionHom({∗}×X, X) '
Hom({∗}, XX), whereX = [0, 1]. We summarize the procedure in four
steps:

(i) An input-output pair(xt, xt+1) is given as a partial information about
f t as an element ofHom({∗} ×X, X).

(ii) A contraction mapT that entails incompleteness of measurement is
constructed.
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FIGURE 3
An explanation of adjunction. We here setA = {a, b, c}, B = {0, 1} andf(a) = 1, f(b) =

1, f(c) = 0. The adjunctionHom({∗} × A, B) ' Hom({∗}, BA) implies that the function
f as a collection of input-output pairs{(a, 1), (b, 1), (c, 0)} is equivalent to the functionf
regarded as an operation which sendsa to 1, b to 1 andc to 0.

(iii) A subsetS∞ of X ×X is obtained as a fixed point ofT (from a part to
a whole).

(iv) S∞ is regarded as an element ofXX and Ŝ∞ ∈ Hom({∗}, XX) is
defined.

(v) Ŝ∞(∗) is used as the time evolution rule at the next time stepf t+1

and a new input-output pair(xt+1, xt+2) is obtained as a part ofS∞
regarded as an element ofHom({∗} ×X, X)(from a whole to a part).

Repetition of this procedure constructs the time evolution of the system.
We can address the procedure in formal model of internal measurement in

terms of two relations of a whole to its parts. The adjunctionHom({∗} ×
A,B) ' Hom({∗}, BA) means that the following two viewpoints to a map
f : A → B is equivalent; (i)f is the collection of state pairs(a, f(a)), a ∈ A

(left hand side, the collection of parts). (ii)f is an operation (right hand side,
a whole). Or rather, the whole is constructed so that it is equivalent to the
collection of its parts since the definition ofBA is an objectC that satisfies
Hom({∗} × A,B) ' Hom({∗}, C) in category theory. Therefore the whole
in the adjunction is a whole that can be resolved to its parts. On the other
hand, a fixed point of an operatorT is a point where the distinction between
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object (parts) and observers (whole) is vanished. A whole that invalidates
the distinction between parts and whole is expressed as a fixed point. In this
sense, wholeness embodied by a fixed point cannot be resolved to its parts. To
sum up, an adjunction represents wholeness that can be resolved to its parts
and a fixed point represents wholeness that cannot be resolved to its parts.
These two wholeness are connected in formal model of internal measurement.

In next section we address a construction of formal model of internal mea-
surement on one-dimensional maps as a generalization of the example in sec-
tion two.

4 A CONSTRUCTION ON ONE-DIMENSIONAL MAPS

In the previous section we find that an interface between obtaining fixed
points and using fixed points in the existing formal model of internal mea-
surement can be generalized to an interface between obtaining a fixed point
and holding an adjunction. In this section we concern an example of general-
ized formal model of internal measurement. This construction is defined on
one-dimensional maps. First we examine the construction on the family of
Bernoulli maps.

4.1 General construction exemplified by Bernoulli maps
Let X andA be real intervals. We concern a family of mapsfa from X to

X parameterized bya ∈ A. Such a family of maps can be seen as an element
f of Hom(A × X, X) by settingf(a, x) := fa(x) for a ∈ A, x ∈ X.
In the realm of sets and maps, we have an adjunctionHom(A × X, X) '
Hom(A,XX). In this adjunction a mapf : A × X → X is sent to a map
in Hom(A,XX) which sendsa ∈ A to fa ∈ XX . We apply the generalized
procedure of formal model of internal measurement to this adjunction. We
exemplify the construction by an example; the family of Bernoulli maps,

f(a, x) =
{

x/a (0 ≤ x ≤ a),
(x− a)/(1− a) (a < x ≤ 1).

