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Let f be a real-valued real analytic function in several variables. We associate with each al-
gebraic local cohomology class u with support in f = 0 a distribution (generalized function)
ρ(u) in terms of the residue of fλ

+ with respect to λ at a negative integer. Then ρ constitutes
a homomorphism of modules over the sheaf of analytic functions but not over the sheaf of
differential operators in general. We compare the annihilator of ρ(u) in the ring of differen-
tial operators with that of u: we give sufficient conditions, together with examples, for each
inclusion between the two annihilators.
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1. Introduction

Let f be a holomorphic function defined on a complex manifold X. The algebraic
local cohomology group supported by f = 0 is defined to be the sheaf

H1
[f=0](OX) = OX [f−1]/OX

on X, where OX denotes the sheaf of holomorphic functions on X. This consists of
residue classes [af−k] modulo OX with a holomorphic function a and a non-negative
integer k. Let DX be the sheaf on X of differential operators with holomorphic
coefficients. Then H1

[f=0](OX) has a structure of sheaves of left DX -modules (cf.
[7]). An algorithm to compute its structure was given in [11] for the case f is a
polynomial.

Now let f be a real-valued real analytic function defined on a paracompact
real analytic manifold M . We may assume that f is extended to a holomorphic
function on a complexification X of M . Let DbM be the sheaf of distributions
(generalized functions of L. Schwartz) on M . We first define an OX -homomorphism
ρ of H1

[f=0](OX) to DbM as follows: For a residue class [af−k] with a holomorphic

function a and a positive integer k, we define ρ([af−k]) to be the residue of afλ−k
+

at λ = −1. For the systematic study of the distribution fλ
+, we refer to [5], [2], [3],

[8]. If f = 0 is non-singular, then it is well-known (see [5]) that

ρ([f−k−1]) = Resλ=0 f
λ−k−1 =

(−1)k

k!
δ(k)(f) (k = 0, 1, 2, . . . ) (1)
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holds with δ(k)(f) being the k-th ‘derivative’ of the delta function δ(f) supported
by the real hypersurface f = 0.

Our main purpose is to compare the annihilators

AnnDM
u := {P ∈ DM | Pu = 0}, AnnDM

ρ(u) := {P ∈ DM | Pρ(u) = 0}

as sheaves of left ideals of DM for a section u of H1
[f=0](OX), where DM := DX |M

denotes the sheaf theoretic restriction of DX to M . Note that the sheaf of anni-
hilating ideals of a distribution is not necessarily coherent over DM (see Example
7.5.1 of [4]). If f = 0 is non-singular, then it is easy to see, in view of (1), that the
two annihilators coincide. However, at singular points of the hypersurface f = 0,
the situation is more complicated in general.

In Section 2, we recall that both u ∈ H1
[f=0](OX) and ρ(u) satisfy regular holo-

nomic DX -modules whose characteristic varieties are contained in the set W 0
f de-

fined by Kashiwara [6].
In Section 3, we give a sufficient condition (A) for AnnDM

ρ(u) ⊃ AnnDM
u to hold

(Theorem 3.1) and a sufficient condition (B) for the converse inclusion (Theorem
3.4). In Section 5, we give examples for which AnnDM

ρ(u) = AnnDM
u (Example

5.1), AnnDM
ρ(u) ( AnnDM

u (Example 5.2) and AnnDM
ρ(u) ) AnnDM

u (Example
5.3) hold respectively. We also give examples of normal forms of real hypersurface
singularities which satisfy the condition (B).

As a related problem, we notice in Section 4 a (probably well-known) sufficient
condition for the annihilator of the distribution fλ

+ to coincide with that of the
analytic function fλ.

2. Algebraic local cohomology and residues of fλ
+

If f is holomorphic on a neighbourhood of x0 in a complex manifold X, the b-
function or the Bernstein-Sato polynomial of f at x0 is, by definition, the monic
polynomial bf,x0(s) in a variable s of the least degree such that a formal functional
equation P (s)f s+1 = bf,x0(s)f

s holds with some P (s) ∈ (DX)x0 [s], where (DX)x0

denotes the stalk of the sheaf DX at x0. If f(x0) = 0, then bf,x0(s) is divisible by
s+ 1 and b̃f,x0(s) := bf,x0(s)/(s+ 1) is called the reduced b-function of f at x0. It
was proved by Kashiwara [6] that bf,x0(s) exists and its roots are negative rational
numbers. If f is a polynomial, then there is an algorithm to compute bf,x0(s) and
P (s) (see [10]).

