Complex Variables and Elliptic Equations Vol. 00, No. 00, January 2008, 1–14

RESEARCH ARTICLE

Annihilators of distributions associated with algebraic local cohomology of a hypersurface

Toshinori Oaku*

Tokyo Woman's Christian University, Suginami-ku, Tokyo, 167-8585 Japan

(April 21, 2012)

Let f be a real-valued real analytic function in several variables. We associate with each algebraic local cohomology class u with support in f = 0 a distribution (generalized function) $\rho(u)$ in terms of the residue of f^{λ}_{+} with respect to λ at a negative integer. Then ρ constitutes a homomorphism of modules over the sheaf of analytic functions but not over the sheaf of differential operators in general. We compare the annihilator of $\rho(u)$ in the ring of differential operators with that of u: we give sufficient conditions, together with examples, for each inclusion between the two annihilators.

Keywords: local cohomology; generalized function; residue; annihilator

AMS Subject Classification: Primary 32C38; Secondary 46F10, 14B15.

1. Introduction

Let f be a holomorphic function defined on a complex manifold X. The algebraic local cohomology group supported by f = 0 is defined to be the sheaf

$$\mathcal{H}^1_{[f=0]}(\mathcal{O}_X) = \mathcal{O}_X[f^{-1}]/\mathcal{O}_X$$

on X, where \mathcal{O}_X denotes the sheaf of holomorphic functions on X. This consists of residue classes $[af^{-k}]$ modulo \mathcal{O}_X with a holomorphic function a and a non-negative integer k. Let \mathcal{D}_X be the sheaf on X of differential operators with holomorphic coefficients. Then $\mathcal{H}^1_{[f=0]}(\mathcal{O}_X)$ has a structure of sheaves of left \mathcal{D}_X -modules (cf. [7]). An algorithm to compute its structure was given in [11] for the case f is a polynomial.

Now let f be a real-valued real analytic function defined on a paracompact real analytic manifold M. We may assume that f is extended to a holomorphic function on a complexification X of M. Let $\mathcal{D}b_M$ be the sheaf of distributions (generalized functions of L. Schwartz) on M. We first define an \mathcal{O}_X -homomorphism ρ of $\mathcal{H}^1_{[f=0]}(\mathcal{O}_X)$ to $\mathcal{D}b_M$ as follows: For a residue class $[af^{-k}]$ with a holomorphic function a and a positive integer k, we define $\rho([af^{-k}])$ to be the residue of $af_+^{\lambda-k}$ at $\lambda = -1$. For the systematic study of the distribution f_+^{λ} , we refer to [5], [2], [3], [8]. If f = 0 is non-singular, then it is well-known (see [5]) that

$$\rho([f^{-k-1}]) = \operatorname{Res}_{\lambda=0} f^{\lambda-k-1} = \frac{(-1)^k}{k!} \delta^{(k)}(f) \quad (k=0,1,2,\dots)$$
(1)

^{*}Email: oaku@lab.twcu.ac.jp

ISSN: 0278-1077 print/ISSN 1563-5066 online © 2008 Taylor & Francis DOI: 10.1080/0278107YYxxxxxxx http://www.informaworld.com

 $\mathbf{2}$

holds with $\delta^{(k)}(f)$ being the k-th 'derivative' of the delta function $\delta(f)$ supported by the real hypersurface f = 0.

Our main purpose is to compare the annihilators

$$\operatorname{Ann}_{\mathcal{D}_M} u := \{ P \in \mathcal{D}_M \mid Pu = 0 \}, \quad \operatorname{Ann}_{\mathcal{D}_M} \rho(u) := \{ P \in \mathcal{D}_M \mid P\rho(u) = 0 \}$$

as sheaves of left ideals of \mathcal{D}_M for a section u of $\mathcal{H}^1_{[f=0]}(\mathcal{O}_X)$, where $\mathcal{D}_M := \mathcal{D}_X|_M$ denotes the sheaf theoretic restriction of \mathcal{D}_X to M. Note that the sheaf of annihilating ideals of a distribution is not necessarily coherent over \mathcal{D}_M (see Example 7.5.1 of [4]). If f = 0 is non-singular, then it is easy to see, in view of (1), that the two annihilators coincide. However, at singular points of the hypersurface f = 0, the situation is more complicated in general.

In Section 2, we recall that both $u \in \mathcal{H}^1_{[f=0]}(\mathcal{O}_X)$ and $\rho(u)$ satisfy regular holonomic \mathcal{D}_X -modules whose characteristic varieties are contained in the set W^0_f defined by Kashiwara [6].

In Section 3, we give a sufficient condition (A) for $\operatorname{Ann}_{\mathcal{D}_M}\rho(u) \supset \operatorname{Ann}_{\mathcal{D}_M}u$ to hold (Theorem 3.1) and a sufficient condition (B) for the converse inclusion (Theorem 3.4). In Section 5, we give examples for which $\operatorname{Ann}_{\mathcal{D}_M}\rho(u) = \operatorname{Ann}_{\mathcal{D}_M}u$ (Example 5.1), $\operatorname{Ann}_{\mathcal{D}_M}\rho(u) \subsetneq \operatorname{Ann}_{\mathcal{D}_M}u$ (Example 5.2) and $\operatorname{Ann}_{\mathcal{D}_M}\rho(u) \supsetneq \operatorname{Ann}_{\mathcal{D}_M}u$ (Example 5.3) hold respectively. We also give examples of normal forms of real hypersurface singularities which satisfy the condition (B).

As a related problem, we notice in Section 4 a (probably well-known) sufficient condition for the annihilator of the distribution f_{+}^{λ} to coincide with that of the analytic function f^{λ} .

2. Algebraic local cohomology and residues of f_{+}^{λ}

If f is holomorphic on a neighbourhood of x_0 in a complex manifold X, the *b*function or the Bernstein-Sato polynomial of f at x_0 is, by definition, the monic polynomial $b_{f,x_0}(s)$ in a variable s of the least degree such that a formal functional equation $P(s)f^{s+1} = b_{f,x_0}(s)f^s$ holds with some $P(s) \in (\mathcal{D}_X)_{x_0}[s]$, where $(\mathcal{D}_X)_{x_0}$ denotes the stalk of the sheaf \mathcal{D}_X at x_0 . If $f(x_0) = 0$, then $b_{f,x_0}(s)$ is divisible by s + 1 and $\tilde{b}_{f,x_0}(s) := b_{f,x_0}(s)/(s+1)$ is called the reduced b-function of f at x_0 . It was proved by Kashiwara [6] that $b_{f,x_0}(s)$ exists and its roots are negative rational numbers. If f is a polynomial, then there is an algorithm to compute $b_{f,x_0}(s)$ and P(s) (see [10]).

