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AN ALGORITHM OF COMPUTING b-FUNCTIONS
TOSHINORI OAKU

To Professor Hikosaburo Komatsu on the occasion of his sixtieth birthday

1. Introduction. Let f(x) € K[x] = K[x1,...,%x] be a.polynomial of n vari-
ables with coefficients in a field K of characteristic zero. Let us denote by

An(K) = K[%1, -1 %0815 180>y Dal(K) := K[[x1,- .., % ]K15 .-, 0n)

the rings of differential operators with polynomial and formal power series co-
efficients, respectively, with 8; = 8/0x; and 8 = (y,...,0n). (4a(K) is called the
Weyl algebra over K.)

Let s be a parameter. Then the (local) b-function (or the Bernstein-Sato poly-
nomial) by(s) associated with f(x) is the monic polynomial of the least degree
b(s) € K([s] satisfying

P(s,x, 9)f (x)"" = b(s)f (x)° (1.1)

with some P(s, x,8) € D(K)[s]. The monic polynomial of the least degree b(s)
€ K[s] satisfying (1.1) with some P(s,x,d) € An(K)[s] is denoted by by(s). The
existence of by(s) was proved by L. N. Bernstein [Bel], [Be2], which implies the
existence of by(s). Noté that by(s) divides by(s), but bs(s) and by(s) are not nec-
essarily identical. More generally, the existence of by(s) for f(x) e K([[x]] was
proved by J. E. Bjork [Bj].

In this paper, we present an algorithm for, given f(x) € K[x], computing by(s)
and finding a P(s, x,d) € 9,(K) that satisfies (1.1) with b(s) = by(s). More pre-
cisely, our algorithm finds a Q(s;x,0) € Ax(K)[s] and an a(x) e K[x] with
a(0) # 0 such that P(s,x,d) = (1/a(x))Q(s, x, ) satisfies (1.1) with b(s) = by(s).
Computing bs(s) and an associated P € An(K)[s] is slightly easier.

An algorithm of computing by(s) was first given by M. Sato et al. [SKKO]
when f(x) is a relative invariant of a prehomogeneous vector space. J. Briangon
et al. [BGMM] and Ph. Maisonobe [Mai] gave an algorithm of computing
by(s) for f(x) with isolated singularity. Also note that T. Yano [Y] worked out
many interesting examples of b-functions systematically.

Our method consists in computing the (generalized) b-function for a section of
a holonomic system (or more generally, a specializable D-module) via Grobner
basis computation in the Weyl algebra. In general, let M be a finitely generated
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left Any1(K)-module. We write t = x,41, 8, = 8,4y, and 0 = (01 0y). Put

- > 10y 0n).
./ll— .02,,:,.1(K) ®4,.1(k) M. For ue M, the (local) b-function of u is the monic
polynomial b,(s) € K[s] of the least degree, if any, satisfying

(b(23:) +tP(t, x,0,8))(1 ®u) =0 in A

(v::th sc;mebP(t, X,t0;,0) € 9?,.4.1({() (cf. [KK], [L]). We give an algorithm which
o mp}l es ,,(.s:) and P, or determines that there is none, by using a kind of Grébner
KaSl;i or left ideals of the “Weyl algebra related to a filtration introduced by M
ashiwara [K3]. S:l(:h Grobper bases were used by Oaku [02], [O3]. Especiall);
we use the FW-Grol.)ner basis introduced in [02]. The computation of the Bern-
stim;Sato polynomial by(s) .is reduced to finding the b-function b,(s) for
u = 5(t — f(x)), the delta function supported by t — f(x) = 0, as was observed b
B. Malgrang<? [Ml.] (cf. also [M2], [K1], [K2]). ’ ’
' v(::r :;ilﬁﬁnthm ;s strict (at least if K is algebraic over Q) in the sense that
iincs ath " t; es:; i(; ::;al; slt retlzlms ;n answer as a finite set of data, or else deter:
L Wer, In a finite number of steps using a finite am f
memory in the computation. For exampl] o T3
is %:',ailable for actual execution of our 5;8;t;ﬁtem fem ol N Tekayama [13]
e could also write down an algorithmi . i
. 4 gorithmic procedure for computing by (s
if f(x) e K[[x]] by using the FD-Grébner basis of [03] instgad gf {l(le) ;‘{;If

Grébner basis. However, this w i i i
above in voneral. s ould not yield an algorithm in the strict sense as

bn'ze.ﬂG:;:nt;re bases gor idex}ls of the Weyl algebra. In this section we recall
(total{ order : rc};fa;”alv%ﬁztl;rm of Grébner bases for ideals of 4,(K). We fix a
ditions: +={0,1,2,...} that satisfies the following con-

(A-1) o>~ pimplies o+ y > f+ 9 f

Y 1or an 2n,

(A-2) a > O for any x € N?», yaByeNT;
Under the condition (A-1), the conditi . )
well-order (cf. [CLO]). ) ndition (A-2) is equivalent to the order < being a

Let us write A, = A,(K) with a field K of isti
4 1 writon uniquely e o fmite s of characteristic zero. An element P of

P= Z aaﬁxaaﬁ
o, feN"

with a,3€ K -
«p € K, where we use the notation XM= xB...xo 98— b .. gh for

a=(oy,...,%) and B = (By,...,B,). Then we d ;
and the leading coefficient lc:)ef(P)"of P by efine the leading exponent lexp(P)

lexp(P) := max{(e, B) € N?"|a,5 0},

Icoef(P) := a3 with (a, B) = lexp(P),
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where méu:* denotes taking the maximum element with respect to the order < (we
assume P # 0). Let I be a left ideal of A,. Then the set E(I) of leading exponents of

I is defined by
E(I) == {lexp(P)|P € I\{0}} = N*".