In what follows, we let f be a real-valued real analytic function defined on a
paracompact real analytic manifold M . Then for a complex number λ with non-
negative real part (Re λ ≥ 0), the distribution fλ

+ is defined to be the locally
integrable function

fλ
+(x) :=

{
f(x)λ = exp(λ log f(x)) if f(x) > 0
0 if f(x) ≤ 0

on M and is holomorphic with respect to λ for Re λ > 0. In particular, f0
+ = Y (f)

is the Heaviside function associated with f . By using the functional equation

bf,x0(λ)fλ
+ = P (λ)fλ+1

+ , (2)

which follows from the formal one above, we can extend fλ
+ to a DbM (M)-valued

meromorphic function of λ on the whole complex plane C.
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The real analytic function f can be extended to a holomorphic function on a
complexification (a complex neighbourhood) X of M .

Definition 2.1: We define a sheaf homomorphism

ρ : H1
[f=0](OX) −→ DbM

by the residue

ρ([af−k]) := Resλ=0 af
λ−k
+

at λ = 0 for a section a of OX and a non-negative integer k.

Proposition 2.2: The map ρ is well-defined and gives rise to a homomorphism
of sheaves of AM -modules, where AM := OX |M denotes the sheaf of real analytic
functions. Moreover, the support of ρ(u) is contained in the set {x ∈ U | f(x) = 0}
for any section u of H1

[f=0](OX) over an open set U of M .

Proof : To prove that ρ is well-defined, it suffices to show that ρ([af−k]) =
ρ([(af)f−k−1]) holds for any section a of OX . This follows from

Resλ=0 (af)fλ−k−1
+ = Resλ=0 af

λ−k
+ .

Moreover, we have fkρ([af−k]) = Resλ=0 (afλ
+) = 0. Hence the support of ρ([af−k])

is contained in f = 0. It is easy to see that ρ is a homomorphism of AM -modules.
�

Let us show that both u and ρ(u) satisfy regular holonomic DX -modules. (See [8],
[4] for regular holonomic systems. ) First we recall the set W 0

f defined by Kashiwara
[6]:

Definition 2.3: For a holomorphic function f on X, the set W̃f is defined to be
the closure of the set

{(σ;x, σd log f(x)) ∈ C × T ∗X | f(x) 6= 0}

in C × T ∗X, where T ∗X denotes the cotangent bundle of X. Let $ : C × T ∗X →
T ∗X be the canonical projection and set

W 0
f := $(W̃F ∩ ({0} × T ∗X)).

If f is a polynomial, then the defining equations of W̃f , and hence those of W 0
f

as well, can be computed as the ideal quotient by f of the radical of the ideal
generated by fξi − σ∂f/∂xi (i = 1, . . . , n). The theorem below should be classical,
to which we would like to give a ‘constructive’ proof. (See Theorem 7.6.1 of [4] for
a complex version.)

Theorem 2.4 : Let u be a section of H1
[f=0](OX) defined on a neighbourhood of

x0 ∈M in X. Then

(1) DXu = DX/AnnDX
u is a regular holonomic DX-module whose character-

istic variety is contained in W 0
f ∩ {f = 0}.

(2) There exists a coherent sheaf I of left ideals of DX defined on a neighbour-
hood of x0 in X such that DX/I is regular holonomic with the characteristic
variety contained in W 0

f ∩{f = 0} and that I|M is a subsheaf of AnnDM
ρ(u).
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Proof : Set N = DX [s]f s. Then N (λ) := N/(s−λ)N is a regular holonomic DX -
module whose characteristic variety is contained in W 0

f for any λ ∈ C (Theorem
2.2 of [8]). Set u = [af−k] with a ∈ OX . The surjective DX -homomorphism of
N (−1) to OX [f−1] implies that OX [f−1]/OX and its submodule DXu are regular
holonomic and their characteristic varieties are contained in W 0

f ∩ {f = 0}.
Let

afλ−k
+ =

∞∑
j=−m

λjvj (vj ∈ DbM )

be the Laurent expansion around λ = 0. By using the functional equation (2), we
can find a nonzero polynomial b(s) and Q(s) ∈ DX [s] such that

b(λ)fλ−k
+ = Q(λ)fλ

+.

Factoring b(s) as b(s) = c(s)sl with c(0) 6= 0, we obtain

ρ(u) = v−1 =
a

(l − 1)!
lim
λ→0

(
∂

∂λ

)l−1

(c(λ)−1Q(λ)fλ
+) =

l−1∑
j=0

Qj(Y (f)(log f)j)

with Qj ∈ DX .
For a non-negative integer k, let us introduce a free OX [f−1]-module

Lk := OX [f−1]fs ⊕OX [f−1](fs log f) ⊕ · · · ⊕ OX [f−1](f s(log f)k).

Then Lk has a natural structure of left DX [s]-module. Let Nk be the left DX [s]-
submodule of Lk generated by f s(log f)j for j = 0, . . . , k. Then it is easy to see
that N0 and Nk/Nk−1 are isomorphic to N as left DX [s]-module. Set

Nk(λ) := Nk/(s− λ)Nk for λ ∈ C.

