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It is proved that for a system of linear partial differential equations with polynomial co-
efficients, the Grobner basis in the Weyl algebra is sufficient for the computation of the
characteristic variety. In particular, this yields a correct algorithm of computing the sin-
gular locus of a holonomic system with polynomial coefficients. The characteristic variety
is defined analytically, i.e. by using the ring of power series, and it has not been obvious
that it can be computed by purely algebraic procedure. Thus the algorithm of computing
the characteristic variety and the singular locus of a system of differential equations with
polynomial coefficients can be readily implemented on a computer algebra system.
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Introduction

In this paper, we consider a system M of linear partial differential equations
with polynomial coefficients. More concretely, M is given by the system of equations

Y Pju;=0 (i=1,...,s)
=1

for unknown functions uy, ..., u,, where P;; are linear partial differential operators
of n variables z;,...,z, with polynomial coefficients (i.e. elements of the Weyl
algebra A,).

The characteristic variety Char (M) of M is by definition an analytic subset
of the complex cotangent bundle T*C" and it represents the analytic nature of
the system M. For example, the holonomicity, ellipticity, and hyperbolicity of M
are all defined through Char (M). In particular, M is called a holonomic system
if the dimension of Char (M) as an analytic set is minimal; i.e., equal to n. The
projection Sing (M) of Char (M) \ 0 to the z-space C" is an analytic subset of C",
where 0 denotes the zero section of T*C™. We call Sing (M) the singular locus of
M. When M is holonomic, Sing (M) is a proper analytic subset, and it was proved
by Kashiwara [K1] that any local analytic solution of M is continued to an analytic
solution on the universal covering space of C™ \ Sing (M).

The characteristic variety is defined analytically, i.e., through the sheaf of rings
D of linear partial differential operators with analytic coefficients. Hence even for
a system of equations with algebraic (i.e. polynomial) coefficients, it is not obvious
that its characteristic variety can be computed purely algebraically, i.e. without
any computation in the ring of the power series.
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The aim of this paper is to show that there is a correct and purely algebraic al-
gorithm which, given a system M with polynomial coefficients, computes Char (M)
and Sing (M). :

The key point of our argument is the Theorem in Section 2, which asserts that
for a system M with polynomial coefficients, the Grobner basis in the Weyl algebra
with an appropriate monomial order gives a so-called involutive basis. Then by stan-
dard methods, we can compute the characteristic variety and, if M is holonomic,
the singular locus and the rank of M almost immediately.

We note that the Grébner basis algorithm in the Weyl algebra was initiated by
Galligo [G] and has been extended and applied to actual computation by Takayama

[Tak1), [Tak2).

1. Groébner Bases for Modules over the Weyl Algebra

In this paper, we use the following three kinds of rings of linear partial differ-
ential operators (we use the notation 8; = 8/9z;):
(i) The ring of differential operators with polynomial coefficients (the Weyl al-

gebra)
Ap :=Clzy,...,za)(81,...,0n),
(ii) The ring of differential operators with rational function coefficients
R, :=C(z1,...,2,){D1,...,0n),
(iii) The ring of differential operators with convergent power series coefficients
Do := C{z1,..., 22 }{01,...,00).

These are non-commutative C-algebras with fundamental relations

TiT; = Z;Tq, 856,» = Bja,-,

x,-aj - 6j.’L‘,’ = —5,']' for 1<14,7<mn,

where C denotes the field of the complex numbers and §;; is the Kronecker delta.
The first two rings are algebraic (cf. [Bj]), and the Grébner basis algorithm is applied
effectively as was shown in [G], [C], [N], [Tak1], [Tak2]. On the other hand, the ring
Dy (more precisely, the sheaf D of differential operators with analytic coefficients
whose stalks are isomorphic to D) is used as a fundamental tool in the theory
of the system of linear partial differential equations (cf. [K1], [K2], [SKK]). Our
motivation is to find relations among modules over these three rings.

Let us review the Grobner basis theory for modules over the Weyl algebra.

