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Feynman diagrams and Feynman integrals

Let G be a connected Feynman graph (diagram), i.e., G consists of

vertices V1, · · · , Vn′ ,

oriented line segments L1, . . . , LN called internal lines,

oriented half-lines Le1, . . . , L
e
n called external lines.

The end-points of each internal line Ll are two distinct vertices, and each
external line has only one end-point, which coincides with one of the
vertices.
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• We associate ν-dimensional vector pr to each external line Ler
(1 ≤ r ≤ n′),
and ν-dimensional vector kl and a real number (mass) ml ≥ 0 to each
internal line Ll (1 ≤ l ≤ N).
• For a vertex Vj and an internal or external line Ll , the incidence number
[j : l ] is defined as follows:

[j : l ] = 1 if Ll ends at Vj ,

[j : l ] = −1 if Ll starts from Vj ,

[j : l ] = 0 otherwise.
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The Feynman integral associated with G is defined to be

FG (p1, . . . , pn)

=

∫
RνN

∏n′

j=1 δ
(∑n

r=1[j : r ]pr +
∑N

l=1[j : l ]kl
)

∏N
l=1(k

2
l −m2

l +
√
−1 0)

N∏
l=1

dνkl .

Here δ denotes the ν-dimensional delta function,

k2l := k2l0 − k2l1 − · · · − k2lν ,

dνkl is the ν-dimensional volume element,
and (· · ·+

√
−1 0) means the limit (· · ·+

√
−1 ε) as ε→ +0.

The integrand is well-defined as a generalized function at least if all
ml > 0.
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In what follows, we assume that G is external, i.e., for each vertex Vj ,
there exists a unique external line, which we may assume to be Lej , that
ends at Vj and that no external line starts from Vj . Then n = n′ holds and
the Feynman integral is

FG (p1, . . . , pn) =

∫
RνN

∏n
j=1 δ

(
pj +

∑N
l=1[j : l ]kl

)
∏N

l=1(k
2
l −m2

l +
√
−1 0)

N∏
l=1

dνkl
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Rewriting the Feynman integral

The delta factors of the integrand of the Feynman integral correspond to
the linear equations (momentum preservation)

pj +
N∑
l=1

[j : l ]kl = 0 (1 ≤ j ≤ n)

for indeterminates pj and kl which correspond to the vectors pj and kl .
These equations define an N-dimensional linear subspace of Rn+N , which
is contained in the hyperplane p1 + · · ·+ pn = 0 since

∑n
j=1[j : l ] = 0.
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Lemma

Let A be the n × N matrix whose (j , l)-element is [j : l ]. Then the rank of
A is n − 1.

One can prove this lemma by induction on n.
For the example below, the matrix A is given by

A =


−1 −1 −1 0 0 0
0 0 1 −1 −1 0
1 1 0 1 0 −1
0 0 0 0 1 1


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In view of the lemma above, we can choose a set of indices

J = {l1, . . . , lN−n+1} ⊂ {1 . . . ,N}

and integers alr and blj so that

kl =
n−1∑
r=1

alrpr +
N−n+1∑
j=1

bljklj = ψl(p1, . . . , pn−1, kl1 , . . . , klN−n+1
)

(l ∈ Jc := {1, . . . ,N} \ J).

More precisely, the system

pj +
N∑
l=1

[j : l ]kl = 0 (1 ≤ j ≤ n)

of linear equations is equivalent to

n∑
j=1

pj = 0, kl − ψl(p1, . . . , pn−1, kl1 , . . . , klN−n+1
) = 0 (l ∈ Jc).

In particular, the matrix (alr ) is non-singular.
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Then the Feynman integral is written in the form

FG (p1, . . . , pn) =

∫
RNν

δ(p1 + · · ·+ pn)

×
∏
l∈Jc

δ(kl − ψl(p1, . . . , pn−1, kl1 , . . . , klN−n+1
))

×
N∏
l=1

(k2l −m2
l +

√
−1 0)−1

N∏
l=1

dkl

= δ(p1 + · · ·+ pn)F̃G (p1, . . . , pn−1)

with the amplitude function

F̃G (p1, . . . , pn−1) =

∫
R(N−n+1)ν

∏
l∈J

(k2l −m2
l +

√
−1 0)−1

×
∏
l∈Jc

(ψl(p1, . . . , pn−1, kl1 , . . . , klN−n+1
)2 −m2

l +
√
−1 0)−1

∏
l∈J

dkl .
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Under the condition that ml > 0, the integrand