Definition 2.1 (Grébner basis). A finite subset G of a left ideal I of A4, is
called a Grébner basis of I (with respect to the order <) if

E()= P\é)c (lexp(P) + N*")

holds. (Then G generates I.)

The algorithm of computing a Grébner basis (ie., the Buchberger algo-
rithm [Bu]) consists of computing division (or reduction) and S-polynomials (or

operators).
LemMa 2.2 (Division). For P,Py,...,Pi€ Ay, there exist Q1,...,0k R € Ay

such that
k k
P=Y Q:Pi+R, lexp(R)¢ U (lexp(P:) + N?")
i=1 i=1

and that, for each i, lexp(QiP;) = lexp(P) if Qi # 0. Moreover, there is an algorithm
(the division, or the reduction algorithm) of computing Qu, ..., Qx, R.

In general, for vectors a = (o1,--->%m) and B = (By,..., B,) in N™, we put

avp:= (mu{al,ﬁl}a ae ,max{a,,,, ﬁm})

Definition 2.3 (S-operator). For P, Q € Ay, put lexp(P) = («, B) and lexp(Q)=
(o, B'). Then the S-operator of P and Q is defined by

Sp(P, Q) := lcoef(Q)x?¥# 0¥ *'~*P — lcoef(P)x**F F 32V ¥ ¥ Q.

TueoreM 2.4 ([G], [C], [T1], [KW]). Let G={Py,...,P;} be a finite subset
of A, which generates a left ideal I of An. Then the following two conditions are

equivalent:
(1) G is a Grobner basis of I;
(2) foranyi,je{1,...,s} with i < j, there exist Qjj1, ..., Qijk € An S0 that

k
sp(Pi, Pj) = )_ QuePe

=1

and that Qi = 0 or lexp(QijePe) < lexp(Pi) v lexp(P;) for each £.
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CoPdition (2.) of this theorem provides the Buchberg
a Grobner basis from a given set of generators,

PRrOPOSITION 2.5. Let {P; P} b i]
y+--1Lky be a Gréobner basis of a left ideal 1
ITJ’hfn fokr P e Ay, P belongs to I if and only if there exist 01, f . Q{ el :a suc‘;zftfgt‘
= > i=1 QiP; and that lexp(Q;P;) < lexp(P) if Q; # O for each i. "
The fo!lowing theorem can be proved in the
polynomial ring (see [CLO], [BW], [ED).

THEOREM 2.6. Let G = {P, P
2.6. =1{Py..., «} be a Grobner basis of a left ideal I
Take Qy satisfying condition (2) of Theorem 2.4. Put lexp(PS = (fa(:) e;(‘)) Z{n; "

er algorithm of computing

same way as its counterpart in the

Sﬁ = lcoef(P,-)xﬁ(" Vﬂ(})-ﬁ“)ad(') valD_g®

1

7 ® )
Vi=(0,..., S; -
¥ ( ) 1SJu-.-, SU""'O)—(QW""’QW‘)E(An)k_

Then the syzygy module

S(Pl,---,Pk) = {(Ql)"'le) E(A’l)k

k
D OP= 0}
=1
is generated by {f"},ll Si<j<k}.

3. Grobner basis and homogenizati i
G . ..
field K of characteristic zero, wge put 7 th respect to a fltration. Fixing 2

Aniy = Ay (K) =Kt x1,...,x,)40,, y,...,0,)

D1 = Dni1(K) = K[, X1y-.. ,x,,]](at’ 01y...,0)

with 0 := 0/0t and 9; = 3/dx;. Put Y = {(
(V-filtration) with respect to Y introduced
vapishing cycle sheaves (cf. also [L)],
written in the form

t,x)e K"f‘lt = 0}. We use a filtration
. by Kashiwara [K3] for the study of
[LS]). An element P of Any1 (or of Dpyy) is

P=
a thx%avab
[l.v}o,a,ﬁeNn ”’vtalﬂ X ata . (3_1)

For each integer m, define K-subspaces of Ay, and of D41, Tespectively, by

FM(AH):: P= a By @y af )
n ”g;p I‘;V,G,ﬁt X aga EAn+1 Ay, p = 0if v-u>my,

D)= {P = Z a”’v'“'pt#xaa:aﬁ € g?n-f-l Auyap=0if v—pu> m}

uv,a,p
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For a nonzero element P of D41, We define the F-order ordp(P) of P as the min-
imum integer m that satisfies P € Fiu(Zn+1)- When the F-order of P in the form
(3.1) is m, we put

8(P) = 6n(P) == Y Gyuapt'x0}0"

v—p=m

and call it the formal symbol of P along Y (cf. [LS]). We have ordp(PQ) =

ordp(P) + ordr(Q) and 6(PQ) = é(P)é(Q) for P,Q € Dp+1.
Now let <r be an order on N27+2 which satisfies (A-1) (with n replaced by

n+1)and

(A'3) ifv— n> V- F,a then (”’ v, &, ﬁ) ~F (u,a V’, a’) Bl);

(A-4) (u,p,, B) =F (0,0,0,0) for any p € N and o, e N".
The condition (A-3) implies that <r is nota well-order. However, the definitions in
the preceding section apply to this order <. The only difficulty is that Lemma 2.2
does not hold in general. Let us denote by lexpz(P) € N2*2 1coefr(P) € K the
leading exponent and the leading coefficient of P e Aps1\{0} with respect to <p,
respectively. The set of leading exponents Er(I) = N2 js defined in the same
way.