In what follows, we let f be a real-valued real analytic function defined on a paracompact real analytic manifold M. Then for a complex number λ with non-negative real part (Re $\lambda \geq 0$), the distribution f^{λ}_{+} is defined to be the locally integrable function

$$f_{+}^{\lambda}(x) := \begin{cases} f(x)^{\lambda} = \exp(\lambda \log f(x)) \text{ if } f(x) > 0\\ 0 & \text{ if } f(x) \le 0 \end{cases}$$

on M and is holomorphic with respect to λ for Re $\lambda > 0$. In particular, $f^0_+ = Y(f)$ is the Heaviside function associated with f. By using the functional equation

$$b_{f,x_0}(\lambda)f_+^{\lambda} = P(\lambda)f_+^{\lambda+1},\tag{2}$$

which follows from the formal one above, we can extend f^{λ}_{+} to a $\mathcal{D}b_{M}(M)$ -valued meromorphic function of λ on the whole complex plane \mathbb{C} .

The real analytic function f can be extended to a holomorphic function on a complexification (a complex neighbourhood) X of M.

Definition 2.1: We define a sheaf homomorphism

$$\rho : \mathcal{H}^1_{[f=0]}(\mathcal{O}_X) \longrightarrow \mathcal{D}b_M$$

by the residue

$$\rho([af^{-k}]) := \operatorname{Res}_{\lambda=0} af_+^{\lambda-k}$$

at $\lambda = 0$ for a section a of \mathcal{O}_X and a non-negative integer k.

Proposition 2.2: The map ρ is well-defined and gives rise to a homomorphism of sheaves of \mathcal{A}_M -modules, where $\mathcal{A}_M := \mathcal{O}_X|_M$ denotes the sheaf of real analytic functions. Moreover, the support of $\rho(u)$ is contained in the set $\{x \in U \mid f(x) = 0\}$ for any section u of $\mathcal{H}^1_{[f=0]}(\mathcal{O}_X)$ over an open set U of M.

Proof: To prove that ρ is well-defined, it suffices to show that $\rho([af^{-k}]) = \rho([(af)f^{-k-1}])$ holds for any section a of \mathcal{O}_X . This follows from

$$\operatorname{Res}_{\lambda=0} \left(af\right) f_{+}^{\lambda-k-1} = \operatorname{Res}_{\lambda=0} af_{+}^{\lambda-k}.$$

Moreover, we have $f^k \rho([af^{-k}]) = \operatorname{Res}_{\lambda=0} (af^{\lambda}_+) = 0$. Hence the support of $\rho([af^{-k}])$ is contained in f = 0. It is easy to see that ρ is a homomorphism of \mathcal{A}_M -modules. \Box

Let us show that both u and $\rho(u)$ satisfy regular holonomic \mathcal{D}_X -modules. (See [8], [4] for regular holonomic systems.) First we recall the set W_f^0 defined by Kashiwara [6]:

Definition 2.3: For a holomorphic function f on X, the set W_f is defined to be the closure of the set

$$\{(\sigma; x, \sigma d \log f(x)) \in \mathbb{C} \times T^* X \mid f(x) \neq 0\}$$

in $\mathbb{C} \times T^*X$, where T^*X denotes the cotangent bundle of X. Let $\varpi : \mathbb{C} \times T^*X \to T^*X$ be the canonical projection and set

$$W_f^0 := \varpi(\widetilde{W}_F \cap (\{0\} \times T^*X)).$$

If f is a polynomial, then the defining equations of \widetilde{W}_f , and hence those of W_f^0 as well, can be computed as the ideal quotient by f of the radical of the ideal generated by $f\xi_i - \sigma \partial f / \partial x_i$ (i = 1, ..., n). The theorem below should be classical, to which we would like to give a 'constructive' proof. (See Theorem 7.6.1 of [4] for a complex version.)

Theorem 2.4: Let u be a section of $\mathcal{H}^1_{[f=0]}(\mathcal{O}_X)$ defined on a neighbourhood of $x_0 \in M$ in X. Then

- (1) $\mathcal{D}_X u = \mathcal{D}_X / \operatorname{Ann}_{\mathcal{D}_X} u$ is a regular holonomic \mathcal{D}_X -module whose characteristic variety is contained in $W_f^0 \cap \{f = 0\}$.
- (2) There exists a coherent sheaf \mathcal{I} of left ideals of \mathcal{D}_X defined on a neighbourhood of x_0 in X such that $\mathcal{D}_X/\mathcal{I}$ is regular holonomic with the characteristic variety contained in $W^0_f \cap \{f = 0\}$ and that $\mathcal{I}|_M$ is a subsheaf of $\operatorname{Ann}_{\mathcal{D}_M}\rho(u)$.

Taylor & Francis and I.T. Consultant

Proof: Set $\mathcal{N} = \mathcal{D}_X[s]f^s$. Then $\mathcal{N}(\lambda) := \mathcal{N}/(s-\lambda)\mathcal{N}$ is a regular holonomic \mathcal{D}_X module whose characteristic variety is contained in W_f^0 for any $\lambda \in \mathbb{C}$ (Theorem 2.2 of [8]). Set $u = [af^{-k}]$ with $a \in \mathcal{O}_X$. The surjective \mathcal{D}_X -homomorphism of $\mathcal{N}(-1)$ to $\mathcal{O}_X[f^{-1}]$ implies that $\mathcal{O}_X[f^{-1}]/\mathcal{O}_X$ and its submodule $\mathcal{D}_X u$ are regular holonomic and their characteristic varieties are contained in $W_f^0 \cap \{f = 0\}$. Let

$$af_{+}^{\lambda-k} = \sum_{j=-m}^{\infty} \lambda^j v_j \qquad (v_j \in \mathcal{D}b_M)$$

be the Laurent expansion around $\lambda = 0$. By using the functional equation (2), we can find a nonzero polynomial b(s) and $Q(s) \in \mathcal{D}_X[s]$ such that

$$b(\lambda)f_+^{\lambda-k} = Q(\lambda)f_+^{\lambda}.$$

Factoring b(s) as $b(s) = c(s)s^l$ with $c(0) \neq 0$, we obtain

$$\rho(u) = v_{-1} = \frac{a}{(l-1)!} \lim_{\lambda \to 0} \left(\frac{\partial}{\partial \lambda}\right)^{l-1} (c(\lambda)^{-1}Q(\lambda)f_+^{\lambda}) = \sum_{j=0}^{l-1} Q_j(Y(f)(\log f)^j)$$

with $Q_j \in \mathcal{D}_X$.