First we define a lexicographic order < in N™ by

a < 3 if and only if there is some k with 1 < k < n such that
ar < PBr and a;=f; forany i<k
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for a = (0n,...,a,) and 8 = (By,...,B,). Here we write N = {0,1,2,...} and
lo] = a1 + ...+ an. Then we define a total order (a monomial order) in N2" by
(e,8) < (¢/,8') if and only if (|8] < |A'])
or (I8|=I8] and B<§)
or (B=p" and |o|<|e])
or (=" and |a|=|a'| and a<<a’)
for o, 8, ¢, 3 € N,

An element P of A, is written as a finite sum

P= Zaaﬁmaaﬁ
a,B

with z& = z{'...2%, 8% = 8, ...8,", aag € C for a = (ey,...,0,) and
B = (Br,---,Pn). Then we define the leading exponent lexp(P), the order ord(P),
and the leading coefficient lcoef(P) of P by
lexp(P) = max <{(a, §) € N?™ | ang # 0},
ord(P) = max{|8] | aap # 0},
lcoef(P) = aqp with (e, ) = lexp(P),

where max  denotes the maximum element with respect to the monomial order <
in N?". When ord(P) < m we write

om(P) = Z aag:zafﬁ
a,|Bl=m
with § = (£1,...,&a). If ord(P) = m, we write simply o(P) = ¢,,(P) and call it
the principal symbol of P.
Moreover, fox_'. an r-vector P = (Py,...,P;) € (A,)", we define its order, the
leading point Ip(P), the leading exponent and the leading coefficient by
ord(P) = max{ord(P,) | v =1,...,r},
Ip(P) = max{v € {1,...,r} | ord(P,) = ord(P)},
lexp(P) = (lexp(P,),Ip(P)) with v =Ip(P),
lcoef(P) = lcoef(P,) with v = Ip(P).
Let N be a left A,-submodule of (A,)". Then the set E(N) of leading expo-
nents of N is defined by
E(N) = {lexp(P) | Pe N, P#0} c N* x {1,...,r}.
We introduce a total order < in the set N** x {1,...,7} by
(a,B,v) < (,8,v") if and only if (|6 < |6])
or (I8l=|6| and v <)
or (I8|=18" and v=v" and (e,B)<(c,))
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for a,8,a',8 € N" and v,/ € {1,...,7}.

DEeFINITION. A finite subset G of a left A,-submodule N of (A,,)" is called a
Grobner basis of N if

E(N)= | (lexp(P) + N*")_
Pec

holds, where we put

(0, B,v) + N ={(a+d,8+0,v) |/, f € N"}.

The algorithm of constructing a Grdbner basis from a given set of generators
of N is similar to the Buchberger algorithm for ideals of polynomial rings ([Bu],
[BW], [CLO]) and is described in [Takl] in a more general setting.

2. Grobner Bases and Involutive Bases

Let N be an A,-submodule of (An)". Then N is generated by a finite set
{P,...,BP,}. Write P, = (Pi,...,P;;) for i = 1,...,s. Then in the theory of
systems of linear partial differential equations, it is natural to regard the system

Y Pju;=0 (i=1,...,9)
i=1

as a sheaf of D-modules M := (D)" /N with N := DP, +--- + DP,.
Let us denote by D{™) the subsheaf of D consisting of operators of order at
most m. Define a filtration {N{™} of A by N(™) = &' (D{™))" and let

N = @ N nm=1)

m2>0

be the graded module associated with the filtration. Then N is a sheaf of O[¢]-
submodules of (O[ﬁ])', where O denotes the sheaf of holomorphic functions of z.
Put M = oEnT /N . It is obvious by definition that

N=@P{c(P)| PeN™]},

m2>0

where o(P) = (o (PL), - - -, Om(Ps)) for P=(pR,...,P,) and m = ord(P).