Definition 3.1 (FW-Grébner basis). A finite set G of generators of a left ideal
I of Apy1 is called an FW-Grébner basis of I if we have

E(I = |J (lexp(P) + N**?).

PeG

Since we do not have division algorithm, the Buchberger algorithm does not
work directly. To bypass this difficulty to obtain an algorithm of computing
FW-Grobner bases, we use the homogenization technique.

Definition 3.2. For i,j,p,v,p',v' €N and a, B,o',p' e N", an order <y on
N2#+3 is defined by

G, mv,, B) =n (o pt'sv',e, B') if and only if (i >j) or
(i=jand (u+¢v,a,pB) ~r W+, B
or (i=j, v="v, a=a, ﬂ=ﬂ’$“>,“1)

with ¢, € N such that v — p — ¢=1v — y' — ¢'. This definition is independent of
the choice of £,¢' in view of the condition (A-1).

LeMMA 3.3. (1) <y is a well-order.

Q) Ifv—pu—i=v —p —j then (i, m, v, 0, B) =1 (j, i, Vs, B') if and only if
(‘1) v, &, ﬁ) ”F (“I) vlr a’7 ﬁ')

Proof. (1) It suffices to show (i, u, v, o, B) =n (0,0,0,0,0) for any i, uveN
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and «,feN". Since this is obvious when i>0, let us assume i=0. Take
£, eNsothatv—p—£=—¢ Then we have

(p_'_e_el’ v,a,ﬁ) = (V, vV, a,ﬁ) tF (01 O:O; 0)

by (A-4). This implies (i + £,v,a,B) = (£,0,0,0) in view of (A-1). Hence we have
(0, Ly, a, ﬂ) ZH (0, 01 07 0’ O) by definition.

2 Assume v—u—i=v' — 4/ —j Then we have v—pu>v -y if and only if
i>j.1fi=j, we can take £ = ¢ = 0 in Definition 3.2. Assertion (2) follows from

these facts combined with (A-3) and the definition of <u. This completes the
proof. [

For a nonzero element P = P(xy) of Any1[xo], let us denote by lexpy(P) e
N> and Icoefy(P) e K the leading exponent and the leading coefficient of P

with respect to <y, respectively. The set Ey(I) of leading exponents of a left
ideal I of A,44[xo] is also defined,

Definition 3.4 (F-homogeneity). An element P of Apy1[x0] of the form
P= Z ai;p,v,a,ﬂxoitpxaa:aﬁ
iuve,p
is said to be F-homogeneous of order m if Qiyuvap =0 whenever v—u—i#m.
Definition 3.5 (F ~homogenization). For an element P of A4 of the form

P= Z a“'v’a’ﬂtl‘xaa:aﬂ,
U ova,f

B T = Min{Y ~ Ua,y.p # 0 for some o, e N"}. Then the F-homogenization
P € Anyi[xo] of P is defined by

Ph = Z aﬂvvla|ﬂx;—“_'"t“xaa:aﬂ.
mva,p
P" is F-homogeneous of order m.

The following two lem
ferential operators.

LemMA 3.6. IfP, Qe Anpg [xo]
LeEmMMA 3.7. For P, QeA

mas follow from the Leibniz rule for the product of dif-

are both F-homogeneous, then so is PQ.
n+1, we have (PQ)* = phgh,

The following lemma is an immediate consequence of the definition.

Lemma 38. For Py,..., Py €Anyy, put P= Py + ...+ P,. Then there exist
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£,4y,...,% €N so that

h
x4 P = x4 (P)F +---+ xf,“(Pk) .

Let us define w: N3 — N2 by w(i, p, v, a, B) = (1, v, &, B).

Lemma 39. (1) If P(xo) € Ans1]xo] is F-homogeneous, then we have
lexpr(P(1)) = w(lexpy(P(x0)))- .
(gf(Fc(ar)any Apy1, we have lexpp(P) = w(lexpy(P")). .
Proof. Part (1) follows from (2) of Lemma 3.3, and (2) follows from (1) since
PH1)=P. O
i ted by F-homo-
3.10. Let I be a left ideal ojl A,H.l[xo]. genera ) .
gefzt?:so Sor;?:tors. Then there exists an H-Grébner basis (i.e., a Grébner basis

ith respect to <u) of I consisting of F-homogeneous operat.ors. Moreover, such
:zvn H-Grébner basis can be computed by the Buchberger algorithm.

i in Section 2 apply. Hence we

ince <y is a well-order, the arguments 1n ; appl -

hasgo:{;ly f;nxf:rif;{ that taking the S-operator and computing division both pre
serve the F-homogeneity. This follows from Lemma 36. O

ProposITION 3.11.  Let I be a left ideal of At generated byhPl, . (1,)13% € g;,::e
Let us denote by I* the left ideal of An1[xo) generated by (Py) ,I.). o ;1 . (Here
I" is not defined uniquely by 1.) Let G = {Q1(xo0),- - - Qk(xo});} j A
basis of I" consisting of F-homogeneous operators. Then for P € Ay,
ing two conditions are equivalent:

Eg Sleerfeﬁst Ui,...,Ux € Apyy such that P = E};, U;Q;(1), and that for each

j=1,...,k, lexpp(U;Q;(1)) =r lexpp(P) if U; # 0.