For a non-negative integer k, let us introduce a free $\mathcal{O}_X[f^{-1}]$ -module

$$\mathcal{L}_k := \mathcal{O}_X[f^{-1}]f^s \oplus \mathcal{O}_X[f^{-1}](f^s \log f) \oplus \cdots \oplus \mathcal{O}_X[f^{-1}](f^s (\log f)^k).$$

Then \mathcal{L}_k has a natural structure of left $\mathcal{D}_X[s]$ -module. Let \mathcal{N}_k be the left $\mathcal{D}_X[s]$ submodule of \mathcal{L}_k generated by $f^s(\log f)^j$ for $j = 0, \ldots, k$. Then it is easy to see that \mathcal{N}_0 and $\mathcal{N}_k/\mathcal{N}_{k-1}$ are isomorphic to \mathcal{N} as left $\mathcal{D}_X[s]$ -module. Set

$$\mathcal{N}_k(\lambda) := \mathcal{N}_k/(s-\lambda)\mathcal{N}_k \text{ for } \lambda \in \mathbb{C}.$$

Then $\mathcal{N}_0(\lambda)$ and $\mathcal{N}_k(\lambda)/\mathcal{N}_{k-1}(\lambda)$ are isomorphic to $\mathcal{N}(\lambda)$ as left \mathcal{D}_X -module. Hence $\mathcal{N}_k(\lambda)$ is regular holonomic and its characteristic variety is contained in W_f^0 .

Now set

$$\tilde{u} := Q_0[f^s]_0 \oplus Q_1[f^s \log f]_0 \oplus \dots \oplus Q_{l-1}[f^s (\log f)^{l-1}]_0 \in \mathcal{N}_{l-1}(0),$$

where $[f^s(\log f)^j]_0$ denotes the modulo class of $f^s(\log f)^j$ in $\mathcal{N}_{l-1}(0)$. Then $\mathcal{D}_X \tilde{u}$ is regular holonomic as a left \mathcal{D}_X -submodule of $\mathcal{N}_{l-1}(0)$. There exists a surjective homomorphism of $\mathcal{D}_M \tilde{u}$ to $\mathcal{D}_M \rho(u)$ of left \mathcal{D}_M -modules which sends \tilde{u} to $\rho(u)$. In particular, $\operatorname{Ann}_{\mathcal{D}_M} \tilde{u}$ annihilates $\rho(u)$. This completes the proof. \Box

Remark 1: In the same way as the proof above, one can show that every coefficient (as a distribution) of the Laurent expansion of f_{+}^{λ} with respect to λ about an arbitrary point in the complex plane satisfies a regular holonomic system whose characteristic variety is contained in W_{f}^{0} .

Remark 2: If f is a polynomial, then the proof above combined with an algorithm to compute the structure of \mathcal{N}_k (Algorithm 2 of [12]) yields an algorithm to compute $\operatorname{Ann}_{\mathcal{D}_M} \tilde{u}$, which is a subsheaf of $\operatorname{Ann}_{\mathcal{D}_M} \rho(u)$. However, we do not know any general algorithm to compute $\operatorname{Ann}_{\mathcal{D}_M} \rho(u)$ exactly.

3. Comparison of annihilators via ρ

Theorem 3.1: Let f be a real-valued real analytic function defined on M. Assume

(A) For any positive integer k, $\lambda = -k$ is at most a simple pole of f_+^{λ} as a distribution on M with the meromorphic parameter λ .

Then ρ is a homomorphism of sheaves of left \mathcal{D}_M -modules. In particular, $\operatorname{Ann}_{\mathcal{D}_M} u$ is a subsheaf of $\operatorname{Ann}_{\mathcal{D}_M} \rho(u)$ for any section u of $\mathcal{H}^1_{[f=0]}(\mathcal{O}_X)|_U$.

Proof: Let P and a be germs of \mathcal{D}_X and of \mathcal{O}_X respectively at a point y_0 of U. There exist $p(x,s) \in (\mathcal{O}_X)_{y_0}[s]$ and a non-negative integer l such that $P(af^s) = p(x,s)f^{s-l}$ holds formally. Then we have

$$\rho(P[af^{-k}]) = \rho([p(x,-k)f^{-k-l}]) = \operatorname{Res}_{\lambda=0} p(x,-k)f_{+}^{\lambda-k-l}$$
$$= \operatorname{Res}_{\lambda=0} p(x,\lambda-k)f_{+}^{\lambda-k-l} = \operatorname{Res}_{\lambda=0} P(af_{+}^{\lambda-k})$$
$$= P\operatorname{Res}_{\lambda=0} af_{+}^{\lambda-k} = P\rho([af^{-k}])$$

since $\lambda = 0$ is at most a simple pole of $f_{+}^{\lambda - k - l}$.

Corollary 3.2: Assume

(A') $\tilde{b}_{f,x_0}(-k)$ does not vanish for any positive integer k with $x_0 \in M$. Then we have an inclusion

$$\operatorname{Ann}_{(\mathcal{D}_X)_{x_0}} u \subset \operatorname{Ann}_{(\mathcal{D}_X)_{x_0}} \rho(u)$$

for any germ u of $\mathcal{H}^1_{[f=0]}(\mathcal{O}_X)$.

Proof: By the functional equation (2), it is easy to see that (A) is satisfied with M replaced by a neighbourhood of x_0 . Hence ρ is a \mathcal{D}_X -homomorphism on a neighbourhood of x_0 . This implies the inclusion.

Lemma 3.3: Let f be a real-valued real analytic function defined on a neighbourhood of $x_0 \in M$ such that its differential df does not vanish at x_0 . Suppose that $a(x, \lambda)$ is an analytic function in x, λ defined on a neighbourhood of $(x_0, 0) \in M \times \mathbb{C}$ and that

$$\operatorname{Res}_{\lambda=0} a(x,\lambda) f_+^{\lambda-k} = 0$$

holds on a neighbourhood of x_0 with a non-negative integer k. Then a(x,0) is divisible by f^k in the stalk $(\mathcal{O}_X)_{x_0}$.

Proof: By a real analytic local coordinate system $x = (x_1, \ldots, x_n)$, we may assume $f(x) = x_1$ and $x_0 = 0$ with $M = \mathbb{R}^n$. In view of the functional equation

$$(x_1)^{\lambda}_{+} = \frac{1}{(\lambda+1)\cdots(\lambda+k)}\partial_1^k(x_1)^{\lambda+k}_{+},$$

 $\lambda = -k$ is a simple pole of $(x_1)^{\lambda}_+$ with residue

$$\operatorname{Res}_{\lambda=-k} (x_1)_+^{\lambda} = \frac{(-1)^{k-1}}{(k-1)!} \partial_1^k Y(x_1).$$

2 13:18 Complex Variables and Elliptic Equations

Hence we have

6

$$\begin{aligned} a(x,0)\partial_1^k Y(x_1) &= (-1)^{k-1}(k-1)! \operatorname{Res}_{\lambda=-k} a(x,0)(x_1)_+^{\lambda} \\ &= (-1)^{k-1}(k-1)! \operatorname{Res}_{\lambda=0} a(x,0)(x_1)_+^{\lambda-k} \\ &= (-1)^{k-1}(k-1)! \operatorname{Res}_{\lambda=0} a(x,\lambda)(x_1)_+^{\lambda-k} = 0 \end{aligned}$$

on an open neighbourhood U of 0 in M. This implies

$$0 = \langle a(x,0)\partial_1^k Y(x_1), \varphi(x) \rangle = \langle Y(x_1), (-\partial_1)^k (a(x,0)\varphi(x)) \rangle$$