The characteristic variety Char (M) of M is the subset of the cotangent bundle
T*C" = C™ x C™ defined as the support of the sheaf Oc~xc» ®ojg M on T*C™,
where Ocn wcn denotes the sheaf of holomorphic functions in (z,&). For a sheaf F
on C™ and a point p € C" we denote by 7, the stalk (i.e. the set of germs) of F

at p. For a = (ay,...,an), B=(B1,.--,0n) € N" we set

aV B = (max{aj, f1},...,max{an, Bn}).
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THEOREM. Let N be an A,-submodule of (A,)" and assume that G is a
Grébner basis of N. Then for any point p of C*, the module N p 15 generated
by the set {o(P) | P € G} over Oy[¢€]; i.e., G is an involutive basis.

Proof. Put G = {ﬁl,...,ﬁs} and set lexp(I-’;) = (a;, Bi,vi) fori =1,...,s.
We may assume lcoef(P;) = 1 for any i without loss of generality. For two distinct
i,j7 € {1,...,s} we put

s {.’L‘“‘i 8P4, if vy = vy
hd 0, otherwise

with o5 := o; V o; — o; and ;5 := Bi V B; — B;. Then since G is a Grébner basis
we have

Si; P - S;:P; = Z Qi Py (1)
k=1
with some Q;;x € A, such that
lexp(Qiji Pr) < (0 V 0, B; V Bj, i) 2)
if v; = v; (cf. [Takl]). Put

Pi = Om; (ﬁl)r Sij = O'mij—mi(sij)y Qijk = Om;;—my (Qijk)

with m; = |8;| and m;; = |8; V B;|. Then it follows from (1) and (2) that if v; = v;,
8
SiiPi — 8iif = O GijkPry  lexp(giuii) < (o V ;. B V By, 1),
k=1

where lexp is defined in the same way as for (A4,)" with O replaced by £. This
implies that o(G) := {o(P) | P € G} is a Grébner basis of the C[z, {]-submodule
N := C[x7 £]a(ﬁl) +et C[:L‘, E]a(ﬁs)

of (Clz,€])". In view of the theory of the Grobner basis for the polynomial ring,
the first syzygy module for o(G):

{(f- 1) € (Cl )

8
> fubk = 0}
k=1
is generated by the set {7;; | 1 <i < j < s} with

) ()
- ~~ ~=
Vg5 1= (0,. cey Sij ey T Sggy e ,0) — (qijl, . ..,qijs) c (C[:v,ﬁ])s.

(See e.g. [BW], [CLO] for the proof for the case r = 1. The proof for the case r > 1
is similar.) Hence we have an exact sequence of C|z, £]-modules:

(Clz, D) L (Clz,g))* & (Cle,g), (3)
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where the homomorphisms ¢ and 1 are defined by
O(frr-en ) =D fiber  O((fis)is) = D fisi
k=1 i<j
for f, fij € Clz,¢]. Since O, ~ C{z} is flat over C[z] (cf. [Bou, Ch. 3]) and
Op ®C[::] C[x7 &] = OP[&]a
we get from (3) an exact sequence of O,[£]-modules:
©le)E L (@l L (O, @

where the homomorphisms ¢ and 4 are defined by

G((frs-- s f)) = O Fiber  W((figici) = Y fisTij
k=1

i<j

for fi, fij € 0_3[5]
Now let P be an arbitrary element of Ap,. Our aim is to show that there exist

Q1,-..,Qs € D, which satisfy

P=Q:iPi+---+Q,P, (5)

and
ord(QrPe) < ord(P) forany ke{l,...,s}. (6)
For this purpose, let us take an expression (5) which minimizes the quantity
m := max{ord(QcB) | k=1,... ,8}.
Assume m > ord(}—"). Then taking the principal symbol of order m of both sides of

(5), we get s
Zo’m;‘(Qk)amk (ﬁk) =0

k=1

with my := ord(B;) and m}, := m — my. In view of the exact sequence (4), there
exist f;; € Op[€] which are homogeneous of degree m — m;; in £ so that

(Om (@1),- -+ Omy (Qs)) = Y fiitig.

i<y
Put

- ~~— —~
Vij = (0,..., S,'j ,...,-—Sj,',...,o)_(Qijl"--,Qijs)e (An)s'
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Take F;; € D, satisfying om—m,; (Fij) = fij and define Q1,..., Q" by