P Assume i V V; € Any1 Such that P=
roo SS Pe 1. Then there exist f1ye++y ¥d E n+

P -|-f: + V;P;. Then by Lemmas 3.7 and 3.8, there exist £,8,....44eN such
Vl 1 e V. I | 7

that
h h h
xEPh(xg) = x§! (Vl)h(xo)(Pl)h(xo) + -+ x5 (Va)" (x0) (Pa) " (x0) € I".
Hence by Proposition 2.5, there exist F-homogeneous Ui(xo),..., Uk(xo) €
Apn+1[x0] such that

xtPH(x0) = Us(x0)@1(x0) + - -+ + Uk(x0) Ci(xo)

j wi 0.
nd that lexpy(Uj(x0)Qj(x0)) 2H lexpﬂgxf)Ph(xo)) for ea30h jd\;l;h Uj(xo) #
;e ting xo = 1, we see that (2) holds in view of Lemmas 3.3 and 3.9. b o)
;nnogrd:r to ;)rove the inverse implication, it suffices to show that each Q;
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belongs to 1. Since Qj(xo) e I”*, there exist Vi(x0), .- ., Va(x0) € Ans1]x0] such that

Qj(x0) = Vi(xo)(P1)*(x0) + - -- + Va(%0) (Pa)"(xo).

Hence we get Q;(1) e I setting xp = 1. This completes the proof. [J

TuEoREM 3.12. G(1) := {0
sl =101(1),...,0:(D)} i .Gré. i
the same assumptions as in Propcgst?tion 3%1( )} is an FW-Grobner basis of I under

Proof. In view of Propositi
position 3.11, .
element of 1. Then it suffices to show tha(t; (1) generates I. Let P be an arbitrary

k
lexps(P) e Ul (lexpp(Qs(1)) + N#+2),
J=

Since Pe I, w e .
we have e can take Uj satisfying the condition (2) of Proposition 3.11. Then

lexpr(F) = lexps (U;Q;(1)) = lexpr(U)) + lexpr(Qy(1)) € lexps(Q)(1)) + N2

for some j. This completes the proof. [J
THEO
REM 3.13. Under the same assumptions as in Proposition 3.11, there

exist, for any i,je {1,... k} with i< i
Ant1[Xo] 50 that {L,....k} with i < j, F-homogeneous Uy(xo),..., Uy(xo) €

sp(Qi(xo), Qj(xo)) = Si1(x0)Qi(x0) — 8ij(x0)Qy(x0) = zk: UpQe(x0),  (3.2)
=1

h ; ,
":’a ::‘ieij;(:(ol)j.zsgdgi‘ned in the same way as Sji in Theorem 2.6, and, for each ¢, we
5Qe(x0)) < lexpp(Qi(xo)) v lexp(Q;(xo)), if Uye(%o) # 0. Put

9)]

Vy(x0)=(0,...,s ((?c
he e ey Sii 0),.'"-Sv(xo)"”’0)—(U‘jl(xo)7"‘ll]l:ik(xO))e(An.'.][XO])k_

Then the syzygy module

5(Q1(1),..., k(1)) := {(v,,...,uk) € (Ans1)"

k
D UQ(1) = 0}

=1
is generated by {l-;}j(l)ll Si<j<k).

Proof. The first assertion follows from Theorem 2.4. Suppose

(Uy,...,Up) €8(Q:1(1),...,0(1)).
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Then in view of Lemmas 3.7 and 3.8, there exist 4y, ..., % € N such that

%08 (U1)"(x0) @1 (x0) + - - + Xo™ (Ui)"(%0)@(¥0) = 0.

Hence by applying Theorem 2.6 to the order <x, there are Wjj(x0) € Ans1[x0] such
that ’

(x0% (U1)*(¥0), - - -, 0™ (Ur)"(x0)) = Z Wii(xo) Pyi(xo)-
J

This completes the proof by setting xo=1. O

Definition 3.14. Let P be a nonzero element of A4 (resp., D) of F-order
m. Then we define y(P)(s) € Axls] (resp., Zn[s]) by

Go(t™P) = Y(P)(td) if m>0,
G0(07™P) = Y(P)(td) if m<O.

The cause of our use of FW-Grobner basis lies in the following theorem.

TuEoREM 3.15. We use the same notation as in Proposition 3.11. Let y/(I) be
the left ideal of Auls| generated by the set {Y(P)(s)|P €I (Fo(Ant1)\
F_1(Ans1))}. Then y(I) is generated by y(@1(1)), - -, ¥(Qi(1))-

Proof. By definition it is easy to see that ¢(Q;(1)) ey(I) for j=1,...,k.
Suppose Peln (Fo(A,,+1)\F_1(A,,+1)). Let Uy,...,Ur € Apyy be as in Propo-
sition 3.11. Let Q;(1) be of F-order m;. Then the F-order of U; is not greater

than —m;. Hence we can take Uje Fo(An+1) such that é_n (U;) = U;S;, where
S;=1tm™ if m; > 0and S;=; ™ if m; < 0. Then we have

k k k
Y(P)(td) = Y 6o(U;Q;(1) = > 6-m(Um (Q5(1)) = D Uph(Qs(1)(28:).
j=1 j=t Jj=1
This completes the proof. [
What is more crucial in the application of FW-Grdbner bases to the D-
module theory is that this theorem can be localized as follows.