We setX = [0, 1] andA = (0, 1). First assume thata ∈ A is arbitrarily
fixed. Given a time evolutionxt+1 = fa(xt) from time t to time t + 1 by
fa, we regard that the input-output pair((a, xt), xt+1) is obtained as partial
information off ∈ Hom(X ×A,X). We shall define a contraction mapping
T based on the datum and get an element ofHom(A,XX) as a fixed point of
T . If a < xt < 1 then we set

T1(x, y) = (ax, y),
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T2(x, y) = ((xt − a)x + a, xt+1y),

T3(x, y) = ((1− xt)x + xt, (1− xt+1)y + xt+1).

We defineT (Y ) =
⋃3

i=1 Ti(Y ) for a subsetY of X ×X. When0 < a < xt

we set

T1(x, y) = (xtx, xt+1y),

T2(x, y) = ((a− xt)x + xt, (1− xt+1)y + xt+1),

T3(x, y) = ((1− a)x + a, y).

The definition of the mapT which define a coarse graining of the product
of phase spaceX has arbitrariness but here we obey the following procedure
(CCM).

(CCM): construction of contraction mapping First we divide the graph of
fa into maximal monotone curves and cover each curve by a rectangle
defined by two terminal points of the curve. Second the rectangleL

which contain the point(xt, xt+1) is divided into four smaller rectan-
gles by two linesx = xt andy = xt+1 and the two of them which
cover the monotone curve covered byL are chosen. These two rectan-
gles and the rectangles that cover maximal monotone curves other than
L consist of the ultimate coarse graining.

The procedure (CCM) for construction of contraction mapping is also adopted
in other examples below. The setSa

∞ :=
⋂∞

n=0 Tn(X ×X) is a fixed point
of T , that is, we haveT (Sa

∞) = Sa
∞. Sa

∞ is a subset ofX × X, how-
ever, it is not an element ofXX since forx ∈ X that defines an edge along
y-axis of a block inTn(X × X) there are multiple elementsy ∈ X such
that (x, y) ∈ Sa

∞. However, here we regardSa
∞ as an element ofXX vir-

tually and concern the condition that the adjunctionHom(A × X, X) '
Hom(A,XX) holds. A statement that mathematically equivalent to the ad-
junction can be expressed that for any mapf : A ×X → X there uniquely
exists a mapf̂ : A → XX such thatf(a, x) = ev(f̂(a), x) holds for
any a ∈ A, x ∈ X. We mimic this condition by requiring the equation
f(a

′
, xt+1) = ev(Sa

∞, xt+1) holds. a
′

must be chosen so that this equation
holds sincef̂(a) 6= Sa

∞ in general. If we writea = at anda
′

= at+1, the
equationf(at+1, xt+1) = ev(Sat

∞, xt+1) can be regarded as a definition of
a time evolution rule for parametera. Thus we get a two-dimensional time
evolutionary system(at+1, xt+1) = F (at, xt). The whole procedure of the
time evolution is summarized in Figure 4. In the case of Bernoulli maps, the
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FIGURE 4
The time evolution procedure of the Bernoulli system as a formal model of internal measurement.
A subsetS∞ of X × X is obtained as a fixed point of contraction mappingT . The use of
S∞ as the time evolution rule for at the next time stept + 1 entails a condition mimicking
Hom(A×X, X) ' Hom(A, XX) that leads to define a time evolution rule for parametera.

equationf(at+1, xt+1) = ev(Sat

∞, xt+1) becomesxt+1−at+1

1−at+1 = Sat

∞(xt+1)

or at+1 = xt+1−Sat

∞ (xt+1)

1−Sat
∞ (xt+1)

if Sat

∞(xt+1) < xt+1. In the same way we have

at+1 = Sat

∞ (xt+1)
xt+1 if Sat

∞(xt+1) > xt+1.
In general, the condition for existence ofat+1 is divided into the following

three cases for each(at, xt):

(i) at+1 exists uniquely.

(ii) There are multiple values forat+1.

(iii) at+1 does not exist (in the case a mapSat

∞ cannot be defined on the
pointxt+1 or at+1 cannot be defined in the setA thoughSat

∞ is defined
on the pointxt+1).