Ψ(p1, . . . , pn−1, kl1 , . . . , klN−n+1
) =

∏
l∈J

(k2l −m2
l +

√
−1 0)−1

×
∏
l∈Jc

(ψl(p1, . . . , pn−1, kl1 , . . . , klN−n+1
)2 −m2

l +
√
−1 0)−1

is well-defined as a hyperfunction on RνN defined by the boundary value of
the holomorphic function

Φ(p1, . . . , pn−1, kl1 , . . . , klN−n+1
) =

∏
l∈J

(k2l −m2
l )

−1

×
∏
l∈Jc

(ψl(p1, . . . , pn−1, kl1 , . . . , klN−n+1
)2 −m2

l )
−1

on RνN +
√
−1Γ0 with the convex cone Γ generated by vectors dk2l

(l ∈ J) and dψ2
l (l ∈ Jc), which are lineary independent over R.
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The annihilator of the integrand as a hyperfunction

Let DνN be the ring of differential operators with polynomial coefficients
in the variables p1, . . . , pn−1, kl1 , . . . , klN−n+1

. In view of the injectivity of
the boundary value map, the annihilator of the hyperfunction Ψ coincides
with that of the rational function Φ:

AnnDνN
Ψ = AnnDνN

Φ

and hence it is computable.
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Integrals of microfunctions

We use the notation x = (x ′, x ′′) with x ′ = (x1, . . . , xn−d) and
x ′′ = (xn−d+1, . . . , xn) for the coordinate of the base space Rn , and
ξ = (ξ′, ξ′′) for the contangential coordinate. Let
π : Rn 3 x 7−→ x ′ ∈ Rn−d be the natural projection. Let

ϖ : Rn ×
Rm

√
−1T ∗Rn−d 3 (x ,

√
−1〈ξ′, dx ′〉)

7−→ (x ′,
√
−1〈ξ′, dx ′〉) ∈

√
−1T ∗Rn−d

be the natural projection induced by π and

ρ : Rn ×
Rm

√
−1T ∗Rn−d 3 (x ,

√
−1〈ξ′, dx ′〉)

7−→ (x ,
√
−1〈ξ′, dx ′〉) ∈

√
−1T ∗Rn

be the natural inclusion. Let CRn and CRn−d be the sheaves of
microfunctions on

√
−1T ∗Rn and on

√
−1T ∗Rn−d respectively.
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Then the integration along the fibers of π : Rn 3 x 7−→ x ′ ∈ Rn−d is
defined as a sheaf homomorphism

π∗ : ϖ!ρ
−1CRn −→ CRn−d

according to Sato-Kawai-Kashiwara (1973). In particular, for any open set
W of

√
−1T ∗Rn−d , there exists a homomorphism

π∗ : Γ
(
W , ϖ!ρ

−1CRn

)
3 u(x) 7−→

∫
Rd

u(x) dx ′′ ∈ Γ
(
W , CRn−d

)
.

Moreover, it is a homomorphism of left Dn−d -modules, where Dn−d is the
ring of differential operators with polynomial coefficients in x ′.

Lemma

Let W be an open set of
√
−1T ∗Rn−d and u be an element of

Γ
(
W , ϖ!ρ

−1CRn

)
. Then the integral

∫
Rd ∂xju(x) dx

′′ ∈ Γ(W , CRn−d )
vanishes for any n − d + 1 ≤ j ≤ n.
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Proof: I adopt a concrete definition in terms of defining functions following
Kashiwara-Kawai-Kimura and A. Kaneko. Let x∗ = (x ′0,

√
−1〈ξ′0, dx ′〉) be

a point of W . We may assume that W is a sufficiently small
neighborhood of p′. We may assume that u is the spectrum of the
hyperfunction defined as the boundary value of a holomorphic function
F (z) on (U × Rd) +

√
−1V 0 where U is an open neighborhood of x ′0 in

Rn−d and V is an open convex cone of Rn such that

V ◦ := {η ∈ Rn | 〈y , η〉 ≥ 0 (∀y ∈ V )} ⊂ {(η′, η′′) | 〈x ′0, η′〉 > 0}.