(@Q----Q5) = (Q1,...,Qs) — ZFUI-/;J

i<j

Then it follows

P= Z Q;cﬁk + ZFijV‘ijmat(}-"l, ceey ]33) = ZQLP';C,
k=1 k=1

i<j

where mat(ﬁl, ceey 133) denotes the s X r matrix with 131, ceey I:":3 as row vectors. This
contradicts the definition of m since ord(Q} P:) < m — 1. Hence we have proved
that there exists an expression (5) with the condition (6). This implies

o(P) € O[€lo(Py) + - + Oplglo(P).
This completes the proof.
3. Characteristic Varieties and Singular Loci
PROPOSITION 1. Under the same assumptions as in the Theorem, put
G, ={PeG|Ip(P)=v}

foreachv € {1,...,7}. Then the characteristic variety of M is given by Char (M) =
Ui, Vi with

V, ={(z,€) € T*C" | 0(P),(2,§) =0 forany P e G,},

where o(P), denotes the v-th component of the vector o(P).

Proof. We use the same notation as in the proof of the Theorem of Section
2. For each v € {1,...,7}, define a sheaf £(*) of O[¢]-modules by

[,(")={(f1,...,fr)€N|f,,=O for p > v}.

Then L) /£~1) can be regarded as a subsheaf of O[¢] and we have £(") = N. By
the definition of the characteristic variety, we have

Char (M) = {p* = (p,q) € T"C" | (Oc»xcn)p R0, e N, = (Ocnxcr)p "}
It is easy to see that
(Ocrxcn)p ®0,ig) Np = (Ocnxcn)pe"
holds if and only if

(Ocrxc)p Qo, (g (c(u)/‘c(u—l))p =(Ogrxcn)ps for v=1,...,n
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Hence in order to prove Proposition 1, it suffices to show that (LW /=), is
generated by {a(P), | P € G,}. To prove this fact, let f = (f1,...,fr) be an
arbitrary element of (£®)),. We put Ip( F) = max{yu | f. # 0}. Then we may
assume Ip( f ) = v. In view of the Theorem, there exist ¢1,...,4r € O, (€] such that

JF= @1p1 + - - + qsPs- V (7)

Put g = max{lp(gePx) | k¥ = 1,...,s} and assume p > v. Let us denote by (f)u
the p-th component of the vector F.Put S, ={ke{l,...,s} | Ip(@k) = n}. We
can now assume Sy, = {1,...,s'} by a permutation of the elements of G. Moreover,
since {o(P) | P € G, Ip(P) < p} also constitutes a Grobner basis of the module
which it generates, we may assume p = r without loss of generality. Note that (7)
implies

sl
Z ‘Zk(ﬁk)r =0.
k=1

Since {p1,-.--,Ps} is a Grobner basis in (Clz,§])”, so is {®x)- | Ip(Br) = T} in
Clz,&). Put
O] (4) )
Tij = (0,0, 553 s+ s —85ir- -+, 0) = (ij1, - .-, Gizer) € (Clz,€])° -
Then by the same argument as that in the proof of the Theorem, there exist fij €
O, (€] such that
(q1,..4,qs) = Z fiUii’

1<i<j<s’
Since ¥;;mat(py, - - - ,Ps) =0, we get
3’ 8
F=Sam+ D ab
k=1 k=s'+1
s’ s
= Z fij (Sijﬁi - 8jiPj — Zqz'jkﬁk) + ) abe
1<i<j<s’ k=1 k=s'+1
s 8
= Z fi Y aukbe+ > abr

1<i<j<s’ k=s'+1 k=s'+1

Thus f is represented as a linear combination of elements of {0(13) | PeG,Ip(P)<
r — 1} over O,[¢]. By induction, we can show that f is represented as a linear
combination of elements of {o(P) | P € G, 1p(P) < v}. Hence we have proved that
(£ /Lt-1 )p is generated by {o(P), | P € G,}. This completes the proof.

