A naive approach to microlocal analysis of Feynman amplitudes

Toshinori Oaku
Department of Mathematics, Tokyo Woman's Christian University

February, 2022

Feynman diagrams and Feynman integrals

Let G be a connected Feynman graph (diagram), i.e., G consists of

- vertices $V_{1}, \cdots, V_{n^{\prime}}$,
- oriented line segments L_{1}, \ldots, L_{N} called internal lines,
- oriented half-lines $L_{1}^{e}, \ldots, L_{n}^{e}$ called external lines.

The end-points of each internal line $L_{/}$are two distinct vertices, and each external line has only one end-point, which coincides with one of the vertices.

- We associate ν-dimensional vector \mathbf{p}_{r} to each external line L_{r}^{e}
$\left(1 \leq r \leq n^{\prime}\right)$,
and ν-dimensional vector \mathbf{k}_{l} and a real number (mass) $m_{l} \geq 0$ to each internal line $L_{l}(1 \leq I \leq N)$.
- For a vertex V_{j} and an internal or external line L_{l}, the incidence number [$j: l]$ is defined as follows:

$$
\begin{aligned}
& {[j: I]=1 \text { if } L_{I} \text { ends at } V_{j},} \\
& {[j: I]=-1 \text { if } L_{I} \text { starts from } V_{j},} \\
& {[j: I]=0 \text { otherwise. }}
\end{aligned}
$$

The Feynman integral associated with G is defined to be

$$
\begin{aligned}
& F_{G}\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{n}\right) \\
& \qquad=\int_{\mathbb{R}^{\nu N}} \frac{\prod_{j=1}^{n^{\prime}} \delta\left(\sum_{r=1}^{n}[j: r] \mathbf{p}_{r}+\sum_{l=1}^{N}[j: l] \mathbf{k}_{l}\right)}{\prod_{l=1}^{N}\left(\mathbf{k}_{l}^{2}-m_{l}^{2}+\sqrt{-1} 0\right)} \prod_{l=1}^{N} d^{\nu} \mathbf{k}_{l}
\end{aligned}
$$

Here δ denotes the ν-dimensional delta function,

$$
\mathbf{k}_{l}^{2}:=k_{l 0}^{2}-k_{l 1}^{2}-\cdots-k_{l \nu}^{2},
$$

$d^{\nu} \mathbf{k}_{/}$is the ν-dimensional volume element, and $(\cdots+\sqrt{-1} 0)$ means the limit $(\cdots+\sqrt{-1} \varepsilon)$ as $\varepsilon \rightarrow+0$.
The integrand is well-defined as a generalized function at least if all $m_{l}>0$.

In what follows, we assume that G is external, i.e., for each vertex V_{j}, there exists a unique external line, which we may assume to be L_{j}^{e}, that ends at V_{j} and that no external line starts from V_{j}. Then $n=n^{\prime}$ holds and the Feynman integral is

$$
F_{G}\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{n}\right)=\int_{\mathbb{R}^{\nu N}} \frac{\prod_{j=1}^{n} \delta\left(\mathbf{p}_{j}+\sum_{l=1}^{N}[j: l] \mathbf{k}_{l}\right)}{\prod_{l=1}^{N}\left(\mathbf{k}_{l}^{2}-m_{l}^{2}+\sqrt{-1} 0\right)} \prod_{l=1}^{N} d^{\nu} \mathbf{k}_{l}
$$

Rewriting the Feynman integral

The delta factors of the integrand of the Feynman integral correspond to the linear equations (momentum preservation)

$$
p_{j}+\sum_{l=1}^{N}[j: l] k_{l}=0 \quad(1 \leq j \leq n)
$$

for indeterminates p_{j} and $k_{/}$which correspond to the vectors \mathbf{p}_{j} and $\mathbf{k}_{/}$. These equations define an N-dimensional linear subspace of \mathbb{R}^{n+N}, which is contained in the hyperplane $p_{1}+\cdots+p_{n}=0$ since $\sum_{j=1}^{n}[j: l]=0$.

Lemma

Let A be the $n \times N$ matrix whose (j, I)-element is $[j: I]$. Then the rank of A is $n-1$.

One can prove this lemma by induction on n. For the example below, the matrix A is given by

$$
A=\left(\begin{array}{cccccc}
-1 & -1 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & -1 & 0 \\
1 & 1 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

In view of the lemma above, we can choose a set of indices

$$
J=\left\{I_{1}, \ldots, I_{N-n+1}\right\} \subset\{1 \ldots, N\}
$$

and integers $a_{l r}$ and $b_{l j}$ so that

$$
\begin{array}{r}
k_{l}=\sum_{r=1}^{n-1} a_{l r} p_{r}+\sum_{j=1}^{N-n+1} b_{l j} k_{l j}=\psi_{l}\left(p_{1}, \ldots, p_{n-1}, k_{l_{1}}, \ldots, k_{l_{N-n+1}}\right) \\
\left(I \in J^{c}:=\{1, \ldots, N\} \backslash J\right) .
\end{array}
$$

More precisely, the system

$$
p_{j}+\sum_{l=1}^{N}[j: l] k_{l}=0 \quad(1 \leq j \leq n)
$$

of linear equations is equivalent to

$$
\sum_{j=1}^{n} p_{j}=0, \quad k_{l}-\psi_{l}\left(p_{1}, \ldots, p_{n-1}, k_{l_{1}}, \ldots, k_{l_{N-n+1}}\right)=0 \quad\left(I \in J^{c}\right)
$$

In particular, the matrix $\left(a_{l r}\right)$ is non-singular.