By the assumption that u belong to Γ(W , ϖ!ρ
−1CRn), there exists R > 0

such that F (z) continues analytically to U × (Rd \ (−R ,R)d).
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Then (e.g.)
∫
Rd ∂xnu(x) dx

′′ is the spectrum of the boundary value
G (x ′ +

√
−1V ′0) of

G (z ′) =

∫
[−R,R]d

∂xnF (z
′, x ′′) dx ′′

=

∫
[−R,R]d−1

F (z ′, xn−d+1, . . . , xn−1,R) dxn−d+1 · · · dxn−1

−
∫
[−R,R]d−1

F (z ′, xn−d+1, . . . , xn−1,−R) dxn−d+1 · · · dxn−1

with V ′ = V ∩ (Rn−d × {0}). (Note that V ′ 6= ∅ by the assumption.)
Hence G (z ′) is real analytic on U. This completes the proof.
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Now let Dn and Dn−d be the rings of differential operators with polynomial
coefficients in x = (x1, . . . , xn) and in x ′ = (x1, . . . , xn−d) respectively.
Then the following is an immediate consequence of the preceding lemma:

Proposition

Let u be an element of Γ(W , ϖ!ρ
−1CRn) and let I be a left ideal of Dn

such that Pu = 0 for any P ∈ I . Let Q be an element of

(∂xn−d+1
Dn + · · ·+ ∂xnDn + I ) ∩ Dn−d .

Then Q annihilates
∫
Rd u(x) dx

′′ as microfunction on W . More generally,
the integration induces a linear map

HomDn(M, Γ(W , ϖ!ρ
−1CRn)) −→ HomDn−d

(M ′, Γ(W , CRn−d ))

with M ′ = M/(∂xn−d+1
M + · · ·+ ∂xnM).

There is an algorithm to compute the ’integration module‘ M ′ if a
presentation of M is given.
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Feynman amplitudes as microfunctions

As was pointed out by Sato-Kawai-Kashiwara in the 1970’s, the Feynman
amplitude F̃G (p1, . . . , pn−1) associated with an external diagram G with
positive masses is well-defined as a microfunction on the set

√
−1T ∗Rν(n−1) \ϖ

(
Λ(G ) \ Λ+(G )

)
and its support (analytic wave-front set) is contained in ϖ(Λ+(G )). These
sets are called Landau-Nakanishi varieties and defined as follows:
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We set

Λ(G ) = {(p1, . . . , pn−1, kl1 , . . . , klN−n+1
;
√
−1(〈u1, dp1)〉+ · · ·

+ 〈un−1, dpn−1〉) ∈ RνN ×
Rν(n−1)

√
−1T ∗Rν(n−1)

| ∃αl≥0 (1 ≤ l ≤ N) such that

αlj (k
2
lj
−m2

lj
) = 0 (1 ≤ j ≤ N − n + 1), (1)

αl(ψ
2
l −m2

l ) = 0 (l ∈ Jc), (2)

αljklj +
∑
l∈Jc

αlbljψl = 0 (1 ≤ j ≤ N − n + 1), (3)

ur =
∑
l∈Jc

αlalrψl (1 ≤ r ≤ n − 1)} (4)

with

ψl =
n−1∑
r=1

alrpr +
N−n+1∑
j=1

bljklj ,

〈u, dp〉 = u1dp1 − u2dp2 − · · · − uνdpν ,
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Λ+(G ) = {(p1, . . . , pn−1, kl1 , . . . , klN−n+1
;
√
−1(〈u1, dp1)〉+ · · ·

+ 〈un−1, dpn−1〉) ∈ RνN ×
Rν(n−1)

√
−1T ∗Rν(n−1)

| ∃αl>0 (1 ≤ l ≤ N) such that

αlj (k
2
lj
−m2

lj
) = 0 (1 ≤ j ≤ N − n + 1),

αl(ψ
2
l −m2

l ) = 0 (l ∈ Jc),

αljklj +
∑
l∈Jc

αlbljψl = 0 (1 ≤ j ≤ N − n + 1),

ur =
∑
l∈Jc

αlalrψl (1 ≤ r ≤ n − 1)}.