= $\int_{\mathbb{R}^{n-1}} \left(\int_0^\infty (-\partial_1)^k (a(x,0)\varphi(x)) \, dx_1 \right) \, dx_2 \cdots dx_n$
= $\int_{\mathbb{R}^{n-1}} \left[(-\partial_1)^{k-1} (a(x,0)\varphi(x)) \right]_{x_1=0} \, dx_2 \cdots dx_n$
= $(-1)^{k-1} \sum_{i=0}^{k-1} {\binom{k-1}{i}} \int_{\mathbb{R}^{n-1}} \partial_1^i a(0,x',0) \partial_1^{k-1-i} \varphi(0,x') \, dx_2 \cdots dx_n$

for any C^{∞} function $\varphi(x)$ with compact support in U, where we use the notation $x' = (x_2, \ldots, x_n)$. Choose an open interval I containing 0 and an open neighbourhood V' of 0 in \mathbb{R}^{n-1} such that $I \times V'$ is a subset of U. Let $\chi(x_1)$ be a C^{∞} function of x_1 with compact support in I such that $\chi(x_1) = 1$ on a neighbourhood of 0. Setting $\varphi(x) = x_1^l \chi(x_1) \psi(x')$ with an arbitrary C^{∞} function $\psi(x')$ with compact support in V' and an integer l with $0 \le l \le k-1$, we get

$$\int_{\mathbb{R}^{n-1}} \partial_1^{k-1-l} a(0, x', 0) \psi(x') \, dx_2 \cdots dx_n = 0.$$

Hence $\partial_1^i a(0, x', 0) = 0$ holds for $x' \in V'$ and $0 \le i \le k - 1$. Thus a(x, 0) is divisible by x_1^k .

Theorem 3.4: Let f be a real-valued real analytic function defined on M such that $f(x_0) = 0$ with $x_0 \in M$. We assume

(B) There exists a real analytic local coordinate system $x = (x_1, x') = (x_1, x_2, \ldots, x_n)$ of M around x_0 such that x_0 corresponds to the origin and f is written in the form

$$f(x) = c(x)(x_1^m + a_1(x')x_1^{m-1} + \dots + a_m(x'))$$

with $m \geq 1$, where c(x) and $a_j(x')$ are real-valued real analytic functions defined on a neighbourhood of the origin such that $c(0) \neq 0$ and $a_j(0) = 0$ for $1 \leq j \leq m$. Moreover, for any neighbourhood U of the origin in \mathbb{R}^n , there exists $y'_0 \in \mathbb{R}^{n-1}$ such that $(0, y'_0) \in U$ and the equation

$$x_1^m + a_1(y_0')x_1^{m-1} + \dots + a_m(y_0') = 0$$

in x_1 has m distinct real roots.

Under this condition,

$$\operatorname{Ann}_{(\mathcal{D}_X)_{x_0}}\rho(u)\subset\operatorname{Ann}_{(\mathcal{D}_X)_{x_0}}u$$

holds for any germ u of $\mathcal{H}^1_{[f=0]}(\mathcal{O}_X)$ at x_0 .

Proof: Set $u = [af^{-k}]$ with $a \in (\mathcal{O}_X)_{x_0}$ and a non-negative integer k. Let P be a germ of \mathcal{D}_X at x_0 and suppose $P\rho(u)$ vanishes on a neighbourhood of x_0 . There exist $p(x,s) \in (\mathcal{O}_X)_{x_0}[s]$ and a non-negative integer l such that $P(af^s) = p(x,s)f^{s-l}$. This implies

$$P\rho(u) = \operatorname{Res}_{\lambda=0} P(af_+^{\lambda-k}) = \operatorname{Res}_{\lambda=0} p(x,\lambda-k)f_+^{\lambda-k-l} = 0$$
(3)

on a neighbourhood of x_0 .

By the Weierstrass preparation theorem, we can find $q(x) \in (\mathcal{O}_X)_{x_0}$ and $r_i(x') \in \mathbb{C}\{x'\}$ such that

$$p(x,-k) = q(x)\tilde{f}(x)^{k+l} + r(x) \quad \text{with } \tilde{f}(x) := x_1^m + a_1(x')x_1^{m-1} + \dots + a_m(x'),$$
$$r(x) = \sum_{i=0}^{m(k+l)-1} r_i(x')x_1^i.$$

There exist an open connected neighbourhood V' of the origin in \mathbb{C}^{n-1} and an open connected neighbourhood V_1 of 0 in \mathbb{C} such that $a_j(x')$ and $r_j(x')$ are analytic on V', c(x) and q(x) are analytic on $V := V_1 \times V'$, c(x) does not vanish on V, the set $\{x_1 \in \mathbb{C} \mid \tilde{f}(x_1, x') = 0\}$ is contained in V_1 if $x' \in V'$, and $P\rho(u) = 0$ holds on $V \cap M$.

Take a $y_0' \in V' \cap \mathbb{R}^{n-1}$ such that the equation

$$\tilde{f}(x_1, y'_0) = x_1^m + a_1(y'_0)x_1^{m-1} + \dots + a_m(y'_0) = 0$$

in x_1 has distinct real roots $x_1 = \xi_j$ (j = 1, ..., m). Since f is non-singular at (ξ_j, y'_0) , Lemma 3.3 and (3) imply that p(x, -k) is divisible by f^{k+l} in $(\mathcal{O}_X)_{(\xi_j, y'_0)}$ for each j = 1, ..., m. Hence there exists an analytic function e(x) defined on a neighbourhood of $V_1 \times \{y'_0\}$ such that $p(x, -k) = e(x)f(x)^{k+l}$. Consequently

$$r(x) = e(x)f(x)^{k+l} - q(x)\tilde{f}(x)^{k+l} = (e(x)c(x)^{k+l} - q(x))\tilde{f}(x)^{k+l}$$
(4)

holds on a neighbourhood of $V_1 \times \{y'_0\}$.

Let us show that r(x) is divisible by $\tilde{f}(x)^{k+l}$ in the ring $\mathbb{C}\{x' - y'_0\}[x_1]$, where $\mathbb{C}\{x' - y'_0\}$ denotes the ring of convergent power series in $x' - y'_0$. Since $\partial \tilde{f}/\partial x_1$ does not vanish at (ξ_j, y'_0) , the implicit function theorem assures the existence of real-valued real analytic functions $\varphi_j(x')$ defined on a neighbourhood of y'_0 such that $\varphi_j(y'_0) = \xi_j$ and

$$\tilde{f}(x) = \prod_{j=1}^{m} (x_1 - \varphi_j(x'))$$

holds on a neighbourhood of $V_1 \times \{y'_0\}$. Division in $\mathbb{C}\{x' - y'_0\}[x_1]$ yields

$$r(x) = \tilde{q}_1(x)(x_1 - \varphi_1(x'))^{k+l} + \sum_{i=0}^{k+l-1} \tilde{r}_i(x')x_1^i$$