THEOREM 3.16. In the same notation as Theorem 3.15, let S = D1l be the
left ideal of D i1 generated by I. Let y(#) be the left ideal of Ds| generated by
the set {tl/(P)(s)|Pe.fn(Fo(@nﬂ)\F—l(@nH))}. Then Y(F) is generated by
Y(Q1(1)), - - -, ¥(Qi(1))-

Proof. We use the same notation as in Theorem 3.13. In general, for a non-

zero element P = P(xo) of An+1[xo], let us denote by ox(P)(xo) the highest-
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IllE me Xim um []Eg!EE Fal ts “lth IespeCt tc ‘:‘0 n bOth SIdes oi t(he)e( q)uatIOIl (3 ’2)

of Theorem 3.13, we know th i
el g 313, we AH?ExO]:at {oa(01)(x0), ..., o1(Qk)(x0)} is an H-Grébner

Let Q;(1) be of F-order m, )
lexpp(Qi(1)) v lexpp(Q;(1)). Put j and set my=v—pu with (gv,e p)=

70(xo) := Q )
Vj(x0) = (0,...,08(Si)(x0), ..., —aﬂ(ég)(xo), ceey0) = (U (x0),..., U (x0))-

H 0 — .
wiiec%?(?c“; g"{ﬁ(’;‘;) = 05 (Uye)(x0) if ordr(Uye(1)Q;(1)) = my — my, and other-
the syz;{fgy fnoti e Setlce by applying Theorem 3.13 to on(Q;) gxo), we know that

e S(6(Q1(1)),...,6(Qk(1))) is generated by V° := {f’qo(l)li <j}.

By vi 2
y virtue of the flatness of 9,1 over 4,4, this implies that the syzygy module

S:= {(U],. ., Ui e (g?n+l)k

k
2 U;6(Q;(1)) = o}
j=

is also generated by VO over 9, ,.

Now suppos 2 A
Dt suChIt,ll::ate P e S N (Fo(Dn1) \F-1(Dns1)). Then there exist Uy, ..., Uy e

P= UIQI(I) +---4 Uka(1)°

Put m = .
choose Ull,rfa.u.({‘l)frkd:c(gthjt(l))|J= 1,...,k}. Our aim is to show that we can
Put U}’ = 3;"_' at m = ordr(P). For this purpose, assume m > ordr(P).

m(Uj). Then we have (U9,...,U% e §. H i
sencous Wy e By, rach o 1>+, Uy) € S. Hence there exist F-homo-

0 =
(U1, UR) = S wP1).

i<j

Define Uj,..., U, € 9, by

! —»
(Uh---,U) = S W),

<)

Then we get

P= (U= UDQi(1) + - + (Us - UL)QK(1).

We also have ordr((U; — U’
; i = UQs(1)) < m since ¢ - .
i S T, D0 S )0, B
i . ey n =
4=1 20 at ordr(U;Q;(1)) < ordr(P) for any j. Hence we know, by
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the same argument as in the proof of Theorem 3.15, that Y(F) is generated by
¥(01(1)),. .., ¥(Qx(1)). This completes the proof. []

Remark 3.17. Theorems 3.15 and 3.16 hold with {Qi(1),...,Q«(1)} replaced
by an arbitrary FW-Grobner basis of 1. To prove this, we have only to develop a
theory of FW-Grdbner basis by using the “truncated division” with respect to

the filtration as in [O3].

4. Computation of the b-function of a D-module. We retain the notation in
the preceding section. Let M be a finitely generated left Ay, -module and u a
nonzero element of M. In the sequel, we assume that a system of the equations
for u is given explicitly; i.e., we assume that a finite set of generators of a left
ideal I of Ay is given so that Api1% = Ansa /1.

More generally, if a presentation of M and a representation of u are known,
ie., if generators of a left An41-submodule N of (Ap+1) is given so that M =
(Ans41)"/N, and also given is an element U € (An+1)" such that u corresponds to
the modulo class of U by the above isomorphism, then there is an algorithm
to find generators of the above I by computing syzygies by means of (a general-
ization of) Theorem 2.6. ) -

Put M :=Dp1 ®4,, M and S = Dnyyl. Then we have Dur1(1 @ u)
Dps1/F. The b-function b,(s) of u is the monic polynomial, if any, b(s) € K[s] of
the least degree satisfying

(b(td)) + P)(1®u) =0 in A (4.1)

with some P € F_1(Dn41). Note that (4.1) is equivalent to b(td;) + Pe S.

The existence of the b-function in this sense was proved by Kashiwara-Kawai
[KK] and Laurent [L] when K = C and # is holonomic. Our purpose here is
to present an algorithm to determine whether there exists such nonzero b(s), and
if it does, to find by(s) and an associated P.