Then the Feynman integral is written in the form

$$
\begin{aligned}
& F_{G}\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{n}\right)=\int_{\mathbb{R}^{N_{\nu}}} \delta\left(\mathbf{p}_{1}+\cdots+\mathbf{p}_{n}\right) \\
& \quad \times \prod_{l \in J c} \delta\left(\mathbf{k}_{l}-\psi_{l}\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{n-1}, \mathbf{k}_{l_{1}}, \ldots, \mathbf{k}_{/_{N-n+1}}\right)\right) \\
& \quad \times \prod_{l=1}^{N}\left(\mathbf{k}_{l}^{2}-m_{l}^{2}+\sqrt{-1} 0\right)^{-1} \prod_{l=1}^{N} d \mathbf{k}_{l} \\
& = \\
& \delta\left(\mathbf{p}_{1}+\cdots+\mathbf{p}_{n}\right) \tilde{F}_{G}\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{n-1}\right)
\end{aligned}
$$

with the amplitude function

$$
\begin{aligned}
& \tilde{F}_{G}\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{n-1}\right)=\int_{\mathbb{R}^{(N-n+1) \nu}} \prod_{l \in J}\left(\mathbf{k}_{l}^{2}-m_{l}^{2}+\sqrt{-1} 0\right)^{-1} \\
& \quad \times \prod_{l \in J c}\left(\psi_{l}\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{n-1}, \mathbf{k}_{l /}, \ldots, \mathbf{k}_{l N-n+1}\right)^{2}-m_{l}^{2}+\sqrt{-1} 0\right)^{-1} \prod_{l \in J} d \mathbf{k}_{l}
\end{aligned}
$$

Under the condition that $m_{l}>0$, the integrand

$$
\begin{aligned}
& \Psi\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{n-1}, \mathbf{k}_{l 1}, \ldots, \mathbf{k}_{/_{N-n+1}}\right)=\prod_{l \in J}\left(\mathbf{k}_{l}^{2}-m_{l}^{2}+\sqrt{-1} 0\right)^{-1} \\
& \quad \times \prod_{l \in J c}\left(\psi_{l}\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{n-1}, \mathbf{k}_{l_{1}}, \ldots, \mathbf{k}_{/_{N-n+1}}\right)^{2}-m_{l}^{2}+\sqrt{-1} 0\right)^{-1}
\end{aligned}
$$

is well-defined as a hyperfunction on $\mathbb{R}^{\nu N}$ defined by the boundary value of the holomorphic function

$$
\begin{aligned}
& \Phi\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{n-1}, \mathbf{k}_{1}, \ldots, \mathbf{k}_{/_{N-n+1}}\right)=\prod_{l \in J}\left(\mathbf{k}_{l}^{2}-m_{l}^{2}\right)^{-1} \\
& \times \prod_{l \in J^{c}}\left(\psi_{l}\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{n-1}, \mathbf{k}_{l_{1}}, \ldots, \mathbf{k}_{l_{N-n+1}}\right)^{2}-m_{l}^{2}\right)^{-1}
\end{aligned}
$$

on $\mathbb{R}^{\nu N}+\sqrt{-1} \Gamma 0$ with the convex cone Γ generated by vectors $d \mathbf{k}_{l}^{2}$ $(I \in J)$ and $d \psi_{l}^{2}\left(I \in J^{c}\right)$, which are lineary independent over \mathbb{R}.

The annihilator of the integrand as a hyperfunction

Let $D_{\nu N}$ be the ring of differential operators with polynomial coefficients in the variables $\mathbf{p}_{1}, \ldots, \mathbf{p}_{n-1}, \mathbf{k}_{l_{1}}, \ldots, \mathbf{k}_{/_{N-n+1}}$. In view of the injectivity of the boundary value map, the annihilator of the hyperfunction Ψ coincides with that of the rational function Φ :

$$
\operatorname{Ann}_{D_{\nu N}} \Psi=\operatorname{Ann}_{D_{\nu N}} \Phi
$$

and hence it is computable.

Integrals of microfunctions

We use the notation $x=\left(x^{\prime}, x^{\prime \prime}\right)$ with $x^{\prime}=\left(x_{1}, \ldots, x_{n-d}\right)$ and $x^{\prime \prime}=\left(x_{n-d+1}, \ldots, x_{n}\right)$ for the coordinate of the base space \mathbb{R}^{n}, and $\xi=\left(\xi^{\prime}, \xi^{\prime \prime}\right)$ for the contangential coordinate. Let $\pi: \mathbb{R}^{n} \ni x \longmapsto x^{\prime} \in \mathbb{R}^{n-d}$ be the natural projection. Let

$$
\begin{aligned}
& \varpi: \mathbb{R}^{n} \underset{\mathbb{R}^{m}}{\times} \sqrt{-1} T^{*} \mathbb{R}^{n-d} \ni\left(x, \sqrt{-1}\left\langle\xi^{\prime}, d x^{\prime}\right\rangle\right) \\
& \longmapsto\left(x^{\prime}, \sqrt{-1}\left\langle\xi^{\prime}, d x^{\prime}\right\rangle\right) \in \sqrt{-1} T^{*} \mathbb{R}^{n-d}
\end{aligned}
$$

be the natural projection induced by π and

$$
\begin{aligned}
& \rho: \mathbb{R}^{n} \underset{\mathbb{R}^{m}}{\times} \sqrt{-1} T^{*} \mathbb{R}^{n-d} \ni\left(x, \sqrt{-1}\left\langle\xi^{\prime}, d x^{\prime}\right\rangle\right) \\
& \longmapsto\left(x, \sqrt{-1}\left\langle\xi^{\prime}, d x^{\prime}\right\rangle\right) \in \sqrt{-1} T^{*} \mathbb{R}^{n}
\end{aligned}
$$

be the natural inclusion. Let $\mathcal{C}_{\mathbb{R}^{n}}$ and $\mathcal{C}_{\mathbb{R}^{n-d}}$ be the sheaves of microfunctions on $\sqrt{-1} T^{*} \mathbb{R}^{n}$ and on $\sqrt{-1} T^{*} \mathbb{R}^{n-d}$ respectively.

Then the integration along the fibers of $\pi: \mathbb{R}^{n} \ni x \longmapsto x^{\prime} \in \mathbb{R}^{n-d}$ is defined as a sheaf homomorphism

$$
\pi_{*}: \varpi_{!} \rho^{-1} \mathcal{C}_{\mathbb{R}^{n}} \longrightarrow \mathcal{C}_{\mathbb{R}^{n-d}}
$$

according to Sato-Kawai-Kashiwara (1973). In particular, for any open set W of $\sqrt{-1} T^{*} \mathbb{R}^{n-d}$, there exists a homomorphism

$$
\pi_{*}: \Gamma\left(W, \varpi!\rho^{-1} \mathcal{C}_{\mathbb{R}^{n}}\right) \ni u(x) \longmapsto \int_{\mathbb{R}^{d}} u(x) d x^{\prime \prime} \in \Gamma\left(W, \mathcal{C}_{\mathbb{R}^{n-d}}\right)
$$

Moreover, it is a homomorphism of left D_{n-d}-modules, where D_{n-d} is the ring of differential operators with polynomial coefficients in x^{\prime}.