Then N0(λ) and Nk(λ)/Nk−1(λ) are isomorphic to N (λ) as left DX -module. Hence
Nk(λ) is regular holonomic and its characteristic variety is contained in W 0

f .
Now set

ũ := Q0[f s]0 ⊕Q1[fs log f ]0 ⊕ · · · ⊕Ql−1[fs(log f)l−1]0 ∈ Nl−1(0),

where [f s(log f)j ]0 denotes the modulo class of f s(log f)j in Nl−1(0). Then DX ũ
is regular holonomic as a left DX -submodule of Nl−1(0). There exists a surjective
homomorphism of DM ũ to DMρ(u) of left DM -modules which sends ũ to ρ(u). In
particular, AnnDM

ũ annihilates ρ(u). This completes the proof. �

Remark 1 : In the same way as the proof above, one can show that every coef-
ficient (as a distribution) of the Laurent expansion of fλ

+ with respect to λ about
an arbitrary point in the complex plane satisfies a regular holonomic system whose
characteristic variety is contained in W 0

f .

Remark 2 : If f is a polynomial, then the proof above combined with an algo-
rithm to compute the structure of Nk (Algorithm 2 of [12]) yields an algorithm to
compute AnnDM

ũ, which is a subsheaf of AnnDM
ρ(u). However, we do not know

any general algorithm to compute AnnDM
ρ(u) exactly.
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3. Comparison of annihilators via ρ

Theorem 3.1 : Let f be a real-valued real analytic function defined on M . As-
sume

(A) For any positive integer k, λ = −k is at most a simple pole of fλ
+ as a

distribution on M with the meromorphic parameter λ.

Then ρ is a homomorphism of sheaves of left DM -modules. In particular, AnnDM
u

is a subsheaf of AnnDM
ρ(u) for any section u of H1

[f=0](OX)|U .

Proof : Let P and a be germs of DX and of OX respectively at a point y0 of U .
There exist p(x, s) ∈ (OX)y0 [s] and a non-negative integer l such that P (afs) =
p(x, s)fs−l holds formally. Then we have

ρ(P [af−k]) = ρ([p(x,−k)f−k−l]) = Resλ=0 p(x,−k)fλ−k−l
+

= Resλ=0 p(x, λ− k)fλ−k−l
+ = Resλ=0 P (afλ−k

+ )

= P Resλ=0 af
λ−k
+ = Pρ([af−k])

since λ = 0 is at most a simple pole of fλ−k−l
+ . �

Corollary 3.2: Assume

(A′) b̃f,x0(−k) does not vanish for any positive integer k with x0 ∈M .

Then we have an inclusion

Ann(DX)x0
u ⊂ Ann(DX)x0

ρ(u)

for any germ u of H1
[f=0](OX).

Proof : By the functional equation (2), it is easy to see that (A) is satisfied with
M replaced by a neighbourhood of x0. Hence ρ is a DX -homomorphism on a
neighbourhood of x0. This implies the inclusion. �

Lemma 3.3: Let f be a real-valued real analytic function defined on a neigh-
bourhood of x0 ∈M such that its differential df does not vanish at x0. Suppose that
a(x, λ) is an analytic function in x, λ defined on a neighbourhood of (x0, 0) ∈M×C
and that

Resλ=0 a(x, λ)fλ−k
+ = 0

holds on a neighbourhood of x0 with a non-negative integer k. Then a(x, 0) is
divisible by fk in the stalk (OX)x0.

Proof : By a real analytic local coordinate system x = (x1, . . . , xn), we may as-
sume f(x) = x1 and x0 = 0 with M = Rn. In view of the functional equation

(x1)λ
+ =

1
(λ+ 1) · · · (λ+ k)

∂k
1 (x1)λ+k

+ ,

λ = −k is a simple pole of (x1)λ
+ with residue

Resλ=−k (x1)λ
+ =

(−1)k−1

(k − 1)!
∂k

1Y (x1).
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Hence we have

a(x, 0)∂k
1Y (x1) = (−1)k−1(k − 1)! Resλ=−k a(x, 0)(x1)λ

+

= (−1)k−1(k − 1)! Resλ=0 a(x, 0)(x1)λ−k
+

= (−1)k−1(k − 1)! Resλ=0 a(x, λ)(x1)λ−k
+ = 0

on an open neighbourhood U of 0 in M . This implies

0 = 〈a(x, 0)∂k
1Y (x1), ϕ(x)〉 = 〈Y (x1), (−∂1)k(a(x, 0)ϕ(x))〉

=
∫

Rn−1

(∫ ∞

0
(−∂1)k(a(x, 0)ϕ(x)) dx1

)
dx2 · · · dxn

=
∫

Rn−1

[
(−∂1)k−1(a(x, 0)ϕ(x))