Given a family of one-dimensional mapsf , we call a point(at, xt) ∈ A×X

that satisfies the condition (i) or (ii) a defined point off and the set of defined
points off is called the defined set off . A point that satisfies the condition
(iii) is called an undefined point off and the set of undefined points off is
called the undefined set off .
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FIGURE 5
A time sequence of the Bernoulli system starting from randomly chosen initial condition from
t = 1000 to t = 2000 in bothx-coordinate (upper left) anda-coordinate (lower left) is depicted.
A laminar phase fromt = 1430 to t = 1510 is enlarged at right hand side.

In the case of family of Bernoulli mapsf , at+1 is uniquely determined
for any defined point(at, xt). We can prove that the undefined set off has
null two-dimensional Lebesgue measure. The proof depends on the fact that
the two-dimensional Lebesgue measure of the set of null point of a real-
coefficient polynomial with two variables is zero. Therefore we can repeat
the time evolution rule defined above arbitrary times in numerical simula-
tions. We shall ignore this null measure set in the following discussion.
The numerical simulations are performed as follows:xt+2 = z wherez

is chosen from the setSat

N (xt+1) := {y ∈ X|(xt+1, y) ∈ Sat

N } arbitrar-
ily, Sat

N :=
⋂N

n=0 Tn(X × X) and N is the minimum number such that
supSat

N (xt+1)− inf Sat

N (xt+1) < ε. We setε = 10−10 here.
A time sequence of the Bernoulli system as a formal model of internal

measurement is shown in Figure 5. The dynamics of parametera shows an
intermittent behavior. It shows laminar phases near0 or 1 and burst phases
otherwise. In laminar phases,x increases or decreases monotonously on one
hand, the dynamics ofa shows a small scale zigzag motion as shown in Fig-
ure 5 on the other hand. Indeed, we can prove that ifxt > at thenxt+1 < xt

and if xt < at thenxt+1 > xt by the definition ofxt+1. The time evolution
rule (at+1, xt+1) = F (at, xt) commutes the transformationR which sends
(a, x) to (1 − a, 1 − x). That is, if (at, xt) is mapped to(at+1, xt+1) then
(1 − at, 1 − xt) is mapped to(1 − at+1, 1 − xt+1). So we investigate be-
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FIGURE 6
The structure of time evolution of the Bernoulli system depicted inx-a plane. (a) The shaded
region corresponds to the set of points which escape from the region below the diagonal line (the
regionD). The black region and the white region below the diagonal line correspond to the set
{(xt, at)|at+1 < at} and the set{(xt, at)|at+1 > at}, respectively. (b) The enlarged time
sequence in Figure 5 is depicted onx-a plane as a sequence of red points.

haviors in the regionD := {(a, x)|a < x} in what follows. As noted just
above,x decreases monotonously in the regionD. The necessary and suffi-
cient condition for escape from the regionD can be determined. That is, we
havext+1 < at+1 whenxt > at if and only if there exists a natural numberk

such that(at)kxt < xt+1 < (at)k. The condition is equivalent to the condi-
tion that(at, xt) is in the set

⋃∞
k=1{(a, x)| a

1−ak+ak+1 < x < a+ak−ak+1}
since we havext+1 = xt−at

1−at in the regionD. This escape region is shown
in Figure 6(a) as the shaded region. The black region in Figure 6(a) shows
the set{(xt, at)|at+1 < at} and the white region below the diagonal line
shows the set{(xt, at)|at+1 > at}. The enlarged time sequence in Figure
5 is plotted onx-a plane in Figure 6(b). This picture is suggestive of how
the small scale zigzag motion alonga-coordinate arises. However, its detail
mechanism is an outstanding problem for future works.

Figure 7 shows the frequency distribution of residence time for the region
D. The distribution can scale as a power law with exponent -2.20. It could be
expected that the small scale zigzag motion prolongs the residence time for
the regionD. The relationship between the small scale zigzag motion and the
power law is also an outstanding issue.
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FIGURE 7
The frequency distribution of residence time for the regionD (the region below the diagonal
line in Figure 6(a)). The frequency is averaged over 100 different orbits of length105. The
distribution can scale as a power law with exponent−2.20.