Lemma

Let W be an open set of $\sqrt{-1} T^{*} \mathbb{R}^{n-d}$ and u be an element of $\Gamma\left(W, \varpi!\rho^{-1} \mathcal{C}_{\mathbb{R}^{n}}\right)$. Then the integral $\int_{\mathbb{R}^{d}} \partial_{x_{j}} u(x) d x^{\prime \prime} \in \Gamma\left(W, \mathcal{C}_{\mathbb{R}^{n-d}}\right)$ vanishes for any $n-d+1 \leq j \leq n$.

Proof: I adopt a concrete definition in terms of defining functions following Kashiwara-Kawai-Kimura and A. Kaneko. Let $x_{*}=\left(x_{0}^{\prime}, \sqrt{-1}\left\langle\xi_{0}^{\prime}, d x^{\prime}\right\rangle\right)$ be a point of W. We may assume that W is a sufficiently small neighborhood of p^{\prime}. We may assume that u is the spectrum of the hyperfunction defined as the boundary value of a holomorphic function $F(z)$ on $\left(U \times \mathbb{R}^{d}\right)+\sqrt{-1} V 0$ where U is an open neighborhood of x_{0}^{\prime} in \mathbb{R}^{n-d} and V is an open convex cone of \mathbb{R}^{n} such that

$$
V^{\circ}:=\left\{\eta \in \mathbb{R}^{n} \mid\langle y, \eta\rangle \geq 0(\forall y \in V)\right\} \subset\left\{\left(\eta^{\prime}, \eta^{\prime \prime}\right) \mid\left\langle x_{0}^{\prime}, \eta^{\prime}\right\rangle>0\right\}
$$

By the assumption that u belong to $\Gamma\left(W, \varpi!\rho^{-1} \mathcal{C}_{\mathbb{R}^{n}}\right)$, there exists $R>0$ such that $F(z)$ continues analytically to $U \times\left(\mathbb{R}^{d} \backslash(-R, R)^{d}\right)$.

Then (e.g.) $\int_{\mathbb{R}^{d}} \partial_{x_{n}} u(x) d x^{\prime \prime}$ is the spectrum of the boundary value $G\left(x^{\prime}+\sqrt{-1} V^{\prime} 0\right)$ of

$$
\begin{aligned}
G\left(z^{\prime}\right)= & \int_{[-R, R]^{d}} \partial_{x_{n}} F\left(z^{\prime}, x^{\prime \prime}\right) d x^{\prime \prime} \\
= & \int_{[-R, R]^{d-1}} F\left(z^{\prime}, x_{n-d+1}, \ldots, x_{n-1}, R\right) d x_{n-d+1} \cdots d x_{n-1} \\
& -\int_{[-R, R]^{d-1}} F\left(z^{\prime}, x_{n-d+1}, \ldots, x_{n-1},-R\right) d x_{n-d+1} \cdots d x_{n-1}
\end{aligned}
$$

with $V^{\prime}=V \cap\left(\mathbb{R}^{n-d} \times\{0\}\right)$. (Note that $V^{\prime} \neq \emptyset$ by the assumption.) Hence $G\left(z^{\prime}\right)$ is real analytic on U. This completes the proof.

Now let D_{n} and D_{n-d} be the rings of differential operators with polynomial coefficients in $x=\left(x_{1}, \ldots, x_{n}\right)$ and in $x^{\prime}=\left(x_{1}, \ldots, x_{n-d}\right)$ respectively. Then the following is an immediate consequence of the preceding lemma:

Proposition

Let u be an element of $\Gamma\left(W, \varpi!\rho^{-1} \mathcal{C}_{\mathbb{R}^{n}}\right)$ and let I be a left ideal of D_{n} such that $P u=0$ for any $P \in I$. Let Q be an element of

$$
\left(\partial_{x_{n-d+1}} D_{n}+\cdots+\partial_{x_{n}} D_{n}+I\right) \cap D_{n-d} .
$$

Then Q annihilates $\int_{\mathbb{R}^{d}} u(x) d x^{\prime \prime}$ as microfunction on W. More generally, the integration induces a linear map

$$
\operatorname{Hom}_{D_{n}}\left(M, \Gamma\left(W, \varpi!\rho^{-1} \mathcal{C}_{\mathbb{R}^{n}}\right)\right) \longrightarrow \operatorname{Hom}_{D_{n-d}}\left(M^{\prime}, \Gamma\left(W, \mathcal{C}_{\mathbb{R}^{n-d}}\right)\right)
$$

with $M^{\prime}=M /\left(\partial_{x_{n-d+1}} M+\cdots+\partial_{x_{n}} M\right)$.
There is an algorithm to compute the 'integration module' M^{\prime} if a presentation of M is given.

Feynman amplitudes as microfunctions

As was pointed out by Sato-Kawai-Kashiwara in the 1970's, the Feynman amplitude $\tilde{F}_{G}\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{n-1}\right)$ associated with an external diagram G with positive masses is well-defined as a microfunction on the set

$$
\sqrt{-1} T^{*} \mathbb{R}^{\nu(n-1)} \backslash \varpi\left(\Lambda(G) \backslash \Lambda_{+}(G)\right)
$$

and its support (analytic wave-front set) is contained in $\varpi\left(\Lambda_{+}(G)\right)$. These sets are called Landau-Nakanishi varieties and defined as follows:

We set

$$
\begin{align*}
& \Lambda(G)=\left\{\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{n-1}, \mathbf{k}_{l_{1}}, \ldots, \mathbf{k}_{l_{N-n+1}} ; \sqrt{-1}\left(\left\langle\mathbf{u}_{1}, d \mathbf{p}_{1}\right)\right\rangle+\cdots\right.\right. \\
& \left.\quad+\left\langle\mathbf{u}_{n-1}, d \mathbf{p}_{n-1}\right\rangle\right) \in \mathbb{R}^{\nu N} \underset{\mathbb{R}^{\nu(n-1)}}{\times} \sqrt{-1} T^{*} \mathbb{R}^{\nu(n-1)} \\
& \mid \exists \alpha_{I} \geq 0(1 \leq I \leq N) \text { such that } \\
& \alpha_{l_{j}}\left(\mathbf{k}_{l_{j}}^{2}-m_{l_{j}}^{2}\right)=0(1 \leq j \leq N-n+1), \tag{1}\\
& \alpha_{l}\left(\psi_{l}^{2}-m_{l}^{2}\right)=0\left(I \in J^{c}\right), \tag{2}\\
& \alpha_{l_{j}} \mathbf{k}_{l j}+\sum_{l \in J^{c}} \alpha_{l} b_{l j} \psi_{l}=0(1 \leq j \leq N-n+1), \tag{3}\\
& \left.\mathbf{u}_{r}=\sum_{l \in J^{c}} \alpha_{l} a_{l r} \psi_{l}(1 \leq r \leq n-1)\right\} \tag{4}
\end{align*}
$$

with

$$
\begin{aligned}
& \psi_{l}=\sum_{r=1}^{n-1} a_{l r} \mathbf{p}_{r}+\sum_{j=1}^{N-n+1} b_{l j} \mathbf{k}_{l j} \\
& \langle\mathbf{u}, d \mathbf{p}\rangle=u_{1} d p_{1}-u_{2} d p_{2}-\cdots-u_{\nu} d p_{\nu}
\end{aligned}
$$

$$
\begin{aligned}
& \Lambda_{+}(G)=\left\{\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{n-1}, \mathbf{k}_{1}, \ldots, \mathbf{k}_{l_{N-n+1}} ; \sqrt{-1}\left(\left\langle\mathbf{u}_{1}, d \mathbf{p}_{1}\right)\right\rangle+\cdots\right.\right. \\
& \left.\quad+\left\langle\mathbf{u}_{n-1}, d \mathbf{p}_{n-1}\right\rangle\right) \in \mathbb{R}^{\nu N} \underset{\mathbb{R}^{\nu(n-1)}}{\times} \sqrt{-1} T^{*} \mathbb{R}^{\nu(n-1)} \\
& \mid \exists \alpha_{l}>0(1 \leq I \leq N) \text { such that } \\
& \alpha_{l j}\left(\mathbf{k}_{l_{j}}^{2}-m_{l j}^{2}\right)=0(1 \leq j \leq N-n+1), \\
& \alpha_{l}\left(\psi_{l}^{2}-m_{l}^{2}\right)=0\left(I \in J^{c}\right), \\
& \alpha_{l j} \mathbf{k}_{l j}+\sum_{l \in J^{c}} \alpha_{l} b_{l j} \psi_{l}=0(1 \leq j \leq N-n+1), \\
& \left.\quad \mathbf{u}_{r}=\sum_{l \in J c} \alpha_{l a l \mid r} \psi_{l}(1 \leq r \leq n-1)\right\} .
\end{aligned}
$$

ϖ is the projection

$$
\begin{aligned}
\varpi & : \mathbb{R}^{\nu N} \underset{\mathbb{R}^{\nu(n-1)}}{\times} \sqrt{-1} T^{*} \mathbb{R}^{\nu(n-1)} \longmapsto T^{*} \mathbb{R}^{\nu(n-1)} \\
& =\left\{\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{n-1} ; \sqrt{-1}\left(\left\langle\mathbf{u}_{1}, d \mathbf{p}_{1}\right\rangle+\cdots+\left\langle\mathbf{u}_{n-1}, d \mathbf{p}_{n-1}\right)\right\rangle\right)\right\} .
\end{aligned}
$$

Proof: Set $W=\sqrt{-1} T^{*} \mathbb{R}^{\nu(n-1)} \backslash \varpi\left(\Lambda(G) \backslash \Lambda_{+}(G)\right)$. Let

$$
\rho: \mathbb{R}^{\nu N} \underset{\mathbb{R}^{\nu(n-1)}}{\times} \sqrt{-1} T^{*} \mathbb{R}^{\nu(n-1)} \longrightarrow \sqrt{-1} T^{*} \mathbb{R}^{\nu N}
$$

be the natural inclusion. Let S.S. Ψ be the singular spectrum of the integrand Ψ of the Feynman amplitude as a hyperfunction. Then it is easy to see that its singular spectrum S.S. Ψ satisfies

$$
\rho^{-1}(\text { S.S. } \Psi) \subset \Lambda(G)
$$

If $\forall \alpha_{I}>0$ and $\mathbf{u}_{r}, \mathbf{p}_{r}(1 \leq r \leq n-1)$ are given, then $\alpha_{l} \psi_{I}$ and $\alpha_{l_{j}} \mathbf{k}_{l_{j}}$ are uniquely determined by (4) and (3) since the matrix ($a_{l r}$) is non-singular; then α_{l} are determined by (1) and (2). Thus $\mathbf{k}_{l_{j}}$ (and ψ_{l}) are uniquley determined. This implies that

$$
\operatorname{sp} \Psi \in \Gamma\left(W, \varpi!\rho^{-1} \mathcal{C}_{\mathbb{R}^{\nu N}}\right)
$$

Hence $\tilde{F}\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{n-1}\right)=\int_{\mathbb{R}^{\nu(N-n+1)}} \operatorname{sp} \Psi \prod_{l \in J} d \mathbf{k}_{\text {/ }}$ is well-defined as a microfunction on W.