ϖ is the projection

ϖ : RνN ×
Rν(n−1)

√
−1T ∗Rν(n−1) 7−→ T ∗Rν(n−1)

= {(p1, . . . , pn−1;
√
−1 (〈u1, dp1〉+ · · ·+ 〈un−1, dpn−1)〉)}.
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Proof: Set W =
√
−1T ∗Rν(n−1) \ϖ(Λ(G ) \ Λ+(G )). Let

ρ : RνN ×
Rν(n−1)

√
−1T ∗Rν(n−1) −→

√
−1T ∗RνN

be the natural inclusion. Let S.S.Ψ be the singular spectrum of the
integrand Ψ of the Feynman amplitude as a hyperfunction. Then it is easy
to see that its singular spectrum S.S.Ψ satisfies

ρ−1(S.S.Ψ) ⊂ Λ(G ).

If ∀αl > 0 and ur , pr (1 ≤ r ≤ n − 1) are given, then αlψl and αljklj are
uniquely determined by (4) and (3) since the matrix (alr ) is non-singular;
then αl are determined by (1) and (2). Thus klj (and ψl) are uniquley
determined. This implies that

spΨ ∈ Γ(W , ϖ!ρ
−1CRνN ).

Hence F̃ (p1, . . . , pn−1) =
∫
Rν(N−n+1) spΨ

∏
l∈J dkl is well-defined as a

microfunction on W .
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For example, for the graph G below

p1 p2

k1

k2

Λ(G ) = {(p1, k1,u1) | α1(k
2
1 −m2

1) = α2((p1 − k1)
2 −m2

2) = 0,

α1k1 − α2(p1 − k1) = 0, u1 = α2(p1 − k1), ∃α1, α2 ≥ 0}
Λ+(G ) = {(p1, k1,u1) | α1(k

2
1 −m2

1) = α2((p1 − k1)
2 −m2

2) = 0,

α1k1 − α2(p1 − k1) = 0, u1 = α2(p1 − k1), ∃α1, α2 > 0},

from which, we can confirm that

ϖ(Λ(G ) \ Λ+(G )) = {(p1,
√
−1 〈u1, dp1〉) | u1 = 0},

ϖ(Λ+(G )) = {(p1,
√
−1 〈u1, dp1〉) | p21 − (m1 +m2)

2 = 0, u = αp1, α > 0}.

This implies, in particular, that the Feynman amplitude F̃G (p1) is
well-defined as an element of B(Rν)/A(Rν).
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Local cohomology

In general, let f1, . . . , fd be polynomials in the variables x = (x1, . . . , xn)
with complex coefficients such that the variety

Y = {x ∈ Cn | f1(x) = · · · = fd(x) = 0}

is d-codimensional, i.e., f1, · · · , fd are of complete intersection. Then the
(algebraic) d-th local cohomology group associated with f1, . . . , fd is
defined to be the quotient space

Hd
[Y ](C[x ]) := C[x , f −1]/

d∑
k=1

C[x , (f /fk)−1]

with f = f1 · · · fd . It consists of the cohomology classes [g/f ν ] with
ν = 1, 2, 3, . . . and g ∈ C[x ].
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• Hd
[Y ](C[x ]) has a natural structure of left Dn-module and is holonomic as

such.

• The simplest example of the local cohomology group is

H1
[{0}](C[x ]) = C[x , x−1]/C[x ]

with x = x1 (one variable), which is spanned by the classes [x−k ] with
k = 1, 2, 3, . . . as a C-vector space. As a left D1-module, it is generated
only by [x−1] since ∂kx [x

−1] = (−1)kk![x−k−1].