ProposiTioN 2. Under the same assumptions as in the Theorem, let I, be
the ideal of C[z,£] generated by {o(P). | P € G,}. Put

Joi = {f(z) € Clal | f(2)& €1, for some f; € N}.
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Then the singular locus of M is given by

Sing(M) = | J | J{z € C"| f(z) =0 forany feJ.}.

v=1i=1

Proof. Let m: T*C"™ — C" be the projection defined by 7(z,£) = z. Then
the singular locus is by definition the union of the algebraic sets (V,, \ 0), where 0
denotes the zero section of 7*C™. On the other hand, n(V, \ 0) is the zeros of the
ideal (;—, Ju: in view of the projective extension theorem of [CLO, Chap. 8]. This
completes the proof.

4. Rank of a Holonomic System

Suppose M is holonomic on U := C™ \ Sing (M) # 0. Then by virtue of a
theorem of Kashiwara ([K1],(K2]), there exists an integer ry so that M is locally
isomorphic to O™ as O-module on a neighborhood of each point of U. This implies
that the holomorphic solutions of M on the universal covering space of U constitute
an ro-dimensional vector space over C. This integer r¢ is called the rank of M. We
define the projection

w: N x {1,...,r} = N" x {1,...,7}

by @(a, 5, v) = (ﬂ,u),
ProposITION 3. Let M, N, G be as in the Theorem. Put

E={(a,v) eN" x {1,...,7} |. (o, B,v) € lexp(P) + N**
for some P € G, B € N"},
ro=H#(N" x {1,...,r}\ E),

where {| denotes the cardinality of a set. Then, if ro is finite, M is holonomic on
C" \ Sing (M) # 0 and its rank is given by ro.

Proof. Put Np = R,P,+-- +R,P, C (R,)". It is known that M is holonomic
on a Zariski open set of C" if (R,)"/Ng is finite dimensional over C(z), and its
dimension is equal to the rank of M (see e.g. [0S] for the proof). A vector P in

(R,)" can be written
.1 -
P=—
a@”

with a(z) € Clz] and @ € (A,)". Then we define Ipg(P) € {1,...,r} and
lexpp(P) € N® x {1,...,7} by

= Ip(Q),
= w(lexp(Q)). '

Ipg(

P)
lexpp(P)
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Let us show :
E = Er(N) := {lexpp(P) | P € Ng, P #0}.

Since G is a Grobner basis of N, we have E = w(E(N)). Hence the inclusion
E c Egr(N) follows from N C Ng. In order to prove the converse inclusion, assume
P € Npg. Then there exists a polynomial a(z) such that a(z)P € N. Hence we get
lexpg(P) = lexpp(a(z)P) € E. This completes the proof since the dimension of
(R,)"/Ngr over C(z) is equal to #(N" x {1,...,7} \ Er(N)).

5. Algorithm and Examples

Let N and M be as in Section 2. For a polynomial f(z,£) € C[z,{] we write
subst(f,&;,1) the result of the substitution &L=1in f.

Algorithm.
Input: A set G of generators of N;
G :=“a Grobner basif of N”;
E :=peg @(lexp(P)) + N™;
for v:=1to r do {
G, ={PcG| Ip(P) = v}
I, :={c(P), | P€ G.};

}

ro == f§(N" x {1,...,7}\ E);

if 7o < oo then

for v:=1tor do
for i := 1 tondo {

I := {SUbot(fvgn | fel, }
G,i = “a Grébner basis of the ideal of C[z, £]
generated by I,; with respect to the monomial order <”;

J,i i= G, N Clzl;

}
Output: {1, }, 7o, {Jvi}s
From the output of this algorithm we get

. Char (M) - U{(mvg) I f(x,f) =0 for any f € Iu},

v=1

and if 7 is finite, M is holonomic of rank ro on C" \ Sing (M) # 0 with

Sing (M) = U U{z | f(z) =0 forany f€ Jy}.