For example, for the graph G below

$$
\begin{aligned}
\Lambda(G)= & \left\{\left(\mathbf{p}_{1}, \mathbf{k}_{1}, \mathbf{u}_{1}\right) \mid \alpha_{1}\left(\mathbf{k}_{1}^{2}-m_{1}^{2}\right)=\alpha_{2}\left(\left(\mathbf{p}_{1}-\mathbf{k}_{1}\right)^{2}-m_{2}^{2}\right)=0\right. \\
& \left.\alpha_{1} \mathbf{k}_{1}-\alpha_{2}\left(\mathbf{p}_{1}-\mathbf{k}_{1}\right)=\mathbf{0}, \quad \mathbf{u}_{1}=\alpha_{2}\left(\mathbf{p}_{1}-\mathbf{k}_{1}\right), \quad \exists \alpha_{1}, \alpha_{2} \geq 0\right\} \\
\Lambda_{+}(G)= & \left\{\left(\mathbf{p}_{1}, \mathbf{k}_{1}, \mathbf{u}_{1}\right) \mid \alpha_{1}\left(\mathbf{k}_{1}^{2}-m_{1}^{2}\right)=\alpha_{2}\left(\left(\mathbf{p}_{1}-\mathbf{k}_{1}\right)^{2}-m_{2}^{2}\right)=0,\right. \\
& \left.\alpha_{1} \mathbf{k}_{1}-\alpha_{2}\left(\mathbf{p}_{1}-\mathbf{k}_{1}\right)=\mathbf{0}, \quad \mathbf{u}_{1}=\alpha_{2}\left(\mathbf{p}_{1}-\mathbf{k}_{1}\right), \quad \exists \alpha_{1}, \alpha_{2}>0\right\},
\end{aligned}
$$

from which, we can confirm that
$\varpi\left(\Lambda(G) \backslash \Lambda_{+}(G)\right)=\left\{\left(\mathbf{p}_{1}, \sqrt{-1}\left\langle\mathbf{u}_{1}, d \mathbf{p}_{1}\right\rangle\right) \mid \mathbf{u}_{1}=\mathbf{0}\right\}$,
$\varpi\left(\Lambda_{+}(G)\right)=\left\{\left(\mathbf{p}_{1}, \sqrt{-1}\left\langle\mathbf{u}_{1}, d \mathbf{p}_{1}\right\rangle\right) \mid \mathbf{p}_{1}^{2}-\left(m_{1}+m_{2}\right)^{2}=0, \mathbf{u}=\alpha \mathbf{p}_{1}, \alpha>0\right\}$.
This implies, in particular, that the Feynman amplitude $\tilde{F}_{G}\left(\mathbf{p}_{1}\right)$ is well-defined as an element of $\mathcal{B}\left(\mathbb{R}^{\nu}\right) / \mathcal{A}\left(\mathbb{R}^{\nu}\right)$.

Local cohomology

In general, let f_{1}, \ldots, f_{d} be polynomials in the variables $x=\left(x_{1}, \ldots, x_{n}\right)$ with complex coefficients such that the variety

$$
Y=\left\{x \in \mathbb{C}^{n} \mid f_{1}(x)=\cdots=f_{d}(x)=0\right\}
$$

is d-codimensional, i.e., f_{1}, \cdots, f_{d} are of complete intersection. Then the (algebraic) d-th local cohomology group associated with f_{1}, \ldots, f_{d} is defined to be the quotient space

$$
H_{[Y]}^{d}(\mathbb{C}[x]):=\mathbb{C}\left[x, f^{-1}\right] / \sum_{k=1}^{d} \mathbb{C}\left[x,\left(f / f_{k}\right)^{-1}\right]
$$

with $f=f_{1} \cdots f_{d}$. It consists of the cohomology classes $\left[g / f^{\nu}\right]$ with $\nu=1,2,3, \ldots$ and $g \in \mathbb{C}[x]$.

- $H_{[Y]}^{d}(\mathbb{C}[x])$ has a natural structure of left D_{n}-module and is holonomic as such.
- The simplest example of the local cohomology group is

$$
H_{[\{0\}]}^{1}(\mathbb{C}[x])=\mathbb{C}\left[x, x^{-1}\right] / \mathbb{C}[x]
$$

with $x=x_{1}$ (one variable), which is spanned by the classes $\left[x^{-k}\right.$] with $k=1,2,3, \ldots$ as a \mathbb{C}-vector space. As a left D_{1}-module, it is generated only by $\left[x^{-1}\right]$ since $\partial_{x}^{k}\left[x^{-1}\right]=(-1)^{k} k!\left[x^{-k-1}\right]$.

- There are algorithms (U. Walther, Oaku-Takayama) to compute the local cohomology group as a D-module, in particular, the annihilator (the holonomic system) for each cohomology class.

Local cohomology and integrands of Feynman amplitudes

Let $D_{\nu N}$ be the ring of differential operators with polynomial coefficients in $\mathbf{p}_{1}, \ldots, \mathbf{p}_{n-1}, \mathbf{k}_{l_{1}}, \ldots, \mathbf{k}_{/_{N-1}}$. We regard the integrand

$$
\begin{aligned}
\Psi=\prod_{l \in J}\left(\mathbf{k}_{l}^{2}\right. & \left.-m_{l}^{2}+\sqrt{-1} 0\right)^{-1} \\
& \times \prod_{l \in J^{c}}\left(\psi_{l}\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{n-1}, \mathbf{k}_{/_{1}}, \ldots, \mathbf{k}_{/_{N-n+1}}\right)^{2}-m_{l}^{2}+\sqrt{-1} 0\right)^{-1}
\end{aligned}
$$

of the Feynman amplitude as a hyperfunction. Let Φ be the corresponding rational function

$$
\Phi=\prod_{l \in J}\left(\mathbf{k}_{l}^{2}-m_{l}^{2}\right)^{-1} \prod_{l \in J c}\left(\psi_{l}\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{n-1}, \mathbf{k}_{l_{1}}, \ldots, \mathbf{k}_{l_{N-n+1}}\right)^{2}-m_{l}^{2}\right)^{-1} .
$$

Set

$$
\begin{aligned}
& Y:=\left\{\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{n-1}, \mathbf{k}_{/ 1}, \ldots, \mathbf{k}_{/_{N-n+1}}\right) \in \mathbb{C}^{\nu N} \mid\right. \\
& \left.\mathbf{k}_{l}^{2}-m_{l}^{2}=0 \quad(l \in J), \quad \psi_{l}^{2}-m_{l}^{2}=0 \quad\left(I \in J^{c}\right)\right\}
\end{aligned}
$$

and

$$
B_{G}:=H_{[Y]}^{N}\left(\mathbb{C}\left[\mathbf{p}_{1}, \ldots, \mathbf{p}_{n-1}, \mathbf{k}_{/ 1}, \ldots, \mathbf{k}_{/_{N-n+1}}\right]\right) .
$$

We denote by $[\Phi]$ the modulo class of Φ in B_{G}.