• There are algorithms (U. Walther, Oaku-Takayama) to compute the
local cohomology group as a D-module, in particular, the annihilator (the
holonomic system) for each cohomology class.
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Local cohomology and integrands of Feynman amplitudes

Let DνN be the ring of differential operators with polynomial coefficients
in p1, . . . , pn−1, kl1 , . . . , klN−1

. We regard the integrand

Ψ =
∏
l∈J

(k2l −m2
l +

√
−1 0)−1

×
∏
l∈Jc

(ψl(p1, . . . , pn−1, kl1 , . . . , klN−n+1
)2 −m2

l +
√
−1 0)−1

of the Feynman amplitude as a hyperfunction. Let Φ be the corresponding
rational function

Φ =
∏
l∈J

(k2l −m2
l )

−1
∏
l∈Jc

(ψl(p1, . . . , pn−1, kl1 , . . . , klN−n+1
)2 −m2

l )
−1.
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Set

Y := {(p1, . . . , pn−1, kl1 , . . . , klN−n+1
) ∈ CνN |

k2l −m2
l = 0 (l ∈ J), ψ2

l −m2
l = 0 (l ∈ Jc)}

and
BG := HN

[Y ](C[p1, . . . , pn−1, kl1 , . . . , klN−n+1
]).

We denote by [Φ] the modulo class of Φ in BG .

Propositon

Let P ∈ DνN be an element of AnnDνN
[Φ]. Then P(spΨ) = 0 holds as an

element of Γ(W , ϖ!ρ
−1CRνN ) with

W =
√
−1T ∗Rν(n−1) \ϖ(Λ(G ) \ Λ+(G )).

Note that AnnDνN
[Φ] is strictly larger than AnnDνN

Φ.
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Proof: By the definition, PΦ is written in the form

PΦ =
n−1∑
j=1

∏
l∈J,l ̸=j

aj(k
2
l −m2

l )
−djl

∏
l∈Jc

(ψl(p1, . . . , pn−1, kl1 , . . . , klN−n+1
)2 −m2

l )
−djl

+
∑
j∈Jc

∏
l∈J

bj(k
2
l −m2

l )
−ejl

∏
l∈Jc ,l ̸=j

(ψl(p1, . . . , pn−1, kl1 , . . . , klN−n+1
)2 −m2

l )
−ejl

with polynomials aj , bj and nonnegative integers djl , ejl . It follows that

ρ−1(S.S.PΨ) ⊂ Λ(G ) \ Λ+(G ) ⊂ ϖ−1(ϖ(Λ(G ) \ Λ+(G )))

= ϖ−1(
√
−1T ∗Rν(n−1) \W ).

This implies that P(spΨ) vanishes as an element of Γ(W , ϖ!ρ
−1CRνN ). □

Hence we get

Theorem

The Feynman amplitude F̃ (p1, . . . , pn−1) is a solution of the integration
module of the local cohomology BG as a microfunction on W .
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Examples

We present the computation of the integration module of the local
cohomology associated with the integrand of the Feynman amplitude for
some simple Feynman diagrams.
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Example 1
Let us study the Feynman diagram G below:

p1 p2

k1

k2

Then the Feynman integral is written in the form

FG (p1,p2) =

∫
R4

δ(p1 − k1 − k2)δ(−p2 + k1 + k2)

× (k21 −m2
1 +

√
−1 0)−1(k22 −m2

2 +
√
−1 0)−1 dk1dk2

= δ(p1 − p2)F̃G (p1)

with the amplitude

F̃G (p1) =

∫
R2

(k21 −m2
1 +

√
−1 0)−1((p1 − k1)

2 −m2
2 +

√
−1 0)−1 dk1.
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In view of the invariance under Lorentz transformations, let us set
p1 = (x , 0, . . . , 0).

In case ν = 2, the integration ideal of the annihilator of the local
cohomology class

[(k210 − k211 −m2
1)

−1((x − k10)
2 − k211 −m2

2)
−1]

is generated by

(x−m1−m2)(x−m1+m2)(x+m1−m2)(x+m1+m2)∂x+2x(x2−m2
1−m2

2).

The solutions (the kernel) of this operator are constant multiples of

(x −m1+m2)
−1/2(x +m1−m2)

−1/2(x +m1+m2)
−1/2(x −m1−m2)

−1/2.
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In case of ν = 4, by using the 3-dimensional polar coordinates, we have

F̃G (p1) =

∫
R2

(k21 −m2
1 +

√
−1 0)−1((p1 − k1)

2 −m2
2 +

√
−1 0)−1 dk1

= 2π

∫
R2

(k210 − r2 −m2
1 +

√
−1 0)−1

× ((x − k10)
2 − r2 −m2

2 +
√
−1 0)−1r2+ dk10dr .