4.2 Fractal structure of the defined sets
In the above example of the Bernoulli system, the undefined set has null

Lebesgue measure. Next we concern two examples whose undefined sets
have positive measures. The first example is a family of logistic maps,

fa(x) = (3 + a)x(1− x),

where0 ≤ x ≤ 1 and0 < a < 1. Given(at, xt), a contraction mappingT is
defined by obeying the procedure (CCM) as follows. If0 < xt < 1

2 , we set

T1(x, y) = (xtx, xt+1y),

T2(x, y) = ((
1
2
− xt)x + xt, (

3 + at

4
− xt+1)y + xt+1),

T3(x, y) = (
1
2
x +

1
2
,
3 + at

4
y).

We defineT (Y ) =
⋃3

i=1 Ti(Y ) for a subsetY of X ×X. The other case is
defined similarly. The contraction mappingT defines the logistic system as a
formal model of internal measurement.at does not exist if a point(xt, xt+1)
is outside of the region bounded by the two curvesy = 3x(1 − x) andy =
4x(1 − x). If (xt, xt+1) is inside of the region then a new logistic curve
is drawn so that it contains the point(xt, xt+1). at is defined as the new
parameter of this new curve. The defined set of the logistic system is shown
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FIGURE 8
The defined set of the logistic system as a formal model of internal measurement. The defined
points are depicted as black dots.

in Figure 8. The magnified drawings of the defined set near the center of
Figure 8 are shown in Figure 9(a). It seems that the fine structure of the
defined set has a finite scale near the center. The magnified drawings of the
defined set near the upper left of Figure 8 are also shown in Figure 9(b). In
contrast to near the center, it seems that the defined set has a infinitely fine
structure near the upper left. Therefore it may be relevant that we calculate
the fractal (box-counting) dimension of the boundary of the defined set.

Let K be the boundary of the defined set. The fractal (box-counting) di-
mension ofK is defined as a non-negative real number

d = lim
δ→0

lnN(δ)
ln δ−1

if the limit in right hand side exists, whereN(δ) is the minimum number of
squaresδ on a side needed to coverK. Here we calculate the fractal dimen-
sion of the boundary of the defined set by finding the uncertainty exponent
[21, 22] of the defined set. Letf(ε) be the fraction of points(x, a) that are
uncertain forε-perturbations whether they are contained in the defined set or
not. If f(ε) ∼ εα holds then we obtainα = 2 − d. For a smooth boundary
it can be easily shown thatα = 1. On the other hand, we can expect that
0 < α < 1 for a fractal boundary. This relation can be understood intuitively
as follows.

By the definition of the fractal dimension, we haveN(ε) ∼ ε−d for small
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FIGURE 9
The magnified drawings of the defined set of the logistic system shown in Figure 8. (a) Near the
center. (b) Near the upper left. It seems that the fine structure has a finite scale near the center on
one hand, it has arbitrarily small scales near the upper left on the other hand.

ε. f(ε) is proportional to the area of the setK(ε) of points whose distances
from K are withinε. Thereforef(ε) is of the order ofε2N(ε) since the area
of K(ε) will be of the order of the total area of all theN(ε) squaresε on a
side needed to coverK. Hence we haveεα ∼ f(ε) ∼ ε2N(ε) ∼ ε2−d if f(ε)
is proportional toεα.

We calculate the uncertainty exponentα for the boundary of the defined
setK of the logistic system numerically. Whenα is obtained then the fractal
dimension ofK can be calculated asd = 2 − α. The perturbation method
adopted here is the most robust one among the methods proposed by [23].
For given a point(x, a), a numberm of perturbed points on a circle of radius
ε, centered at the point(x, a) are randomly selected. If allm perturbed points
are either defined points or undefined points simultaneously, then the unper-
turbed point(x, a) is called certain. If not so, the unperturbed point(x, a) is
called uncertain. We choosem = 50 here. The uncertainty exponent ofα

for the boundary of the defined setK of the logistic system can be estimated
asα ≈ 0.17 (Figure 10). Hence we obtain the fractal dimension ofK as
d ≈ 2− 0.17 = 1.83.