]
x1=0

dx2 · · · dxn

= (−1)k−1
k−1∑
i=0

(
k − 1
i

)∫
Rn−1

∂i
1a(0, x

′, 0)∂k−1−i
1 ϕ(0, x′) dx2 · · · dxn

for any C∞ function ϕ(x) with compact support in U , where we use the notation
x′ = (x2, . . . , xn). Choose an open interval I containing 0 and an open neighbour-
hood V ′ of 0 in Rn−1 such that I×V ′ is a subset of U . Let χ(x1) be a C∞ function
of x1 with compact support in I such that χ(x1) = 1 on a neighbourhood of 0.
Setting ϕ(x) = xl

1χ(x1)ψ(x′) with an arbitrary C∞ function ψ(x′) with compact
support in V ′ and an integer l with 0 ≤ l ≤ k − 1, we get∫

Rn−1

∂k−1−l
1 a(0, x′, 0)ψ(x′) dx2 · · · dxn = 0.

Hence ∂i
1a(0, x

′, 0) = 0 holds for x′ ∈ V ′ and 0 ≤ i ≤ k−1. Thus a(x, 0) is divisible
by xk

1. �

Theorem 3.4 : Let f be a real-valued real analytic function defined on M such
that f(x0) = 0 with x0 ∈M . We assume

(B) There exists a real analytic local coordinate system x = (x1, x
′) =

(x1, x2, . . . , xn) of M around x0 such that x0 corresponds to the origin and
f is written in the form

f(x) = c(x)(xm
1 + a1(x′)xm−1

1 + · · · + am(x′))

with m ≥ 1, where c(x) and aj(x′) are real-valued real analytic functions
defined on a neighbourhood of the origin such that c(0) 6= 0 and aj(0) = 0
for 1 ≤ j ≤ m. Moreover, for any neighbourhood U of the origin in Rn,
there exists y′0 ∈ Rn−1 such that (0, y′0) ∈ U and the equation

xm
1 + a1(y′0)x

m−1
1 + · · · + am(y′0) = 0

in x1 has m distinct real roots.

Under this condition,

Ann(DX)x0
ρ(u) ⊂ Ann(DX)x0

u
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holds for any germ u of H1
[f=0](OX) at x0.

Proof : Set u = [af−k] with a ∈ (OX)x0 and a non-negative integer k. Let P be a
germ of DX at x0 and suppose Pρ(u) vanishes on a neighbourhood of x0. There exist
p(x, s) ∈ (OX)x0 [s] and a non-negative integer l such that P (afs) = p(x, s)f s−l.
This implies

Pρ(u) = Resλ=0 P (afλ−k
+ ) = Resλ=0 p(x, λ− k)fλ−k−l

+ = 0 (3)

on a neighbourhood of x0.
By the Weierstrass preparation theorem, we can find q(x) ∈ (OX)x0 and ri(x′) ∈

C{x′} such that

p(x,−k) = q(x)f̃(x)k+l + r(x) with f̃(x) := xm
1 + a1(x′)xm−1

1 + · · · + am(x′),

r(x) =
m(k+l)−1∑

i=0

ri(x′)xi
1.

There exist an open connected neighbourhood V ′ of the origin in Cn−1 and an open
connected neighbourhood V1 of 0 in C such that aj(x′) and rj(x′) are analytic on
V ′, c(x) and q(x) are analytic on V := V1 × V ′, c(x) does not vanish on V , the
set {x1 ∈ C | f̃(x1, x

′) = 0} is contained in V1 if x′ ∈ V ′, and Pρ(u) = 0 holds on
V ∩M .

Take a y′0 ∈ V ′ ∩ Rn−1 such that the equation

f̃(x1, y
′
0) = xm

1 + a1(y′0)x
m−1
1 + · · · + am(y′0) = 0

in x1 has distinct real roots x1 = ξj (j = 1, . . . ,m). Since f is non-singular at
(ξj , y′0), Lemma 3.3 and (3) imply that p(x,−k) is divisible by fk+l in (OX)(ξj ,y′

0)

for each j = 1, . . . ,m. Hence there exists an analytic function e(x) defined on a
neighbourhood of V1 × {y′0} such that p(x,−k) = e(x)f(x)k+l. Consequently

r(x) = e(x)f(x)k+l − q(x)f̃(x)k+l = (e(x)c(x)k+l − q(x))f̃(x)k+l (4)

holds on a neighbourhood of V1 × {y′0}.
Let us show that r(x) is divisible by f̃(x)k+l in the ring C{x′ − y′0}[x1], where