with $\tilde{q}_1(x) \in \mathbb{C}\{x' - y'_0\}[x_1]$ and $\tilde{r}_i(x') \in \mathbb{C}\{x' - y'_0\}$. On the other hand, r(x) is divisible by $(x_1 - \varphi_1(x'))^{k+l}$ in $(\mathcal{O}_X)_{(\xi_1,y'_0)}$ by (4). This implies, by virtue of

the uniqueness statement of the Weierstrass preparation theorem (applied with x_1 replaced by $x_1 - \xi_1$), that $\tilde{r}_i(x') = 0$ for $0 \le i \le k + l - 1$. In the same way, we can show that $\tilde{q}_1(x)$ is divisible by $(x_1 - \varphi_2(x'))^{k+l}$ in $\mathbb{C}\{x' - y'_0\}[x_1]$. Repeating this argument, we conclude that r(x) is divisible by $\tilde{f}(x)^{k+l}$ in $\mathbb{C}\{x' - y_0\}[x_1]$. Hence r(x) = 0 holds on a neighbourhood of $V_1 \times \{y'_0\}$, and hence on V, since the degree of r(x) in x_1 is smaller than that of $\tilde{f}(x)^{k+l}$. Thus we have $Pu = [p(x, -k)f^{-k-l}] = [q(x)c(x)^{-k-l}] = 0$ on V. This completes the proof. \Box

Corollary 3.5: Assume (A) and (B) for any $x_0 \in M$. Then ρ induces an injective sheaf homomorphism $\mathcal{H}^1_{[f=0]}(\mathcal{O}_X) \to \mathcal{D}b_M$ of left $(\mathcal{D}_X)_{x_0}$ -modules. In particular,

$$\operatorname{Ann}_{(\mathcal{D}_X)_{x_0}}\rho(u) = \operatorname{Ann}_{(\mathcal{D}_X)_{x_0}}u$$

holds for any section u of $\mathcal{H}^1_{[f=0]}(\mathcal{O}_X)_{x_0}$.

4. Comparison of annihilators of f^{λ} and of f^{λ}_{+}

Let f be a real-valued real analytic function defined on a neighbourhood of $x_0 \in M$. We present some elementary facts on the annihilator of f_+^{λ} , which will be useful in the computation of the annihilator of $\rho([f^{-k}])$ as well.

Regarding s as an indeterminate and f^s as a 'formal' function, set

$$\operatorname{Ann}_{\mathcal{D}_X[s]} f^s := \{ P(s) \in \mathcal{D}_X[s] \mid P(s) f^s = 0 \},$$

which is a coherent sheaf of left ideals of $\mathcal{D}_X[s]$ (cf. [6]).

Lemma 4.1: Let P(s) be a germ of $\operatorname{Ann}_{\mathcal{D}_X[s]} f^s$ at x_0 . If $\lambda = \lambda_0 \in \mathbb{C}$ is not a pole of f^{λ}_+ as a distribution near $x = x_0$, then $P(\lambda_0)f^{\lambda_0}_+ = 0$ holds.

Proof: If Re λ is sufficiently large, then $P(\lambda)f_+^{\lambda}$ is locally integrable near $x = x_0$. Moreover, it vanishes where $f(x) \neq 0$ by the assumption. Hence $P(\lambda)f_+^{\lambda}$ vanishes near $x = x_0$ if Re λ is sufficiently large. The assertion follows from the uniqueness of analytic continuation.

Lemma 4.2: Assume that λ_0 is not a pole of f_+^{λ} near $x = x_0$ and that for any neighbourhood V of x_0 in M there exists $y \in V$ such that f(y) > 0. Under these two assumptions, if $P \in (\mathcal{D}_X)_{x_0}$ satisfies $Pf_+^{\lambda_0} = 0$, then $Pf_{\lambda_0}^{\lambda_0} = 0$ holds as a multi-valued analytic function.

Proof: Since $f^{\lambda_0} = e^{2\pi\sqrt{-1}k\lambda_0}f^{\lambda_0}_+$ holds with some integer k where f(x) is positive, we have $Pf^{\lambda_0} = 0$ as multi-valued analytic function in view of the second assumption.

Proposition 4.3: Assume that $\lambda = \lambda_0$ is not a pole of f_+^{λ} near $x = x_0$ and that $b_{f,x_0}(\lambda_0 - \nu) \neq 0$ holds for any positive integer ν . Assume moreover that for any neighbourhood V of x_0 in M there exists $y \in V$ such that f(y) > 0. Then the following three conditions on $P \in (\mathcal{D}_X)_{x_0}$ are equivalent:

- (1) $Pf_{+}^{\lambda_0} = 0.$
- (2) $Pf^{\lambda_0} = 0$ holds as a multi-valued analytic function.
- (3) There exists a germ Q(s) of $\operatorname{Ann}_{\mathcal{D}_X[s]} f^s$ such that $P = Q(\lambda_0)$.

Proof: By the preceding two lemmas we have implications $(3) \Rightarrow 1$ and $(1) \Rightarrow (2)$. The equivalence of (2) and (3) follows from Proposition 6.2 of [6] in view of the assumption on $b_{f,x_0}(s)$.

5. Examples

Example 5.1 Set $f = x_1^2 x_2^2 + x_3^p$ with $M = \mathbb{R}^3$ and an odd integer $p \ge 3$. Then the reduced *b*-function $\tilde{b}_{f,0}(s)$ of f at the origin does not have integral roots as is seen by Example 4.20 of Yano [13]. It is easy to see (e.g., by the weighted homogeneity) that the reduced *b*-function of f at a point other than the origin is a factor of $\tilde{b}_{f,0}(s)$. Hence the assumption (A') is satisfied for any $x_0 \in M$.

By a coordinate transformation $y_1 = x_1 + x_2$, $y_2 = x_1 - x_2$, $y_3 = x_3$, f takes the form

$$f = (y_1^2 - y_2^2)^2 + y_3^p = y_1^4 - 2y_1^2y_2^2 + y_2^4 + y_3^p.$$

Hence the equation f = 0 in y_1 has four distinct real roots if and only if $y_3 < 0$ and $y_2^4 + y_3^p > 0$. Hence the assumption (B) is satisfied at each point $x_0 = (x_{01}, x_{02}, x_{03})$ belonging to the the singular loci $x_1 = x_3 = 0$ or $x_2 = x_3 = 0$. It is easy to see that the assumption (B) is always satisfied at a non-singular point. In conclusion we have $\operatorname{Ann}_{\mathcal{D}_M} u = \operatorname{Ann}_{\mathcal{D}_M} \rho(u)$ for any section u of $\mathcal{H}^1_{[f=0]}(\mathcal{O}_X)|_M$ in view of Corollary 3.5.