Now let M,u,I be as above and let G = {Qi(x0),...,Qx(x0)} be an H-
Grébner basis of I* consisting of F-homogeneous elements as in the preceding
section. Let y(I) and y(5) be left ideals of An+1[s] and of D,y [s], respectively,
defined in Theorems 3.15 and 3.16. Then ¥(I) and ¥(F#) are both generated by

W(GQ)) := {¥(@1(1)),- - W(Q()}-
Let < be an order on N2*! satisfying (A-1), (A-2) (with 2n + 2 replaced by

2n+ 1), and:
(A-5) If|| > |B'|, then (i, B) > (u,o',B')forany p, i’ e Nand a, B, o', B’ € N".
In particular, if the order < satisfies, in addition to (A-1), (A-3), (A-4),
(A-6) fv—p=v -4 and || > |F'|, then (u,v,a,B) > (&', v, o, §) for any
uv,i',v € Nanda B,o, p €N,
then the order <5 on N>*! defined by

(”’1 a, ﬂ) *F (””a,1ﬁI) Aad (ﬂ, M a, B) ~F ([l', [1’, d,, ﬁ’)

satisfies (A-1), (A-2), (A-5).
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us!l:‘;;r 31(1l elen?ent P of Ay[s] (resp., 9, [s]), its order ord(P) is defined to be the
u order with respect to 9, and the principal symbol o(P) € K[x, &, 5] (resp.
[[x])[¢, 5]) is defined also in the standard way with & = (¢, &) " ’
yeeesEn)e

THEOREM 4.1.  Let o(Y(I)) and o((#)) be ideals of K
1 5 d of K
%erf%rated b}': {a(P)|P e'np(I)} and by {o(P)|P e ;Z(ff(;f}, r!:sjecst]:i::Iy.o{et[[l’;]][big
;o ner basis of Y(I) with respect to an order < on N1 satisfying (A-1), (A-2)
I( -5). .Then a:(l//(I)) and o(Y(#)) are both generated by o(H) := {o'(P)I’P € H},
t;: particular, if the order < satisfies (A-6) in addition to (A-1 ), (A-3), (A-4)
en we can take o(Y(G(1))) = {s(W(Q1(1))), . ., s(W(Q(1))} a5 o(H).

[OI;,]’?O'.{;le 'lll‘he ﬁr;st assertiop can be proved in the same way as the theorem of

ment’amou :tss (t)n y tq modify its proof .by adding a parameter s. The last state-

ent ar 0 saying that ¥(G(1)) is a Grobner basis with respect to <. In
, (A-6) and Proposition 3.11 guarantee that this is the case. O

COROLLARY 4.2. In the same notation as i
-2 s in Theorem 4.1, put J:=y(I) N
Ié{x, 5] am? F =Y(F)nK[[x]][s]. Then J and # are both generated by a(g-lg N
x, 5] as ideals of K[x,s] and of K[[x]|[s], respectively.

CoRrOLLARY 4.3. The b-function of u is th i
. e monic generator of # nK|[s] ifiti
not the zero ideal. If # ~ K[s] = 0, then the b-function does not exist. Siricis

At this stage, the problem has become one i i
s ne in commutative algebra. Hence th

?gguments below should be more or less standard. To be geniral let J be a:
ideal of K [x, 5] whose generators are given explicitly and put # = K [[x]][s]J. Our
purpose is to“compute F N K[s]. (J nK][s] is computed easily through the elimi-
nation by Grobner basis.)

K['JI"]he following lemma is a consequence of the faithful flatness of K[[x]] over

00

ideI;lmm 44, . Léet K|x], be the localization of K|x] with respect to the maximal
enerate Xy eoyXne l=
i Ig[s] Y X1y...,%n. Put §':=K[x]o[s]J. Then we have #n K[s] =
Thus we can compute # N K|[s] by using the Grobner basi i
ve ca. N K|s] by usi asis comput i
polynomial ring and factorization in K[s] in the following steps ?W: :;::11 T tll:e
K the algebraic closure of K.) ' o™y

Algorithm 4.5. Input: a set of generators f;(
: : 1(x,s),... X,
(D Determine whether there exists, and find, if a;ny, s,c;f:’;fe ;;()xoi).]é J such that
its leading coefficient with respect to s does not vanish at x - 0. This can :
done, e.g., as follows. (One can use, instead of the homogenization t;el l\:I1 ’e
tangent cone algo}t;ithm [Mo].) ow, Moras
(a) Let (( }})) (xol;x, 5) be the homogenization of fi(x,s) with respect to x;
1e, (fi)" is homogeneous with re ;
prd s)f spect to xp and x, and (f,-)"(l,x, 5)=
(b) Let > be an order on N x N x N" 3 (i, , «) with (i, u, a) corresponding

D | 1

AN ALGORITHM OF COMPUTING b-FUNCTIONS 127

to xo'sx®. Assume > satisfies (A-1), (A-2), and (i,p,@) > (j,v, B) if
p>vor(p=vandi>j).
(¢) Let {g1(x0,%,5),--,9r(X0,X,5)} be a Grobner basis of the ideal gen-
erated by ( fl)", RO | fk)h with respect to >.
(d) Let g(x,s) be one of gi(1,x, s) with the property above; if there is no
such g(x, 5), then quit (there is no b(s)).
(2) Compute the monic generator fo(s) of the ideal J(0) of K|[s] that is gen-
erated by f£1(0,5), ..., fu(0,s) by Grobner basis or GCD computation; if fo(s) =
1, then put b(s) := 1 and go to (6).