C{x′ − y′0} denotes the ring of convergent power series in x′ − y′0. Since ∂f̃/∂x1

does not vanish at (ξj , y′0), the implicit function theorem assures the existence of
real-valued real analytic functions ϕj(x′) defined on a neighbourhood of y′0 such
that ϕj(y′0) = ξj and

f̃(x) =
m∏

j=1

(x1 − ϕj(x′))

holds on a neighbourhood of V1 × {y′0}. Division in C{x′ − y′0}[x1] yields

r(x) = q̃1(x)(x1 − ϕ1(x′))k+l +
k+l−1∑

i=0

r̃i(x′)xi
1

with q̃1(x) ∈ C{x′ − y′0}[x1] and r̃i(x′) ∈ C{x′ − y′0}. On the other hand, r(x)
is divisible by (x1 − ϕ1(x′))k+l in (OX)(ξ1,y′

0)
by (4). This implies, by virtue of
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the uniqueness statement of the Weierstrass preparation theorem (applied with x1

replaced by x1 − ξ1), that r̃i(x′) = 0 for 0 ≤ i ≤ k+ l− 1. In the same way, we can
show that q̃1(x) is divisible by (x1 − ϕ2(x′))k+l in C{x′ − y′0}[x1]. Repeating this
argument, we conclude that r(x) is divisible by f̃(x)k+l in C{x′ − y0}[x1]. Hence
r(x) = 0 holds on a neighbourhood of V1 ×{y′0}, and hence on V , since the degree
of r(x) in x1 is smaller than that of f̃(x)k+l. Thus we have Pu = [p(x,−k)f−k−l] =
[q(x)c(x)−k−l] = 0 on V . This completes the proof. �

Corollary 3.5: Assume (A) and (B) for any x0 ∈M . Then ρ induces an injec-
tive sheaf homomorphism H1

[f=0](OX) → DbM of left (DX)x0-modules. In particu-
lar,

Ann(DX)x0
ρ(u) = Ann(DX)x0

u

holds for any section u of H1
[f=0](OX)x0.

4. Comparison of annihilators of fλ and of fλ
+

Let f be a real-valued real analytic function defined on a neighbourhood of x0 ∈M .
We present some elementary facts on the annihilator of fλ

+, which will be useful in
the computation of the annihilator of ρ([f−k]) as well.

Regarding s as an indeterminate and fs as a ‘formal’ function, set

AnnDX [s]f
s := {P (s) ∈ DX [s] | P (s)f s = 0},

which is a coherent sheaf of left ideals of DX [s] (cf. [6]).

Lemma 4.1: Let P (s) be a germ of AnnDX [s]f
s at x0. If λ = λ0 ∈ C is not a

pole of fλ
+ as a distribution near x = x0, then P (λ0)fλ0

+ = 0 holds.

Proof : If Re λ is sufficiently large, then P (λ)fλ
+ is locally integrable near x = x0.

Moreover, it vanishes where f(x) 6= 0 by the assumption. Hence P (λ)fλ
+ vanishes

near x = x0 if Re λ is sufficiently large. The assertion follows from the uniqueness
of analytic continuation. �

Lemma 4.2: Assume that λ0 is not a pole of fλ
+ near x = x0 and that for any

neighbourhood V of x0 in M there exists y ∈ V such that f(y) > 0. Under these
two assumptions, if P ∈ (DX)x0 satisfies Pfλ0

+ = 0, then Pfλ0 = 0 holds as a
multi-valued analytic function.

Proof : Since fλ0 = e2π
√
−1kλ0fλ0

+ holds with some integer k where f(x) is pos-
itive, we have Pfλ0 = 0 as multi-valued analytic function in view of the second
assumption. �

Proposition 4.3: Assume that λ = λ0 is not a pole of fλ
+ near x = x0 and

that bf,x0(λ0 − ν) 6= 0 holds for any positive integer ν. Assume moreover that for
any neighbourhood V of x0 in M there exists y ∈ V such that f(y) > 0. Then the
following three conditions on P ∈ (DX)x0 are equivalent:

(1) Pfλ0
+ = 0.

(2) Pfλ0 = 0 holds as a multi-valued analytic function.
(3) There exists a germ Q(s) of AnnDX [s]f

s such that P = Q(λ0).
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Proof : By the preceding two lemmas we have implications (3) ⇒ 1 and (1) ⇒
(2). The equivalence of (2) and (3) follows from Proposition 6.2 of [6] in view of
the assumption on bf,x0(s). �

5. Examples

Example 5.1 Set f = x2
1x

2
2+xp

3 with M = R3 and an odd integer p ≥ 3. Then the
reduced b-function b̃f,0(s) of f at the origin does not have integral roots as is seen
by Example 4.20 of Yano [13]. It is easy to see (e.g., by the weighted homogeneity)
that the reduced b-function of f at a point other than the origin is a factor of
b̃f,0(s). Hence the assumption (A′) is satisfied for any x0 ∈M .

By a coordinate transformation y1 = x1 + x2, y2 = x1 − x2, y3 = x3, f takes the
form

f = (y2
1 − y2

2)
2 + yp

3 = y4
1 − 2y2

1y
2
2 + y4

2 + yp
3 .