The second example is a family of tent maps,

f(a, x) =
{

x/a (0 ≤ x ≤ a),
(1− x)/(1− a) (a < x ≤ 1),

where0 ≤ x ≤ 1 and0 < a < 1. Given (at, xt), a contraction mapping
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FIGURE 10
The fractionf(ε) of the uncertain points forε-perturbations corresponding to the defined set of
the logistic system is shown as a function ofε. We havef(ε) ∼ ε0.17 approximately.
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FIGURE 11
(a) The defined set of the tent system as a formal model of internal measurement. (b) The
fractionf(ε) of the uncertain points forε-perturbations corresponding to the defined set of the
tent system. We havef(ε) ∼ ε0.09 approximately.
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T is defined by obeying the procedure (CCM) in a similar fashion to the
other examples. For the obtained tent system as a formal model of internal
measurement, the defined set is shown in Figure 11(a). Note that if both
xt+1 > xt andxt+1 > 1 − xt hold we have two candidate for the value
of at. However, whether one of the two candidate is chosen is not relevant
to the defined set. The uncertainty exponent for the boundary of the defined
set of the tent system can be calculated as in the case of the logistic system
(Figure 11(b)). The uncertainty exponent can be estimated asα ≈ 0.09. The
corresponding fractal dimension isd ≈ 2− 0.09 = 1.91.

In this subsection we estimate the fractal dimensions of the boundaries of
the defined sets for two specific examples of formal model of internal mea-
surement. However, the calculation of uncertainty exponent may provide a
basic tool for studying fractal structure of the defined set of any family of
one-dimensional maps as a formal model of internal measurement.

5 CONCLUDING REMARKS

In this paper, we construct an alternating procedure between obtaining a
map as a fixed point and holding an adjunction motivated by the problem of
the gap between parts and wholeness in complex systems. Switching back
and forth between a collection of parts (an adjunction) and wholeness (a fixed
point) can be regarded as a metaphor for evolutionary processes in the broad-
est sense that an evolution entails pragmatic negotiations between syntax and
semantics [24]. In this context, the relationship among an adjunction, a fixed
point and the whole procedure of formal model of internal measurement can
be comparable to the one among syntax, semantics and pragmatics. Here the
pragmatics is linked to the persistence of a system itself.

The study of one-dimensional maps as formal models of internal measure-
ment can lead to two different directions of investigations. The one is geomet-
ric studies of the procedure of formal model of internal measurement through
a class of families of one-dimensional maps. In this direction, questions such
as whether some unified dynamical properties or geometric properties of de-
fined sets are found or not will be investigated. The other direction is focusing
on the given family of one-dimensional maps in terms of “response” to the
procedure of formal model of internal measurement. Such studies might pro-
vide new perspectives on the given family of one-dimensional maps. Neither
of both directions are examined in earnest in this paper. However, we believe
that the proposed numerical simulation method or the notion of defined sets
provide a momentum for beginning a systematic investigation.

18



6 ACKNOWLEDGMENTS

The authors acknowledge anonymous referees for improving the manuscript
and noting some related literatures. This work was supported by the 21st
century COE program from the JSPS.

REFERENCES

[1] Wolfram, S. (1986).Theory and Applications of Cellular Automata. Singapore: World
Scientific.

[2] Kaneko, K. and Tsuda, I. (2001).Complex Systems : Chaos and Beyond : A Constructive
Approach with Applications in Life Sciences. Tokyo: Springer.

[3] Kauffman, S. A. (1993).The Origins of Order: Self-Organization and Selection in Evolu-
tion. New York: Oxford University Press.