(3) Compute the factorization fo(s) =
(@) Put J:= K[x,s)J. For each i=1,...,m, determine the least integer £; =

£ > 0 satisfying h(x,s)(s — s;)! € J with some h(x,s) € K|[x,s] such that h(0,s;) #
0, or else determine that there is no such £. This can be done by computing ideal
quotient and saturation via Grobner bases as follows (cf. [BW], [CLO], [E]).
Fori:=1tom:
(a) Compute a set of generators G;oft

of Grébner basis.
(b) Determine whether there is some h(x,s) € G; such that h(0,s:) # 0; if

there is no such h, then put ¢; := co and quit (there is no b(s)).

(c) By computing the ideal quotient J: (s — s.-)‘_for L=p,pm+1,...
repeatedly, determine the least £ > p; such that J: (s — ;)" contains an
element which does not vanish at (x,s) = (0,s;). Denote this £ by ¢;.

(5) Put b(s) :=(s— s (s— sm)™; we have b(s) € K[s}.

(6) Compute Jo := (J: b(s)) N K[x] by Grobner bases and find an element
a(x) € Jo such that a(0) # 0; such a(x) exists.

(7) Find by division g1(x,5), . - - gi(x, 5) € K[x, s] such that

a(x)b(s) = q1(%, Mi(%,8) + -+ + (%, (%, 5).

(s—s1)" -+ (s — 5m)™ in K[s].

he saturation J: (s — s;)® by means

Output: b(s),a(x),ql(x,s),...,qk(x,s); then b(s) is the monic generator of

F nKijs).

* THEOREM 4.6. The above algorithm is correct.

us first show the correctness of step (1). This is a parameter
putation by homogenization (cf. [La]). Let
lexp( f(xo)) be the leading exponent of f (’fo) € K[xo, x,s] with respect to >.
Then the condition for g stated in step (1) is equivalent to lexp(g"*) = (i, ,0)

with some i, u € N. Thus g can be chosen from, if any, g1(1,x,8),...,9-(1,x,5). If
such g does not exist, we have # n K[s] = 0 since a nonzero element of # N K[s]

would satisfy the desired property.
Hence in the sequel, we assume that g(x,

for any i and put Q := J: b(s). Put

Proof. Let
version of standard basis com

5) of step (1) exists. Suppose £; < 00

V(@) := {(x,5) € K™ |f(x,5) = 0 for any f € Q}.
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Then we have
V(Q) n ({0} x K) = V(J) n ({0} x K)
={(0,5)lse K, £1(0,5) = --- =£i(0,5) = 0}
={(0,51), -, (0,5m)} 4.2)

Moreover, we have hy(x,s)(s—s;)"eJ i
. —s5;)"€J, and hence hi(x,s) € Q, with some
l‘z':((x, s) € K[x,s] such that hi(0,s:) # 0. This implies, together with (4.2), that
%)i” ({0} X K) = &. In addition, there exists g(x,s) € J = Q whose leading
00:: qent with respect to s does not vanish at x = 0. Hence in view of, e.g,, the
z)(to;nsu())n theorem of [CLO, p. 162], there exists some a(x) € @~ K[x] .with
(( # 0. This implies a(x)b(s) € J. In particular, b(s) belongs to #' n K[s] with
F L:= K[x]o[s]J.
et us see that b(s) generates #'  K[s]. If f(s) belon 7'nK
ce t e . gs to #' nK]s|, then
:’15:)({ é:i)nieti.c,) ;wt? ;orﬁefhl(lx) € K|[x] with h(0) # 0. Hence (s — 5;)* divides f(s) by
; of £;. It follows b(s) divides . It also foll th ! =
{0} if £; = oo for some i. © . Js)- Tt also fo éws Skl
) Webhaye to show b(x) € K[s]. Put L := K(sy,...,5m) < K, and let 1, y,..., 0,
W?t; asis of L over K, and define n(c) := co for ¢ = ¢ + c1w1 + -+ + ¢y € L
o c}g,cl, .., eK. We extend 7 to the mapping of L[[x]][s] to K[[x]][s]. Note
b(s) e L[] n L[x]y[s)J, since the Grobmer basis computation does not
require field extension. Hence we have A

b(S) =4q (x, s)fl (x) S) 4+ 4 Qk(x) s)ﬁ(x, S)

with some q;(x, 5) € L[[x]][s]. It follows
n(b(s)) = n(as (x, ))fi (x,5) + - - + m(gulx, )%, 5) € S,

d
ge mhzf:n‘_’: :l(]l:l(i)f)tze{ ;Ill;y I&emma 4.4, Thus b(s) divides n(b(s)) in L|s]. Since both
e degree, we have b(s) = .
a(x)eJ:b(s) =« K [x] such that a(0) # ?)‘.,e (6= n(b(s)) € K- Thus wo cantake

Finally, the inequali )
pletes the proof, ‘é’“a ity £ > y; follows from b(s) € J(0) = (fo(s)). This com-

No i

e F:V!térgi xtxlel;nb;gi :he computation of P associated with bu(s). By detecting

sponding to Theorem 4 ‘;0mputat19n and the Grobner basis computation corre-

T ation [ eorem 4.1, we obtain P; € I such that ¢(P;) = fi(x, s) in the above
. -order of P; be m;. By using outputs of Algorithm 4.5, put

P:=) 1§
= (tag) - m E q;(x, tat)S(Pi ]
i=1

. in view of (5.1). The following lemma
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where S; := t™ if m; >0 and S; = 8;™ if m; <0. Then we have P € F_1(Dns1)
and (b(td;) — P)(1 ® u) = 0. How to find a “good” P, e.g,, of minimum order with
respect to 9, remains unsolved.