Hence the equation f = 0 in y1 has four distinct real roots if and only if y3 < 0 and
y4
2 +yp

3 > 0. Hence the assumption (B) is satisfied at each point x0 = (x01, x02, x03)
belonging to the the singular loci x1 = x3 = 0 or x2 = x3 = 0. It is easy to see
that the assumption (B) is always satisfied at a non-singular point. In conclusion
we have AnnDM

u = AnnDM
ρ(u) for any section u of H1

[f=0](OX)|M in view of
Corollary 3.5.

We conjecture that AnnDX
[f−1] is generated by

x2
1x

2
2 + xp

3, pxp−1
3 ∂1 − 2x1x

2
2∂3, pxp−1

3 ∂2 − 2x2
1x2∂3,

px1∂1 + 2x3∂3 + 2p, px2∂2 + 2x3∂3 + 2p

for any integer p ≥ 1. We have verified it for 1 ≤ p ≤ 290 by using an algorithm in
[11] with a computer algebra system Risa/Asir ([9]). For example, if p = 3, then
the characteristic cycle of H1

[f=0](OX) = DX [f−1] is given by

2T ∗
{x1=x2=x3=0}C

3 + T ∗
{x1=x3=0}\{0}C

3 + T ∗
{x2=x3=0}\{0}C

3 + T ∗
Y ′C3

with Y ′ := {(x1, x2, x3) | x2
1x

2
2 + x3

3 = 0} \ {(x1, x2, x3) | x1x2 = x3 = 0}.

Example 5.2 Set f = x1x2 with M = R2 and consider a section u := [(x1x2)−1]
of H1

[f=0](OX). The assumption (B) is satisfied at every point of f = 0 as is seen
by the coordinate transformation y1 = x1 + x2, y2 = x1 − x2. Hence AnnDM

ρ(u) ⊂
AnnDM

u holds by Theorem 3.4. It is easy to see that AnnDX
u is the left ideal of

DX generated by x1x2, x1∂1 + 1, x2∂2 + 1. In fact, suppose P ∈ DX annihilates u
on a neighbourhood of 0 = (0, 0). We can write P in the form

P = Q0(x1, x2; ∂1, ∂2)x1x2 +Q1(x1; ∂1, ∂2)x1 +Q2(x2; ∂1, ∂2)x2 +R(∂1, ∂2).

Then on a neighbourhood of a point (x1, 0) with |x1| > 0 sufficiently small, we
have

(Q1(x1; ∂1, ∂2) +R(∂1, ∂2)x−1
1 )[x−1

2 ] = 0.

In view of the Laurent expansion with respect to x1, this implies that R = 0 and
that Q1 is written in the form Q1 = Q′

1∂1. Likewise Q2 is written in the form
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Q2 = Q′
2∂2. Hence P belongs to the left ideal generated by x1x2, ∂1x1, ∂2x2.

On the other hand, the annihilator of ρ(u) is generated by x1x2 and x1∂1−x2∂2.
This can be shown as follows: Assume P ∈ (DX)0 annihilates ρ(u). Then P is
written in the form

P = Q0(x1, x2; ∂1, ∂2)x1x2 +Q1(x1, x2; ∂1, ∂2)∂1x1 +Q2(x1, x2; ∂1, ∂2)∂2x2,

which can be verified in the same way as above, or else follows from Theorem 3.4.
Since

∂1x1ρ(u) = ∂2x2ρ(u) = 2δ(x1, x2) (5)

holds, where δ(x1, x2) = δ(x1)δ(x2) is the Dirac delta function with support at the
origin, Pρ(u) = 0 implies

(Q1(x1, x2; ∂1, ∂2) +Q2(x1, x2; ∂1, ∂2))δ(x1)δ(x2) = 0.

Let us rewrite Q1 and Q2 in the form

Qi(x1, x2; ∂1, ∂2) = Si(x1, x2; ∂1, ∂2)x1 + Ti(x2; ∂1, ∂2)x2 +Ri(∂1, ∂2) (i = 1, 2).

Then R1 +R2 = 0 follows from (R1 +R2)δ(x1)δ(x2) = 0. Summing up we get

P = (Q0 + T1∂1 + S2∂2)x1x2 + S1x1∂1x1 + T2x2∂2x2 +R1(∂1x1 − ∂2x2).

This shows that P belongs to the left ideal generated by x1x2 and x1∂1 − x2∂2

since

x1∂1x1 = x1(∂1x1 − ∂2x2) + ∂2x1x2.