v=11i=1

The correctness of the computation of Sing (M) follows from the arguments in

[CLO, Chap. 8].
The following computation has been performed by using our implementation
of the above algorithm on a computer algebra system Risa/Asir (cf. [NT]).
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Ezample 1. Let us consider the system of Maxwell’s equations in the vacuum.
This is the system for the vector @ = (E, H ) of 6 unknown functions:

M: B.@=0 (i=1,...,8),

where in the coordinate (¢, z,y, z) instead of (z;, z2, T3, T4), we set

ﬁl = (azyawazvoa 0, O)a P.Z = (0) 0,0, a:m 6y) az))
P; = (Oa —32, 6y,/"'at»0’ 0): P4 = (33,0, —83,0, Hata 0),
P5 = (_'33/’6170’ 01 01 iuat)7 PG = ("5ata 0) 0, 0, _az’ ay),

}3‘7 = (01 —€at, 01 az; 07 _a:l:)y ﬁg = (0,0, —Eat, —ay, 33,0).

" Hence this system is apparently overdetermined. Let N be the submodule of (A4)6

generated by {Pl, Pg} Then we get as a Grobner basis of N, G = {P,,..., B,
B,,.. P13} with
= (epds® - 8;% - 8, - 8,%,0,0,0,0,0),

PlO = (0, Eﬂatz - 3z2 - 6y2 - ‘922’ 0,0,0,0),

Py = (€6.8,,0,0,8,0;,8,% + 82,0),

Py = (8,0:,0.8,,ep8,% - 8, — 8,2,0,0,0),

Pz = (0,€8,8,, —£8,8,, -8, — 8,% — 8,2,0,0).
In fact, this computation is the Grébner basis algorithm for polynomials since the

above vectors of operators are with constant coefficients. Thus, in the notation of
Propositions 1 and 2, we get

Vl = {(t,zyy,za71€1n1C) I g
V2 = {(t z,Y, 2, 7161777() | g

(-‘9) (T,fﬂl, )“_‘0}’
(A
Vs —{ t,z,9,2,7.¢mC) | o(P
(
(

)2 =0},
= o(Pp2)s =0},
Vi={t=zv271&n() |0 ) o(Pi3)a = 0},
Vs = {(t,2,9:2,7,6,m,0) | 6(Py)s = 0(Ps)s = o(P11)s = 0},
Ve = {(t,2,9,2,7,6,1,C) | 0(Ba)s = o(Ps)s = 0(Ps)s = o(Pr)s = 0},

where we write (7,€,7,() instead of (&1, &, &3,€4). Hence we have

Char (M) = {(tamayv‘z,"-vgvn?C) I E“Tz - €2 - 7]2 - <2 = 0}'

! "Ux "UJ "Ux

Ezample 2. Using the coordinate (z,y) instead of (z1,x2), let us consider the
system for Appell’s F3
M: Pu=PFPu=0
with
Py :=z(1 - 2)8,° + Y00, + {y— (@ + B+ 1)z}0: — a
Py :=y(1-y)8,” +8:8, + {v — (&' + B+ 1)y}d, — /8",
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Then we get { Py, P2, P3, P4} as a GrGbner basis of the left ideal I := A2 P + Ay Py
with

lexp(P,) = (2,0,2,0), lexp(P:)=(1,0,1,1),

lexp(Ps) = (0,2,1,2), lexp(Ps) =(1,4,0,3).

Hence the rank of M on C?\ Sing (M) is 4. Moreover we have

I = {€((=2” + )¢ +yn), (=€ + (=¥ +y)n), ¥*n° (€ — (v — 1)*n),
v (y — )(zy —z — y)n°},
In={PE-)(ey-z-y)}, Jiz={y-DEzy—z-v)}

Hence the characteristic variety and the singular locus are given by

Char(M) ={z=y=0}u{e=n=0}u{c=n=0U{z—-1=7n=0}
Ufy=¢=0}ufy-1=¢=0}u{zy—z-y=£- (-1’1 =0},
Sing (M) = {(z,y) € C* | zy(z - 1)(y — 1)(zy —z —y) =0}
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