The integration ideal of the annihilator of the cohomology class

[r2(k210 − r2 −m2
1)

−1((x − k10)
2 − r2 −m2

2)
−1]

is generated by

x(x −m1 −m2)(x −m1 +m2)(x +m1 −m2)(x +m1 +m2)∂x

− 2((m2
1 +m2

2)x
2 −m4

1 + 2m2
2m

2
1 −m4

2).

The solutions (the kernel) of this operator are constant multiples of

x−2(x −m1 +m2)
1/2(x +m1 −m2)

1/2(x +m1 +m2)
1/2(x −m1 −m2)

1/2.
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Example 2
The Feynman integral associated with the graph G below

p1 p2

k1

k3

k2

is given by

FG (p1,p2) = δ(p1 − p2)F̃G (p1)

with

F̃G (p1) =

∫
R4

(k21 −m2
1 +

√
−1 0)−1(k22 −m2

2 +
√
−1 0)−1

× ((p1 − k1 − k2)
2 −m2

3 +
√
−1 0)−1 dk1dk2.

We work in the 2-dimensional space-time (ν = 2) and compute holonomic
systems for F̃G ((x , 0)) by assigning some special values to m1,m2,m3 since
the computation for general m1,m2,m3 (as parameters) is intractable.
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First let us set m1 = 1, m2 = 2, m3 = 4 so that (−m1 +m2 +m3)
2,

(m1 −m2 +m3)
2, (m1 +m2 −m3)

2 are distinct. Then F̃G ((x , 0)) is
annihilated by the differential operator

30x(x − 1)(x + 1)(x − 3)(x + 3)(x − 5)(x + 5)(x − 7)(x + 7)∂3x

+ (−2x12 + 191x10 − 5340x8 + 35954x6 + 273082x4

− 2071305x2 + 661500)∂2x

+ (−10x11 + 675x9 − 12108x7 + 15454x5 + 936462x3

− 2692665x)∂x

− 8x10 + 372x8 − 3300x6 − 36028x4 + 457932x2 − 356760.

The singular points x = 0,±1,±3,±5,±7 are all regular and the indicial
equations are all s2(s − 1).
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Next set m1 = m2 = m3 = 1. Then F̃G ((x , 0)) is annihilated by

x(x − 1)(x + 1)(x − 3)(x + 3)∂2x + (5x4 − 30x2 + 9)∂x + 4x3 − 12x .

The points 0,±1,±3 are regular singular and the indicial equations at
these points are all s2.

See Adams-Bogner-Weinzierl (2015) for complete computation with
arbitrary m1,m2,m3 by a different (and more efficient) method.
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Example 3

The Feynman integral associated with the graph G below

p1 p2

p3

k1

k2

k3

is given by
FG (p1,p2,p3) = δ(p1 − p2 − p3)F̃G (p1,p2)

with

F̃G (p1,p2) =

∫
Rν

(k21 −m2
1 +

√
−1 0)−1

× ((p1 − k1)
2 −m2

2 +
√
−1 0)−1((p2 − k1)

2 −m2
3 +

√
−1 0)−1 dk1.
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We work in the 2-dimensional space-time (ν = 2). In view of the invariance
under Lorentz transformation, we set p1 = (x , 0), and p2 = (y , z).

First let us set m1 = m2 = m3 = 1. We compute the integration ideal I of
the annihilator of the integrand regarded as a local cohomology class.
Since I is too complicated (with tens of generators), we will present only
the characteristic variety of M := D3/I .
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The characteristic variety of M := D3/I is given by

Char(M) = T ∗
{f=0}C

3 ∪ T ∗
{x=0}C

3 ∪ T ∗
{x=f0=0}C

3 ∪ T ∗
{x=y2−z2−4=0}C

3

∪ T ∗
{x=y+z=0}C

3 ∪ T ∗
{x=y−z=0}C

3 ∪ T ∗
{x=y=z=0}C

3

with

f (x , y , z) = (y − z)(y + z)x2 − 2(y − z)(y + z)yx

+ (y − z)2(y + z)2 + 4z2,

f0(y , z) = f (0, y , z),

where we denote by T ∗
ZC3 the closure of the conormal bundle of the

regular part of an analytic set Z of C3.