Propositon

Let $P \in D_{\nu N}$ be an element of $\operatorname{Ann}_{D_{\nu N}}[\Phi]$. Then $P(\operatorname{sp} \Psi)=0$ holds as an element of $\Gamma\left(W, \varpi_{!} \rho^{-1} \mathcal{C}_{\mathbb{R}^{\nu N}}\right)$ with $W=\sqrt{-1} T^{*} \mathbb{R}^{\nu(n-1)} \backslash \varpi\left(\Lambda(G) \backslash \Lambda_{+}(G)\right)$.

Note that $\mathrm{Ann}_{D_{\nu N}}[\Phi]$ is strictly larger than $\mathrm{Ann}_{D_{\nu N}} \Phi$.

Proof: By the definition, $P \Phi$ is written in the form

$$
\begin{aligned}
P \Phi & =\sum_{j=1}^{n-1} \prod_{l \in J, l \neq j} a_{j}\left(\mathbf{k}_{l}^{2}-m_{l}^{2}\right)^{-d_{j l}} \prod_{l \in J c}\left(\psi_{l}\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{n-1}, \mathbf{k}_{l_{1}}, \ldots, \mathbf{k}_{l_{N-n+1}}\right)^{2}-m_{l}^{2}\right)^{-d_{j l}} \\
& +\sum_{j \in J^{c}} \prod_{l \in J} b_{j}\left(\mathbf{k}_{l}^{2}-m_{l}^{2}\right)^{-e_{j l}} \prod_{l \in J^{c}, l \neq j}\left(\psi_{l}\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{n-1}, \mathbf{k}_{l_{1}}, \ldots, \mathbf{k}_{l N-n+1}\right)^{2}-m_{l}^{2}\right)^{-e_{j l}}
\end{aligned}
$$

with polynomials a_{j}, b_{j} and nonnegative integers $d_{j l}, e_{j l}$. It follows that

$$
\begin{aligned}
\rho^{-1}(\text { S.S. } P \Psi) & \subset \Lambda(G) \backslash \Lambda_{+}(G) \subset \varpi^{-1}\left(\varpi\left(\Lambda(G) \backslash \Lambda_{+}(G)\right)\right) \\
& =\varpi^{-1}\left(\sqrt{-1} T^{*} \mathbb{R}^{\nu(n-1)} \backslash W\right) .
\end{aligned}
$$

This implies that $P(\mathrm{sp} \Psi)$ vanishes as an element of $\Gamma\left(W, \varpi!\rho^{-1} \mathcal{C}_{\mathbb{R}^{\nu N}}\right)$. \square Hence we get

Theorem

The Feynman amplitude $\tilde{F}\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{n-1}\right)$ is a solution of the integration module of the local cohomology B_{G} as a microfunction on W.

Examples

We present the computation of the integration module of the local cohomology associated with the integrand of the Feynman amplitude for some simple Feynman diagrams.

Example 1

Let us study the Feynman diagram G below:

Then the Feynman integral is written in the form

$$
\begin{aligned}
F_{G}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)= & \int_{\mathbb{R}^{4}} \delta\left(\mathbf{p}_{1}-\mathbf{k}_{1}-\mathbf{k}_{2}\right) \delta\left(-\mathbf{p}_{2}+\mathbf{k}_{1}+\mathbf{k}_{2}\right) \\
& \times\left(\mathbf{k}_{1}^{2}-m_{1}^{2}+\sqrt{-1} 0\right)^{-1}\left(\mathbf{k}_{2}^{2}-m_{2}^{2}+\sqrt{-1} 0\right)^{-1} d \mathbf{k}_{1} d \mathbf{k}_{2} \\
= & \delta\left(\mathbf{p}_{1}-\mathbf{p}_{2}\right) \tilde{F}_{G}\left(\mathbf{p}_{1}\right)
\end{aligned}
$$

with the amplitude

$$
\tilde{F}_{G}\left(\mathbf{p}_{1}\right)=\int_{\mathbb{R}^{2}}\left(\mathbf{k}_{1}^{2}-m_{1}^{2}+\sqrt{-1} 0\right)^{-1}\left(\left(\mathbf{p}_{1}-\mathbf{k}_{1}\right)^{2}-m_{2}^{2}+\sqrt{-1} 0\right)^{-1} d \mathbf{k}_{1}
$$

In view of the invariance under Lorentz transformations, let us set $\mathbf{p}_{1}=(x, 0, \ldots, 0)$.

In case $\nu=2$, the integration ideal of the annihilator of the local cohomology class

$$
\left[\left(k_{10}^{2}-k_{11}^{2}-m_{1}^{2}\right)^{-1}\left(\left(x-k_{10}\right)^{2}-k_{11}^{2}-m_{2}^{2}\right)^{-1}\right]
$$

is generated by
$\left(x-m_{1}-m_{2}\right)\left(x-m_{1}+m_{2}\right)\left(x+m_{1}-m_{2}\right)\left(x+m_{1}+m_{2}\right) \partial_{x}+2 x\left(x^{2}-m_{1}^{2}-m_{2}^{2}\right)$.
The solutions (the kernel) of this operator are constant multiples of
$\left(x-m_{1}+m_{2}\right)^{-1 / 2}\left(x+m_{1}-m_{2}\right)^{-1 / 2}\left(x+m_{1}+m_{2}\right)^{-1 / 2}\left(x-m_{1}-m_{2}\right)^{-1 / 2}$.

In case of $\nu=4$, by using the 3-dimensional polar coordinates, we have

$$
\begin{aligned}
\tilde{F}_{G}\left(\mathbf{p}_{1}\right)= & \int_{\mathbb{R}^{2}}\left(\mathbf{k}_{1}^{2}-m_{1}^{2}+\sqrt{-1} 0\right)^{-1}\left(\left(\mathbf{p}_{1}-\mathbf{k}_{1}\right)^{2}-m_{2}^{2}+\sqrt{-1} 0\right)^{-1} d \mathbf{k}_{1} \\
= & 2 \pi \int_{\mathbb{R}^{2}}\left(k_{10}^{2}-r^{2}-m_{1}^{2}+\sqrt{-1} 0\right)^{-1} \\
& \quad \times\left(\left(x-k_{10}\right)^{2}-r^{2}-m_{2}^{2}+\sqrt{-1} 0\right)^{-1} r_{+}^{2} d k_{10} d r .
\end{aligned}
$$