5. Computation of the Bernstein-Sato polynomial. We retain the notation in
the preceding sections. Let f(x) € K[x] be a polynomial with f(0) =0. (One
can suppose f(x) € K[[x]] with f(0) =0 in the argument below except for the
algorithm.) The following argument is -due to Malgrange [M1]. Put &=
K{[x))[f~",s}f*, where we regard f* as a free generator. Then & has a structure

of left 9,[s]-module defined by
oi(g(s)f ) = (:—i () ™™ + (s — m)g(s) % f ""“)f * (i=1,...,m)

for g(s) € K[[x]]ls] and m € N. Moreover, £ has also a structure of left Dpi1-
module defined by

Hg(s)f*) = g(s + DF*H,  Bulg()f*) = —sg(s — 1S st

for g(s) e K[[x])[f~,s]. We can make an element a(t) € K[[¢]] operate on g(s)f*
since £(0) = 0. It is easy to see that

— 8,t(g(s)f*) = sg(s)f* for any g(s) € K[, o, (5.1)
(t—fONS =0, (5.2)
(a,.+§£_i(x)a,)f==o (=1,...,m). (5.3)

and A := Dnp1 f5. Then we have inclusions & < A4 < &

Put A := Duls]f*
is the same as Lemma 4.1 of [M1].

Lemma 5.1. Put

= )
I:= Apn1 (t —f(x)) + ;Arﬁl (ai + 'a_’{i'at) .

Then the left ideal S = Dprl of D41 is maximal.

PROPOSITION 5.2. . is isomorphic to D1/ F.

Proof. Put S’ :={Pe€ Dpp1|Pf* = 0}. Then we have M~ Dpyy /S, Since
M3 f*#0, 5 is a proper ideal. Equations (5.2) and (5.3) imply # < #'. Since
# is maximal, we must have &' = J. This completes the proof. [J
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COROLLARY 5.3. For P(s) € 9y[s|, we have P(s)f*=0 in A if and only if

P(—att) €S

Proof. In view of (5.1), we have P(s)f* = P(— i
lows ftom Propesitas 57, (s)f* = P(—3,)f*. Hence the assertion fol-

The (local) b-function (Bernstein-Sato pol i i
. - nomial) b, i
polynomial of the least degree b(s) e K[s] Is)atlysfying ) () of S s the monie

P(s,x,0)f "' = b(s)f* inN¥ (54)

z;l;l)l ;ci)tr;lxes :(s) ; Dls]. The. monic polynomial of the least degree b(s) satisfying
i, 4] 2,0 S ) o e 0
L ) ) ) - By definition by(s) divides by(s).
In view of Corollary 5.3, equation (5.4) is equivgge)nt to )

b(—dit) — P(—dyt,x,0)f € 5.

Since t — f € .#, this is also equivalent to

b(—d,t) — P(-a,t, x, Ote #,

and we have P(—0,t,x,0)t e F_

and 0 ¢ F.y(G) ity 1(Pn+1). On the other hand, suppose b(s) e K[s]

b))~ 0)f*<0 in.a.

Expanding Q in the form
o]
Q=" 0n(x,t, o)™,
m=1
put

p(Q) := ; Om(x, —s — 1,8) ™1,

Note that p(Q) is well defined ag

in view of Corpllany 53 an element of 9,[s] since f(0) = 0. Then we get,

(b=s=1) - p(Q)f)f* =0 in A"

In conclusion, the computat;
can bo done as follns putation of by(s) and an associated P(s) € Dy[s] of (5.4)
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Algorithm 5.4. Input: f(x) € K[x].

(1) Letting I be the left ideal of A, generated by ¢t —f and 9; + (3f/0x:)0:
(i=1,...,n), compute an FW-Grobner basis G of I via F-homogenization;

(2) Compute a Grobner basis H of the left ideal generated by ¥(G) =
{¥(P)|P € G} with respect to an order satisfying (A-1), (A-2), (A-5). In the course
of( this computation, find Pi,...,Pm € G such that Hn K|[x,s] = {¢(P1),...,
¥(Pm)}.

(3) Compute the outputs b(s) € K[s], a(x) € K[x], q1(x,5), - - -, gs(x,5) € K[x, s]
of Algorithm 4.5 with H n K[x, s] as inputs.

(4) Pui Q:=a(x)b(td;) — S, gi(x,t0:)SiP; € F_1(Ans1), Where §;:=e™ if
m; := ordr(P;) > 0 and §; := 8,_™ otherwise.

Output: by(s) := b(—s— 1) and P(s) := (1/a(x))p(Q)-

Remark 5.5. (1) Step (1) of Algorithm 4.5, which is called in the above algo-
rithm, can be skipped since the existence of Ef(s) is assured by Bernstein [Be2].

(2) If K is a subfield of C, the fact that the roots of by(s) are rational
(see Kashiwara [K1]) makes steps (3) and (4) of Algorithm 4.5 considerably
easier since there is no need of field extension.
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