We conjecture that $\operatorname{Ann}_{\mathcal{D}_X}[f^{-1}]$ is generated by

$$x_1^2 x_2^2 + x_3^p, \quad p x_3^{p-1} \partial_1 - 2x_1 x_2^2 \partial_3, \quad p x_3^{p-1} \partial_2 - 2x_1^2 x_2 \partial_3, \\ p x_1 \partial_1 + 2x_3 \partial_3 + 2p, \quad p x_2 \partial_2 + 2x_3 \partial_3 + 2p$$

for any integer $p \ge 1$. We have verified it for $1 \le p \le 290$ by using an algorithm in [11] with a computer algebra system Risa/Asir ([9]). For example, if p = 3, then the characteristic cycle of $\mathcal{H}^1_{[f=0]}(\mathcal{O}_X) = \mathcal{D}_X[f^{-1}]$ is given by

$$2T^*_{\{x_1=x_2=x_3=0\}}\mathbb{C}^3 + T^*_{\{x_1=x_3=0\}\setminus\{0\}}\mathbb{C}^3 + T^*_{\{x_2=x_3=0\}\setminus\{0\}}\mathbb{C}^3 + T^*_{Y'}\mathbb{C}^3$$

with $Y' := \{(x_1, x_2, x_3) \mid x_1^2 x_2^2 + x_3^3 = 0\} \setminus \{(x_1, x_2, x_3) \mid x_1 x_2 = x_3 = 0\}.$

Example 5.2 Set $f = x_1 x_2$ with $M = \mathbb{R}^2$ and consider a section $u := [(x_1 x_2)^{-1}]$ of $\mathcal{H}^1_{[f=0]}(\mathcal{O}_X)$. The assumption (B) is satisfied at every point of f = 0 as is seen by the coordinate transformation $y_1 = x_1 + x_2$, $y_2 = x_1 - x_2$. Hence $\operatorname{Ann}_{\mathcal{D}_M} \rho(u) \subset$ $\operatorname{Ann}_{\mathcal{D}_M} u$ holds by Theorem 3.4. It is easy to see that $\operatorname{Ann}_{D_X} u$ is the left ideal of \mathcal{D}_X generated by $x_1 x_2, x_1 \partial_1 + 1, x_2 \partial_2 + 1$. In fact, suppose $P \in \mathcal{D}_X$ annihilates uon a neighbourhood of 0 = (0, 0). We can write P in the form

$$P = Q_0(x_1, x_2; \partial_1, \partial_2)x_1x_2 + Q_1(x_1; \partial_1, \partial_2)x_1 + Q_2(x_2; \partial_1, \partial_2)x_2 + R(\partial_1, \partial_2).$$

Then on a neighbourhood of a point $(x_1, 0)$ with $|x_1| > 0$ sufficiently small, we have

$$(Q_1(x_1;\partial_1,\partial_2) + R(\partial_1,\partial_2)x_1^{-1})[x_2^{-1}] = 0.$$

In view of the Laurent expansion with respect to x_1 , this implies that R = 0 and that Q_1 is written in the form $Q_1 = Q'_1 \partial_1$. Likewise Q_2 is written in the form

Taylor & Francis and I.T. Consultant

 $Q_2 = Q'_2 \partial_2$. Hence P belongs to the left ideal generated by $x_1 x_2$, $\partial_1 x_1$, $\partial_2 x_2$. On the other hand, the annihilator of $\rho(u)$ is generated by $x_1 x_2$ and $x_1 \partial_1 - x_2 \partial_2$. This can be shown as follows: Assume $P \in (\mathcal{D}_X)_0$ annihilates $\rho(u)$. Then P is written in the form

$$P = Q_0(x_1, x_2; \partial_1, \partial_2)x_1x_2 + Q_1(x_1, x_2; \partial_1, \partial_2)\partial_1x_1 + Q_2(x_1, x_2; \partial_1, \partial_2)\partial_2x_2,$$

which can be verified in the same way as above, or else follows from Theorem 3.4. Since

$$\partial_1 x_1 \rho(u) = \partial_2 x_2 \rho(u) = 2\delta(x_1, x_2) \tag{5}$$

holds, where $\delta(x_1, x_2) = \delta(x_1)\delta(x_2)$ is the Dirac delta function with support at the origin, $P\rho(u) = 0$ implies

$$(Q_1(x_1, x_2; \partial_1, \partial_2) + Q_2(x_1, x_2; \partial_1, \partial_2))\delta(x_1)\delta(x_2) = 0.$$

Let us rewrite Q_1 and Q_2 in the form

$$Q_i(x_1, x_2; \partial_1, \partial_2) = S_i(x_1, x_2; \partial_1, \partial_2)x_1 + T_i(x_2; \partial_1, \partial_2)x_2 + R_i(\partial_1, \partial_2) \quad (i = 1, 2).$$

Then $R_1 + R_2 = 0$ follows from $(R_1 + R_2)\delta(x_1)\delta(x_2) = 0$. Summing up we get

$$P = (Q_0 + T_1\partial_1 + S_2\partial_2)x_1x_2 + S_1x_1\partial_1x_1 + T_2x_2\partial_2x_2 + R_1(\partial_1x_1 - \partial_2x_2).$$

This shows that P belongs to the left ideal generated by x_1x_2 and $x_1\partial_1 - x_2\partial_2$ since

$$x_1\partial_1 x_1 = x_1(\partial_1 x_1 - \partial_2 x_2) + \partial_2 x_1 x_2.$$

Let \mathcal{I} be the sheaf of ideals of \mathcal{D}_X generated by x_1x_2 and $x_1\partial_1 - x_2\partial_2$. Then $\mathcal{I}|_M$ coincides with the sheaf $\operatorname{Ann}_{\mathcal{D}_M}\rho(u)$ of annihilating ideals on $M = \mathbb{R}^2$, which is consequently coherent over \mathcal{D}_M . In fact, they coincide at the origin by the above argument. At another point, say, $(0, x_2)$ with $x_2 \neq 0$, it is also easy to see that \mathcal{I} coincides with the annihilator of $\rho(u)$. The characteristic cycle of $\mathcal{D}_X u$ is

$$T^*_{\{x_1=x_2=0\}}\mathbb{C}^2 + T^*_{\{x_1=0,x_2\neq 0\}}\mathbb{C}^2 + T^*_{\{x_2=0,x_1\neq 0\}}\mathbb{C}^2,$$

while that of $\mathcal{D}_X/\mathcal{I}$ is

$$2T^*_{\{x_1=x_2=0\}}\mathbb{C}^2 + T^*_{\{x_1=0,x_2\neq 0\}}\mathbb{C}^2 + T^*_{\{x_2=0,x_1\neq 0\}}\mathbb{C}^2$$

Finally, let us verify (5). By using the functional equation

$$\partial_1 \partial_2 (x_1 x_2)^{s+1}_+ = (s+1)^2 (x_1 x_2)^s_+,$$

we get

$$\rho(u) = \operatorname{Res}_{\lambda=0} (x_1 x_2)_+^{\lambda-1} = \partial_1 \partial_2 (Y(x_1 x_2) \log(x_1 x_2)).$$