The integration ideal of the annihilator of the cohomology class

$$
\left[r^{2}\left(k_{10}^{2}-r^{2}-m_{1}^{2}\right)^{-1}\left(\left(x-k_{10}\right)^{2}-r^{2}-m_{2}^{2}\right)^{-1}\right]
$$

is generated by

$$
\begin{aligned}
x\left(x-m_{1}-m_{2}\right)\left(x-m_{1}+m_{2}\right) & \left(x+m_{1}-m_{2}\right)\left(x+m_{1}+m_{2}\right) \partial_{x} \\
& -2\left(\left(m_{1}^{2}+m_{2}^{2}\right) x^{2}-m_{1}^{4}+2 m_{2}^{2} m_{1}^{2}-m_{2}^{4}\right)
\end{aligned}
$$

The solutions (the kernel) of this operator are constant multiples of
$x^{-2}\left(x-m_{1}+m_{2}\right)^{1 / 2}\left(x+m_{1}-m_{2}\right)^{1 / 2}\left(x+m_{1}+m_{2}\right)^{1 / 2}\left(x-m_{1}-m_{2}\right)^{1 / 2}$.

Example 2

The Feynman integral associated with the graph G below
is given by

$$
F_{G}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)=\delta\left(\mathbf{p}_{1}-\mathbf{p}_{2}\right) \tilde{F}_{G}\left(\mathbf{p}_{1}\right)
$$

with

$$
\begin{aligned}
\tilde{F}_{G}\left(\mathbf{p}_{1}\right)=\int_{\mathbb{R}^{4}}\left(\mathbf{k}_{1}^{2}-m_{1}^{2}\right. & +\sqrt{-1} 0)^{-1}\left(\mathbf{k}_{2}^{2}-m_{2}^{2}+\sqrt{-1} 0\right)^{-1} \\
& \times\left(\left(\mathbf{p}_{1}-\mathbf{k}_{1}-\mathbf{k}_{2}\right)^{2}-m_{3}^{2}+\sqrt{-1} 0\right)^{-1} d \mathbf{k}_{1} d \mathbf{k}_{2}
\end{aligned}
$$

We work in the 2-dimensional space-time $(\nu=2)$ and compute holonomic systems for $\tilde{F}_{G}((x, 0))$ by assigning some special values to m_{1}, m_{2}, m_{3} since the computation for general m_{1}, m_{2}, m_{3} (as parameters) is intractable.

First let us set $m_{1}=1, m_{2}=2, m_{3}=4$ so that $\left(-m_{1}+m_{2}+m_{3}\right)^{2}$, $\left(m_{1}-m_{2}+m_{3}\right)^{2},\left(m_{1}+m_{2}-m_{3}\right)^{2}$ are distinct. Then $\tilde{F}_{G}((x, 0))$ is annihilated by the differential operator

$$
\begin{aligned}
& 30 x(x-1)(x+1)(x-3)(x+3)(x-5)(x+5)(x-7)(x+7) \underline{\partial_{x}^{3}} \\
& +\left(-2 x^{12}+191 x^{10}-5340 x^{8}+35954 x^{6}+273082 x^{4}\right. \\
& \left.\quad-2071305 x^{2}+661500\right) \underline{\partial_{x}^{2}} \\
& +\left(-10 x^{11}+675 x^{9}-12108 x^{7}+15454 x^{5}+936462 x^{3}\right. \\
& \quad-2692665 x) \underline{\partial_{x}} \\
& -8 x^{10}+372 x^{8}-3300 x^{6}-36028 x^{4}+457932 x^{2}-356760 .
\end{aligned}
$$

The singular points $x=0, \pm 1, \pm 3, \pm 5, \pm 7$ are all regular and the indicial equations are all $s^{2}(s-1)$.

Next set $m_{1}=m_{2}=m_{3}=1$. Then $\tilde{F}_{G}((x, 0))$ is annihilated by

$$
x(x-1)(x+1)(x-3)(x+3) \partial_{x}^{2}+\left(5 x^{4}-30 x^{2}+9\right) \partial_{x}+4 x^{3}-12 x
$$

The points $0, \pm 1, \pm 3$ are regular singular and the indicial equations at these points are all s^{2}.

See Adams-Bogner-Weinzierl (2015) for complete computation with arbitrary m_{1}, m_{2}, m_{3} by a different (and more efficient) method.

Example 3

The Feynman integral associated with the graph G below
is given by

$$
F_{G}\left(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right)=\delta\left(\mathbf{p}_{1}-\mathbf{p}_{2}-\mathbf{p}_{3}\right) \tilde{F}_{G}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)
$$

with

$$
\begin{aligned}
& \tilde{F}_{G}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)=\int_{\mathbb{R}^{\nu}}\left(\mathbf{k}_{1}^{2}-m_{1}^{2}+\sqrt{-1} 0\right)^{-1} \\
& \times\left(\left(\mathbf{p}_{1}-\mathbf{k}_{1}\right)^{2}-m_{2}^{2}+\sqrt{-1} 0\right)^{-1}\left(\left(\mathbf{p}_{2}-\mathbf{k}_{1}\right)^{2}-m_{3}^{2}+\sqrt{-1} 0\right)^{-1} d \mathbf{k}_{1}
\end{aligned}
$$

We work in the 2-dimensional space-time $(\nu=2)$. In view of the invariance under Lorentz transformation, we set $\mathbf{p}_{1}=(x, 0)$, and $\mathbf{p}_{2}=(y, z)$.
First let us set $m_{1}=m_{2}=m_{3}=1$. We compute the integration ideal I of the annihilator of the integrand regarded as a local cohomology class. Since I is too complicated (with tens of generators), we will present only the characteristic variety of $M:=D_{3} / I$.