Let I be the sheaf of ideals of DX generated by x1x2 and x1∂1−x2∂2. Then I|M
coincides with the sheaf AnnDM

ρ(u) of annihilating ideals on M = R2, which is
consequently coherent over DM . In fact, they coincide at the origin by the above
argument. At another point, say, (0, x2) with x2 6= 0, it is also easy to see that I
coincides with the annihilator of ρ(u). The characteristic cycle of DXu is

T ∗
{x1=x2=0}C

2 + T ∗
{x1=0,x2 6=0}C

2 + T ∗
{x2=0,x1 6=0}C

2,

while that of DX/I is

2T ∗
{x1=x2=0}C

2 + T ∗
{x1=0,x2 6=0}C

2 + T ∗
{x2=0,x1 6=0}C

2.

Finally, let us verify (5). By using the functional equation

∂1∂2(x1x2)s+1
+ = (s+ 1)2(x1x2)s

+,

we get

ρ(u) = Resλ=0 (x1x2)λ−1
+ = ∂1∂2(Y (x1x2) log(x1x2)).
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Let ϕ(x) = ϕ(x1, x2) be a C∞ function with compact support. Then we have

〈∂1∂2(Y (x1x2) log(x1x2)), ϕ(x)〉

=
∫ ∞

0

∫ ∞

0
(log x1 + log x2) {(∂1∂2ϕ)(x1, x2) + (∂1∂2ϕ)(−x1,−x2)} dx1dx2.

We rewrite the integral involving log x1 as follows:∫ ∞

0

∫ ∞

0
(log x1) {(∂1∂2ϕ)(x1, x2) + (∂1∂2ϕ)(−x1,−x2)} dx1dx2

= −
∫ ∞

0
(log x1) {(∂1ϕ)(x1, 0) − (∂1ϕ)(−x1, 0)} dx1

= −
∫ ∞

0
(log x1)∂1 {ϕ(x1, 0) + ϕ(−x1, 0) − 2ϕ(0, 0)} dx1

=
∫ ∞

0

ϕ(x1, 0) + ϕ(−x1, 0) − 2ϕ(0, 0)
x1

dx1.

Hence if we define the distribution v(t) on R by

〈v(t), ψ(t)〉 =
∫ ∞

0

ψ(t) + ψ(−t) − 2ψ(0)
t

dt

for any C∞ function ψ(t) with compact support, we have

ρ(u) = v(x1)δ(x2) + δ(x1)v(x2).

It is easy to see that tv(t) = Y (t) − Y (−t), from which (5) follows.

Example 5.3 Set f = x1(x2
2 + x2

3 + x2
4) with M = R4 and set u := [f−1]. Then

fs satisfies a functional equation

1
4
∂1(∂2

2 + ∂2
3 + ∂2

4)fs+1 = (s+ 1)2
(
s+

3
2

)
f s. (6)

Let

fλ
+ = (λ+ 1)−2v−2(x) + (λ+ 1)−1v−1(x) + v0(x) + · · ·

be the Laurent expansion around λ = −1. Then we have

v−2(x) =
1
2
∂1(∂2

2 + ∂2
3 + ∂2

4)Y (x1) = 0,

v−1(x) =
1
4
∂1(∂2

2 + ∂2
3 + ∂2

4)

{
lim

λ→−1

∂

∂λ

((
λ+

3
2

)−1

fλ+1
+

)}

=
1
4
∂1(∂2

2 + ∂2
3 + ∂2

4)
{
−4Y (x1) + 2Y (x1)(log x1 + log(x2

2 + x2
3 + x2

4)
}

= δ(x1)(x2
2 + x2

3 + x2
4)

−1.

Thus λ = −1 is a simple pole of fλ
+ and so is λ = −k for any positive integer k in

view of (6). Hence (A) is satisfied.
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Let us show that AnnDX
u is generated by

x1(x2
2 + x2

3 + x2
4), x1∂1 + 1, x2∂2 + x3∂3 + x4∂4 + 2,

x2∂3 − x3∂2, x2∂4 − x4∂2, x3∂4 − x4∂3.

We have only to find P ∈ DX other than f which annihilates the rational function
f−1 = x−1

1 g−1 with g := x2
2 + x2

3 + x2
4. In fact, if P [f−1] = 0 then a := Pf−1

is analytic, which means that P − af annihilates f−1. The annihilator of g−1 as
analytic function is generated by the operators listed above except the first two
since g is homogeneous and g = 0 has an isolated singularity (see e.g. Theorem
2.19 of [13]). The annihilator of x−1

1 is generated by x1∂1 +1. The assertion follows
from these observations.