Only the first component T ∗
{f=0}C

3 should be physically significant.
Especially, it roughly means that the Feynman amplitude is analytic
outside the surface f = 0, which has rather complicated singularities.
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The decomposition of Char(M) was done by using a library file
noro pd.rr of Risa/Asir for prime and primary decomposition of
polynomial ideals developed by M. Noro.
He also computed a primary decomposition of the symbol ideal of I , which
enabled us to compute the multiplicity of each component of Char(M).
Thus the characteristic cycle, i.e., the characteristic variety with
multiplicity of each component, of M is

T ∗
{f=0}C

3 + 2T ∗
{x=0}C

3 + T ∗
{x=f0=0}C

3 + T ∗
{x=yz−4=0}C

3

+ T ∗
{x=y+z=0}C

3 + T ∗
{x=y−z=0}C

3 + 2T ∗
{x=y=z=0}C

3.
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Singularities of the surface f = 0

Let us investigate the singularities of the complex surface

Z = {(x , y , z) ∈ C3 | f (x , y , z) = 0},
f = (y − z)(y + z)x2 − 2(y − z)(y + z)yx + (y − z)2(y + z)2 + 4z2.

Following N. Honda and T. Kawai, we rewrite f as

f = yzx2 − yz(y + z)x + y2z2 + (y − z)2

by change of coordinates (y + z , y − z) → (y , z).
Then the singular locus (the set of the singular points) of Z is the union of
two complex lines {x = y = z} and {y = z = 0}.
The projection Z 3 (x , y , z) 7→ (y , z) defines a doube covering on
{(x , y) | xy 6= 0} branched along the union of curves y − z = 0 and
yz − 4 = 0.
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The stratification of Z with respect to the (local) b-function bf ,p(s) of f
at a point p is

strata bf ,p(s)

{(0, 0, 0)} (s + 1)3(2s + 3)

{(2, 0, 0), (−2, 0, 0), (2, 2, 2), (−2,−2,−2)} (s + 1)2(2s + 3)

{x = y = z} ∪ {y = z = 0} (s + 1)2

\{(0, 0, 0), (±2, 0, 0),±(2, 2, 2)}
{f = 0} \ ({x = y = z} ∪ {y = z = 0}) s + 1

In comparison, that of g := x2 − y2z (Whitney umbrella) is
strata bg ,p(s)

{(0, 0, 0)} (s + 1)2(2s + 3)

{x = y = 0} \ {(0, 0, 0)} (s + 1)2

{g = 0} \ {x = y = 0} s + 1
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In case m1 = 1, m2 = 2, m3 = 3

In case m1 = 1, m2 = 2, m3 = 3, we succeeded in computation of the
integration ideal I of the integrand as a local cohomology class. The
characteristic variety of M := D3/I is given by

Char(M) = T ∗
{g=0}C

3 ∪ T ∗
{x=y−z=0}C

3,

with

g(x , y , z) = (y − z)(y + z)x4 − 2y(y2 − z2 − 8)x3

+(y4+(−2z2−22)y2+z4+26z2+64)x2+6y(y2−z2−8)x+9(y2−z2).

The decomposition of Char(M) was done by using a library file
noro pd.rr of Risa/Asir for prime and primary decomposition of
polynomial ideals developed by M. Noro.
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The singularities of the surface g = 0

Again by change of coordinates (y + z , y − z) → (y , z), we rewirte g as

g = yzx4 − (y + z)(yz − 8)x3 + ((z2 + 1)y2 − 24zy + z2 + 64)x2

+ 3(y + z)(yz − 8)x + 9yz .

The set of the singular points of the surface g = 0 is given by the curve

zx2 − (z2 − 8)x − 3z = y − z = 0.

The local b-function is (s + 1)2(2s + 3) at the 8 points

±(1, 2, 2), ±(1,−4,−4), ±(3,−2,−2), ±(3, 4, 4);

(s + 1)2 on the curve zx2 − (z2 − 8)x − 3z = y − z = 0 other than the 8
points above.
The local b-function of g at the 8 points is the same as that of the
Whitney umbrella at the origin.
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