The characteristic variety of $M:=D_{3} / I$ is given by

$$
\begin{aligned}
\operatorname{Char}(M)= & T_{\{f=0\}}^{*} \mathbb{C}^{3} \cup T_{\{x=0\}}^{*} \mathbb{C}^{3} \cup T_{\left\{x=f_{0}=0\right\}}^{*} \mathbb{C}^{3} \cup T_{\left\{x=y^{2}-z^{2}-4=0\right\}}^{*} \mathbb{C}^{3} \\
& \cup T_{\{x=y+z=0\}}^{*} \mathbb{C}^{3} \cup T_{\{x=y-z=0\}}^{*} \mathbb{C}^{3} \cup T_{\{x=y=z=0\}}^{*} \mathbb{C}^{3}
\end{aligned}
$$

with

$$
\begin{aligned}
f(x, y, z) & =(y-z)(y+z) x^{2}-2(y-z)(y+z) y x \\
& +(y-z)^{2}(y+z)^{2}+4 z^{2} \\
f_{0}(y, z)= & f(0, y, z)
\end{aligned}
$$

where we denote by $T_{Z}^{*} \mathbb{C}^{3}$ the closure of the conormal bundle of the regular part of an analytic set Z of \mathbb{C}^{3}.

Only the first component $T_{\{f=0\}}^{*} \mathbb{C}^{3}$ should be physically significant. Especially, it roughly means that the Feynman amplitude is analytic outside the surface $f=0$, which has rather complicated singularities.

The decomposition of $\operatorname{Char}(M)$ was done by using a library file noro_pd.rr of Risa/Asir for prime and primary decomposition of polynomial ideals developed by M. Noro.
He also computed a primary decomposition of the symbol ideal of I, which enabled us to compute the multiplicity of each component of $\operatorname{Char}(M)$. Thus the characteristic cycle, i.e., the characteristic variety with multiplicity of each component, of M is

$$
\begin{aligned}
& T_{\{f=0\}}^{*} \mathbb{C}^{3}+2 T_{\{x=0\}}^{*} \mathbb{C}^{3}+T_{\left\{x=f_{0}=0\right\}}^{*} \mathbb{C}^{3}+T_{\{x=y z-4=0\}}^{*} \mathbb{C}^{3} \\
& \quad+T_{\{x=y+z=0\}}^{*} \mathbb{C}^{3}+T_{\{x=y-z=0\}}^{*} \mathbb{C}^{3}+2 T_{\{x=y=z=0\}}^{*} \mathbb{C}^{3}
\end{aligned}
$$

Singularities of the surface $f=0$

Let us investigate the singularities of the complex surface

$$
\begin{aligned}
& Z=\left\{(x, y, z) \in \mathbb{C}^{3} \mid f(x, y, z)=0\right\} \\
& f=(y-z)(y+z) x^{2}-2(y-z)(y+z) y x+(y-z)^{2}(y+z)^{2}+4 z^{2}
\end{aligned}
$$

Following N. Honda and T. Kawai, we rewrite f as

$$
f=y z x^{2}-y z(y+z) x+y^{2} z^{2}+(y-z)^{2}
$$

by change of coordinates $(y+z, y-z) \rightarrow(y, z)$.
Then the singular locus (the set of the singular points) of Z is the union of two complex lines $\{x=y=z\}$ and $\{y=z=0\}$.
The projection $Z \ni(x, y, z) \mapsto(y, z)$ defines a doube covering on $\{(x, y) \mid x y \neq 0\}$ branched along the union of curves $y-z=0$ and $y z-4=0$.

The stratification of Z with respect to the (local) b-function $b_{f, p}(s)$ of f at a point p is

strata	$b_{f, p}(s)$
$\{(0,0,0)\}$	$(s+1)^{3}(2 s+3)$
$\{(2,0,0),(-2,0,0),(2,2,2),(-2,-2,-2)\}$	$(s+1)^{2}(2 s+3)$
$\{x=y=z\} \cup\{y=z=0\}$	$(s+1)^{2}$
$\backslash\{(0,0,0),(\pm 2,0,0), \pm(2,2,2)\}$	
$\{f=0\} \backslash(\{x=y=z\} \cup\{y=z=0\})$	$s+1$

In comparison, that of $g:=x^{2}-y^{2} z$ (Whitney umbrella) is

strata	$b_{g, p}(s)$
$\{(0,0,0)\}$	$(s+1)^{2}(2 s+3)$
$\{x=y=0\} \backslash\{(0,0,0)\}$	$(s+1)^{2}$
$\{g=0\} \backslash\{x=y=0\}$	$s+1$

In case $m_{1}=1, m_{2}=2, m_{3}=3$

In case $m_{1}=1, m_{2}=2, m_{3}=3$, we succeeded in computation of the integration ideal $/$ of the integrand as a local cohomology class. The characteristic variety of $M:=D_{3} / I$ is given by

$$
\operatorname{Char}(M)=T_{\{g=0\}}^{*} \mathbb{C}^{3} \cup T_{\{x=y-z=0\}}^{*} \mathbb{C}^{3}
$$

with

$$
\begin{aligned}
& g(x, y, z)=(y-z)(y+z) x^{4}-2 y\left(y^{2}-z^{2}-8\right) x^{3} \\
+ & \left(y^{4}+\left(-2 z^{2}-22\right) y^{2}+z^{4}+26 z^{2}+64\right) x^{2}+6 y\left(y^{2}-z^{2}-8\right) x+9\left(y^{2}-z^{2}\right) .
\end{aligned}
$$

The decomposition of $\operatorname{Char}(M)$ was done by using a library file noro_pd.rr of Risa/Asir for prime and primary decomposition of polynomial ideals developed by M. Noro.

The singularities of the surface $g=0$

Again by change of coordinates $(y+z, y-z) \rightarrow(y, z)$, we rewirte g as

$$
\begin{aligned}
g=y z x^{4}-(y+z)(y z-8) x^{3}+\left(\left(z^{2}+1\right)\right. & \left.y^{2}-24 z y+z^{2}+64\right) x^{2} \\
& +3(y+z)(y z-8) x+9 y z
\end{aligned}
$$

The set of the singular points of the surface $g=0$ is given by the curve

$$
z x^{2}-\left(z^{2}-8\right) x-3 z=y-z=0
$$

The local b-function is $(s+1)^{2}(2 s+3)$ at the 8 points

$$
\pm(1,2,2), \quad \pm(1,-4,-4), \quad \pm(3,-2,-2), \quad \pm(3,4,4) ;
$$

$(s+1)^{2}$ on the curve $z x^{2}-\left(z^{2}-8\right) x-3 z=y-z=0$ other than the 8 points above.
The local b-function of g at the 8 points is the same as that of the Whitney umbrella at the origin.