On the other hand, the annihilator of ρ(u) = v−1(x) = δ(x1)g−1 is generated by
the operators

x1, x2∂2 + x3∂3 + x4∂4 + 2, x2∂3 − x3∂2, x2∂4 − x4∂2, x3∂4 − x4∂3. (7)

We can verify this as follows: First note that gλ is locally integrable for Re λ >
−3/2. Since the b-function of g is (s + 1)(s + 3/2), Theorem 4.3 guarantees that
for a differential operator P in the variables x′ = (x2, x3, x4), we have Pg−1

+ = 0
as a distribution if and only if Pg−1 holds as an analytic function. It follows that
AnnDM

ρ(u) is generated by the operators listed in (7).
In conclusion, AnnDM

ρ(u) is coherent on M = R4, of which AnnDM
u is a proper

subsheaf. The characteristic cycle of H1
[f=0](OX) = DXu is

T ∗
{0}C

4 + T ∗
{x2=x3=x4=0}\{0}C

4 + T ∗
{x1=x2

2+x2
3+x2

4=0}\{0}C
4

+ T ∗
{x1=0,x2

2+x2
3+x2

4 6=0}C
4 + T ∗

{x2
2+x2

3+x2
4=0,x1 6=0,(x2,x3,x4) 6=(0,0,0)}C

4,

whereas that of DX/I with I being the sheaf of left ideals of DX generated by the
operators in (7) is

T ∗
{0}C

4 + T ∗
{x1=x2

2+x2
3+x2

4=0}\{0}C
4 + T ∗

{x1=0,x2
2+x2

3+x2
4 6=0}C

4.

Example 5.4 Among the normal forms of real hypersurface singularities in M =
Rn (see [1]), at least the following ones satisfy the condition (B) at the origin, where
q(xk, . . . , xn) denotes a non-degenerate quadratic form in the variables xk, . . . , xn

and a is a real constant:

(1) x2
1 + · · · + x2

p − x2
p+1 − · · · − x2

n (1 ≤ p ≤ n− 1),

(2) D−
4 : x2

1x2 − x3
2 + q(x3, . . . , xn),

(3) E7 : x3
1 + x1x

3
2 + q(x3, . . . , xn),

(4) P±
8 : x3

1 + ax2
1x3 ± x1x

2
3 + x2

2x3 + q(x4, . . . , xn) with −a2 ± 4 < 0,

(5) J±
10 : x3

1 + ax2
1x

2
2 ± x1x

4
2 + q(x3, . . . , xn) with −a2 ± 4 < 0,

(6) J±
10+k : x3

1 ± x2
1x

2
2 + ax6+k

2 + q(x3, . . . , xn) with k ≥ 1 and (±a < 0 or k:
odd),

(7) P±
8+k : x3

1 ± x2
1x3 + x2

2x3 + axk+3
3 + q(x4, . . . , xn) with k ≥ 1 and a 6= 0 and

( − or a < 0 or k: odd),

(8) Rl,m : x1(x2
1 + x2x3) ± xl

2 ± axm
3 + q(x4, . . . , xn) with a 6= 0, m ≥ l ≥ 5,
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(9) R̃−
m : x1(−x2

1 + x2
2 + x2

3) + axm
2 + q(x4, . . . , xn) with a 6= 0, m ≥ 5,

(10) E12 : x3
1 + x7

2 ± x2
3 + ax1x

5
2 + q(x4, . . . , xn),

(11) E13 : x3
1 + x1x

5
2 ± x2

3 + ax8
2 + q(x4, . . . , xn),

(12) E14 : x3
1 ± x8

2 ± x2
3 + ax1x

6
2 + q(x4, . . . , xn),

(13) Z11 : x3
1x2 + x5

2 ± x2
3 + ax1x

4
2 + q(x4, . . . , xn),

(14) Z12 : x3
1x2 + x1x

4
2 ± x2

3 + ax2
1x

3
2 + q(x4, . . . , xn),

(15) Z13 : x3
1x2 ± x6

2 ± x2
3 + ax1x

5
2 + q(x4, . . . , xn),

(16) W12 : ±x4
1 + x5

2 ± x2
3 + ax2

1x
3
2 + q(x4, . . . , xn),

(17) W13 : ±x4
1 + x1x

4
2 ± x2

3 + ax6
2 + q(x4, . . . , xn),

(18) Q11 : x3
1 + x2

2x3 ± x1x
3
3 + ax5

3 + q(x4, . . . , xn).

Let us show that the polynomial f of P±
8 satisfies the condition (B) if −a2±4 < 0.

The discriminant of the cubic polynomial f(x1, x2, x3, 0, . . . , 0) in x1 is

D(x2, x3) = 27x4
2x

2
3 + (4a3 ∓ 18a)x2

2x
4
3 + (−a2 ± 4)x6

3.

Substituting tx3 for x2 we get

D(tx3, x3) = (27t4 + (4a3 ∓ 18a)t2 − a2 ± 4)x6
3.

Hence we have D(tx3, x3) < 0, which assures that the cubic equation

f(x1, tx3, x3, 0, . . . , 0) = 0

in x1 has three real roots, if −a2 ± 4 < 0, x3 6= 0, and t is sufficiently small.
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