Let $\varphi(x) = \varphi(x_1, x_2)$ be a C^{∞} function with compact support. Then we have

$$\begin{aligned} \langle \partial_1 \partial_2 (Y(x_1 x_2) \log(x_1 x_2)), \varphi(x) \rangle \\ &= \int_0^\infty \int_0^\infty (\log x_1 + \log x_2) \left\{ (\partial_1 \partial_2 \varphi)(x_1, x_2) + (\partial_1 \partial_2 \varphi)(-x_1, -x_2) \right\} \, dx_1 dx_2. \end{aligned}$$

We rewrite the integral involving $\log x_1$ as follows:

$$\int_{0}^{\infty} \int_{0}^{\infty} (\log x_{1}) \left\{ (\partial_{1} \partial_{2} \varphi)(x_{1}, x_{2}) + (\partial_{1} \partial_{2} \varphi)(-x_{1}, -x_{2}) \right\} dx_{1} dx_{2}$$

= $-\int_{0}^{\infty} (\log x_{1}) \left\{ (\partial_{1} \varphi)(x_{1}, 0) - (\partial_{1} \varphi)(-x_{1}, 0) \right\} dx_{1}$
= $-\int_{0}^{\infty} (\log x_{1}) \partial_{1} \left\{ \varphi(x_{1}, 0) + \varphi(-x_{1}, 0) - 2\varphi(0, 0) \right\} dx_{1}$
= $\int_{0}^{\infty} \frac{\varphi(x_{1}, 0) + \varphi(-x_{1}, 0) - 2\varphi(0, 0)}{x_{1}} dx_{1}.$

Hence if we define the distribution v(t) on \mathbb{R} by

$$\langle v(t), \psi(t) \rangle = \int_0^\infty \frac{\psi(t) + \psi(-t) - 2\psi(0)}{t} dt$$

for any C^{∞} function $\psi(t)$ with compact support, we have

$$\rho(u) = v(x_1)\delta(x_2) + \delta(x_1)v(x_2).$$

It is easy to see that tv(t) = Y(t) - Y(-t), from which (5) follows.

Example 5.3 Set $f = x_1(x_2^2 + x_3^2 + x_4^2)$ with $M = \mathbb{R}^4$ and set $u := [f^{-1}]$. Then f^s satisfies a functional equation

$$\frac{1}{4}\partial_1(\partial_2^2 + \partial_3^2 + \partial_4^2)f^{s+1} = (s+1)^2\left(s+\frac{3}{2}\right)f^s.$$
(6)

Let

$$f^{\lambda}_{+} = (\lambda + 1)^{-2} v_{-2}(x) + (\lambda + 1)^{-1} v_{-1}(x) + v_0(x) + \cdots$$

be the Laurent expansion around $\lambda = -1$. Then we have

$$\begin{aligned} v_{-2}(x) &= \frac{1}{2}\partial_1(\partial_2^2 + \partial_3^2 + \partial_4^2)Y(x_1) = 0, \\ v_{-1}(x) &= \frac{1}{4}\partial_1(\partial_2^2 + \partial_3^2 + \partial_4^2) \left\{ \lim_{\lambda \to -1} \frac{\partial}{\partial\lambda} \left(\left(\lambda + \frac{3}{2}\right)^{-1} f_+^{\lambda + 1} \right) \right\} \\ &= \frac{1}{4}\partial_1(\partial_2^2 + \partial_3^2 + \partial_4^2) \left\{ -4Y(x_1) + 2Y(x_1)(\log x_1 + \log(x_2^2 + x_3^2 + x_4^2)) \right\} \\ &= \delta(x_1)(x_2^2 + x_3^2 + x_4^2)^{-1}. \end{aligned}$$

Thus $\lambda = -1$ is a simple pole of f_+^{λ} and so is $\lambda = -k$ for any positive integer k in view of (6). Hence (A) is satisfied.

Taylor & Francis and I.T. Consultant

Let us show that $\operatorname{Ann}_{\mathcal{D}_X} u$ is generated by

$$\begin{array}{ll} x_1(x_2^2+x_3^2+x_4^2), & x_1\partial_1+1, & x_2\partial_2+x_3\partial_3+x_4\partial_4+2, \\ x_2\partial_3-x_3\partial_2, & x_2\partial_4-x_4\partial_2, & x_3\partial_4-x_4\partial_3. \end{array}$$

We have only to find $P \in \mathcal{D}_X$ other than f which annihilates the rational function $f^{-1} = x_1^{-1}g^{-1}$ with $g := x_2^2 + x_3^2 + x_4^2$. In fact, if $P[f^{-1}] = 0$ then $a := Pf^{-1}$ is analytic, which means that P - af annihilates f^{-1} . The annihilator of g^{-1} as analytic function is generated by the operators listed above except the first two since g is homogeneous and g = 0 has an isolated singularity (see e.g. Theorem 2.19 of [13]). The annihilator of x_1^{-1} is generated by $x_1\partial_1 + 1$. The assertion follows from these observations.

On the other hand, the annihilator of $\rho(u) = v_{-1}(x) = \delta(x_1)g^{-1}$ is generated by the operators

$$x_1, \quad x_2\partial_2 + x_3\partial_3 + x_4\partial_4 + 2, \quad x_2\partial_3 - x_3\partial_2, \quad x_2\partial_4 - x_4\partial_2, \quad x_3\partial_4 - x_4\partial_3.$$
 (7)

We can verify this as follows: First note that g^{λ} is locally integrable for Re $\lambda > -3/2$. Since the *b*-function of g is (s + 1)(s + 3/2), Theorem 4.3 guarantees that for a differential operator P in the variables $x' = (x_2, x_3, x_4)$, we have $Pg_+^{-1} = 0$ as a distribution if and only if Pg^{-1} holds as an analytic function. It follows that $\operatorname{Ann}_{\mathcal{D}_M}\rho(u)$ is generated by the operators listed in (7).

In conclusion, $\operatorname{Ann}_{\mathcal{D}_M}\rho(u)$ is coherent on $M = \mathbb{R}^4$, of which $\operatorname{Ann}_{\mathcal{D}_M}u$ is a proper subsheaf. The characteristic cycle of $\mathcal{H}^1_{[f=0]}(\mathcal{O}_X) = \mathcal{D}_X u$ is

$$T^*_{\{0\}}\mathbb{C}^4 + T^*_{\{x_2=x_3=x_4=0\}\setminus\{0\}}\mathbb{C}^4 + T^*_{\{x_1=x_2^2+x_3^2+x_4^2=0\}\setminus\{0\}}\mathbb{C}^4 + T^*_{\{x_1=0,x_2^2+x_3^2+x_4^2\neq0\}}\mathbb{C}^4 + T^*_{\{x_2^2+x_3^2+x_4^2=0,x_1\neq0,(x_2,x_3,x_4)\neq(0,0,0)\}}\mathbb{C}^4,$$

whereas that of $\mathcal{D}_X/\mathcal{I}$ with \mathcal{I} being the sheaf of left ideals of \mathcal{D}_X generated by the operators in (7) is

$$T_{\{0\}}^* \mathbb{C}^4 + T_{\{x_1 = x_2^2 + x_3^2 + x_4^2 = 0\} \setminus \{0\}}^* \mathbb{C}^4 + T_{\{x_1 = 0, x_2^2 + x_3^2 + x_4^2 \neq 0\}}^* \mathbb{C}^4.$$