[4] Cariani, P. (1991). Emergence and Artificial Life. In Langton, C. G., Taylor, C., Farmer,
J.D. and Rasmussen, S. (eds.),Artificial Life II, SFI Studies in the Sciences of Complexity,
vol. X, pp. 775-797, Addison-Wesley.

[5] Pattee, H. H. (1989). The measurement problem in artificial world models.BioSystems 23,
281-290.

[6] Rosen, R. (1985). Organisms as Causal Systems Which Are Not Mechanisms: An Es-
say into the Nature of Complexity. InTheoretical biology and complexity, pp. 165-203,
Orlando: Academic Press.

[7] Rosen, R. (1991).Life Itself: A Comprehensive Inquiry Into the Nature, Origin, and Fab-
rication of Life. New York: Columbia University Press.

[8] Matsuno, K. (1989).Protobiology: Physical Basis of Biology. Boca Raton: CRC Press.

[9] Gunji, Y-P. (2004).Protocomputing and Ontological Measurement. Tokyo: University of
Tokyo Press(in Japanese).

[10] Wittgenstein, L. (1958).Philosophical Investigations. Translated by Anscombe, G. E. M.,
Second Edition. Oxford: Blackwell.

[11] Gunji, Y-P., Ito, K. and Kusunoki, Y. (1997). Formal model of internal measurement:
Alternate changing between recursive definition and domain equation.Physica D 110,
289-312.

[12] Gunji, Y-P., Ito, K. and Kusunoki, Y. (1998). Ontological measurement.BioSystems 46,
175-183.

[13] Maturana, H. R., Varela, F. J. (1980).Autopoiesis and Cognition: The Realization of the
Living. Dordrecht: Reidel.

[14] Kneer, G. and Nassehi, A. (1993).Niklas Luhmanns Theorie Sozialer Systeme. München:
Wilhelm Fink Verlag.

[15] Nomura, T. (2001). Formal Description of Autopoiesis Based on the Theory of Category.
In Kelemen, J. and Sosik, P. (eds.),Advances in Artificial Life: 6th European Conference,
ECAL 2001, Proceedings, pp.700-703, Springer.

[16] Robinson, C. (1999).Dynamical Systems - Stability, Symbolic Dynamics, and Chaos -
Second Edition. Boca Raton: CRC Press.

[17] Gunji, Y-P. and Kusunoki, Y. (1997). A Model of Incomplete Identification Illustrating
Schooling Behavior.Chaos, Solitons and Fractals 8, 1623-1630.

19



[18] Gunji, Y-P., Kusunoki, Y., Kitabayashi, N., Mochizuki, T., Ishikawa, M. and Watanabe, T.
(1999). Dual interaction producing both territorial and schooling behavior in fish.BioSys-
tems 50, 27-47.

[19] Takachi, Y. and Gunji, Y-P. (2004) Punctuated equilibrium in thoroughbred evolution and
its model based on asynchronous clocks.Chaos, Solitons and Fractals 19, 555-562.

[20] MacLane, S. (1971).Categories for the Working Mathematician. New York: Springer-
Verlag.

[21] Grebogi, C., McDonald, S.W., Ott, E. and Yorke, J.A. (1983). Final State Sensitivity: An
Obstruction to Predictability.Physics Letters A 99, 415-418.

[22] McDonald, S.W., Grebogi, C., Ott, E. and Yorke, J.A. (1985). Fractal Basin Boundaries.
Physica D 17, 125-153.

[23] Androulakakis, S. P., Hartley, T. T., Greenspan, B. and Qammar, H. (1991). Practical
Considerations on the Calculation of the Uncertainty Exponent and the Fractal Dimension
of Basin Boundaries.International Journal of Bifurcation and Chaos 1, 327-333.

[24] Cariani, P. (1998). Towards an evolutionary semiotics: The emergence of new sign-functions
in organisms and devices. In Van de Vijver, G., Salthe, S. N. and Delpos, M. (eds.),Evo-
lutionary Systems. Biological and Epistemological Perspectives on Selection and Self-
Organization. pp. 359-376, Dordrecht: Kluwer.

20