Example 5.4 Among the normal forms of real hypersurface singularities in $M = \mathbb{R}^n$ (see [1]), at least the following ones satisfy the condition (B) at the origin, where $q(x_k, \ldots, x_n)$ denotes a non-degenerate quadratic form in the variables x_k, \ldots, x_n and a is a real constant:

- (1) $x_1^2 + \dots + x_p^2 x_{p+1}^2 \dots x_n^2$ $(1 \le p \le n 1),$
- (2) $D_4^-: x_1^2x_2 x_2^3 + q(x_3, \dots, x_n),$
- (3) $E_7: x_1^3 + x_1 x_2^3 + q(x_3, \dots, x_n),$
- (4) P_8^{\pm} : $x_1^3 + ax_1^2x_3 \pm x_1x_3^2 + x_2^2x_3 + q(x_4, \dots, x_n)$ with $-a^2 \pm 4 < 0$,
- (5) J_{10}^{\pm} : $x_1^3 + ax_1^2x_2^2 \pm x_1x_2^4 + q(x_3, \dots, x_n)$ with $-a^2 \pm 4 < 0$,
- (6) J_{10+k}^{\pm} : $x_1^3 \pm x_1^2 x_2^2 + a x_2^{6+k} + q(x_3, \dots, x_n)$ with $k \ge 1$ and $(\pm a < 0 \text{ or } k: \text{ odd})$,
- (7) $P_{8+k}^{\pm}: x_1^3 \pm x_1^2 x_3 + x_2^2 x_3 + a x_3^{k+3} + q(x_4, \dots, x_n)$ with $k \ge 1$ and $a \ne 0$ and (- or a < 0 or k: odd),
- (8) $R_{l,m}: x_1(x_1^2 + x_2x_3) \pm x_2^l \pm ax_3^m + q(x_4, \dots, x_n)$ with $a \neq 0, m \ge l \ge 5$,

REFERENCES

$$\begin{array}{ll} (9) \quad \tilde{R}_m^-: \ x_1(-x_1^2+x_2^2+x_3^2)+ax_2^m+q(x_4,\ldots,x_n) \text{ with } a\neq 0, \ m\geq 5, \\ (10) \quad E_{12}: \ x_1^3+x_2^7\pm x_3^2+ax_1x_2^5+q(x_4,\ldots,x_n), \\ (11) \quad E_{13}: \ x_1^3+x_1x_2^5\pm x_3^2+ax_2^8+q(x_4,\ldots,x_n), \\ (12) \quad E_{14}: \ x_1^3\pm x_2^8\pm x_3^2+ax_1x_2^6+q(x_4,\ldots,x_n), \\ (13) \quad Z_{11}: \ x_1^3x_2+x_2^5\pm x_3^2+ax_1x_2^4+q(x_4,\ldots,x_n), \\ (14) \quad Z_{12}: \ x_1^3x_2+x_1x_2^4\pm x_3^2+ax_1x_2^5+q(x_4,\ldots,x_n), \\ (15) \quad Z_{13}: \ x_1^3x_2\pm x_2^6\pm x_3^2+ax_1x_2^5+q(x_4,\ldots,x_n), \\ (16) \quad W_{12}: \ \pm x_1^4+x_2^5\pm x_3^2+ax_1^2x_2^3+q(x_4,\ldots,x_n), \\ (17) \quad W_{13}: \ \pm x_1^4+x_1x_2^4\pm x_3^2+ax_2^6+q(x_4,\ldots,x_n), \\ (18) \quad Q_{11}: \ x_1^3+x_2^2x_3\pm x_1x_3^3+ax_5^5+q(x_4,\ldots,x_n). \end{array}$$

Let us show that the polynomial f of P_8^{\pm} satisfies the condition (B) if $-a^2 \pm 4 < 0$. The discriminant of the cubic polynomial $f(x_1, x_2, x_3, 0, \dots, 0)$ in x_1 is

$$D(x_2, x_3) = 27x_2^4x_3^2 + (4a^3 \mp 18a)x_2^2x_3^4 + (-a^2 \pm 4)x_3^6.$$

Substituting tx_3 for x_2 we get

$$D(tx_3, x_3) = (27t^4 + (4a^3 \mp 18a)t^2 - a^2 \pm 4)x_3^6.$$

Hence we have $D(tx_3, x_3) < 0$, which assures that the cubic equation

$$f(x_1, tx_3, x_3, 0, \dots, 0) = 0$$

in x_1 has three real roots, if $-a^2 \pm 4 < 0$, $x_3 \neq 0$, and t is sufficiently small.

Acknowledgements

This research was partly supported by JSPS Grant-in-Aid for Scientific Research (C) 21540200.

References

- V. I. Arnold, V. V. Goryunov, O. V. Lyashko, and V. A. Vasil'ev. Singularity theory. I. Springer-Verlag, Berlin, 1998. Translated from the 1988 Russian original by A. Iacob.
- I. N. Bernštein. Analytic continuation of generalized functions with respect to a parameter. Funkcional. Anal. i Priložen., 6(4):26-40, 1972.
- J.-E. Björk. Rings of Differential Operators, volume 21 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, 1979.
- [4] J.-E. Björk. Analytic D-modules and applications, volume 247 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1993.
- [5] I. M. Gel'fand and G. E. Shilov. Generalized functions. Vol. I: Properties and operations. Translated by Eugene Saletan. Academic Press, New York, 1964.
- [6] M. Kashiwara. B-functions and holonomic systems. Rationality of roots of B-functions. Invent. Math., 38(1):33–53, 1976/77.
- [7] M. Kashiwara. On the holonomic systems of linear differential equations. II. Invent. Math., 49(2):121– 135, 1978.
- [8] M. Kashiwara and T. Kawai. On the characteristic variety of a holonomic system with regular singularities. Adv. in Math., 34(2):163–184, 1979.
- M. Noro, N. Takayama, H. Nakayama, K. Nishiyama, and K. Ohara. Risa/Asir: a computer algebra system. http://www.math.kobe-u.ac.jp/Asir/asir.html, 2011.
- [10] T. Oaku. An algorithm of computing b-functions. Duke Math. J., 87(1):115-132, 1997.
- T. Oaku. Algorithms for b-functions, restrictions, and algebraic local cohomology groups of D-modules. Adv. in Appl. Math., 19(1):61–105, 1997.

REFERENCES

- [12] T. Oaku. Algorithms for integrals of holonomic functions over domains defined by polynomial inequalities. arXiv:1108.4853v2, 2011.
 [13] T. Yano. On the theory of b-functions. Publ. Res. Inst. Math. Sci., 14(1):111-202, 1978.