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Abstract

We recall several notions known under the name of b-function, indicial polynomial, or

Bernstein-Sato polynomial, for D-modules. We summarize relations among these notions as

well as algorithms for computation.

§ 1. Introduction

Mikio Sato, Masaki Kashiwara, and J. Bernstein introduced the b-function or the

Bernstein-Sato polynomial for a polynomial, or more generally, for a germ of holomor-

phic function. This notion is closely related to the classical notion of the indicial poly-

nomial. So let us first recall the defintion of the indicial polynomial, or the b-function,

of a section of a D-module along a submanifold.

Let X be an n-dimensional complex manifold and Y a complex analytic submanifold

of X. Let OX be the sheaf of holomorphic functions on X and IY be the defining ideal

of Y , which is a sheaf of ideals of OX . We denote by DX the sheaf on X of (rings of)

differential operators with holomorphic coefficients.

The V -filtration {V i
Y (DX)}i∈Z of DX along Y is defined by

V i
Y (DX) := {P ∈ DX |Y | PIj

Y ⊂ Ij−i
Y (∀j ∈ Z)}

with the convention Ij
Y = OX |Y for j < 0. Let θ be a vector field on a neighborhood

of Y in X which induces the identity map on IY /I2
Y . In a local coordinate x =

(x1, . . . , xd, xd+1, . . . , xn) such that Y = {x1 = · · · = xd = 0}, we may take

θ = x1
∂

∂x1
+ · · ·+ xd

∂

∂xd
.
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Definition 1.1. Let M be a coherent left DX -module defined on X. Let u be a

section of M defined on a neighborhood of x0 ∈ Y . The indicial polynomial or the

b-function of u along Y at x0 is the monic polynomial b(s), if any, in an indeterminate

s of the least degree such that

b(θ)u ∈ V −1
Y (DX)x0

u

holds, that is, there exists P ∈ V −1
Y (DX)x0 such that

(b(θ) + P )u = 0.

If we impose the condition ordP ≤ deg b(s), then b(s) is called a regular indicial poly-

nomial of u along Y at x0. M is called (regular) specializable along Y if each section

u of M on a neighborhood of an arbitrary x0 ∈ Y has a (regular) indicial polynomial

along Y at x0.

If P is an ordinary differential operator and x0 is its regular singular point, then the

indicial polynomial of u such that Pu = 0 (i.e., u is the residue class of 1 in DX/DXP )

along the point {x0} coincides (basically) with the classical definition of the indicial

polynomial at x0. For example, the indicial (and the regular indicial) polynomial of

u such that (x∂x − a)u = 0 along {0} is s − a, where we assume X = C and denote

∂x = d/dx. On the other hand, the b-function of u with (x2∂x − a)u = 0 along {0} is 1

if a ̸= 0, and s(s+1) if a = 0 (this is the classical indicial polynomial of ∂xx
2∂x). There

is no regular indicial polynomial of a section u such that (x2∂x − a)u = 0 along {0} if

a ̸= 0.

Regular indicial polynomial is not necessarily unique. For example, for u such that

x2∂2
xu = x(∂x + ∂2

y)u = 0

in two variables (x, y), the indicial polynomial of u along x = 0 is s, while s(s− c) is a

regular indicial polynomial of u along x = 0 for any c, of the least degree. This follows

from x∂xu = −x∂2
yu and (x2∂2

x + cx∂x)u = −cx∂2
yu. Note that DXu is holonomic since

its characteristic variety is

{(x, y, ξdx+ ηdy) | x = η = 0} ∪ {(x, y, ξdx+ ηdy) | ξ = η = 0}.

Hence we mean by ‘the regular indicial polynomial’ the set of the regular indicial poly-

nomials of the least degree.

In general, the computation of (regular) indicial polynomial is not trivial. If u

satisfies a system of linear (ordinary or partial) differential equation with polynomial

coefficients, then an algorithm to detect the existence of and to compute, if any, the b-

function of u along a hyperplane was given in [2] by the present author, and consequently

in [4] for linear submanifold of arbitrary codimension. A similar algorithm for the regular

indicial polynomial along a linear submanifold was introduced in [3].
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Example 1.2. The D-module for Appell’s F1 is defined by P1u = P2u = 0 with

P1 = x(1− x)∂2
x + y(1− x)∂x∂y + (c− (a+ b1 + 1)x)∂x − b1y∂y − ab1,

P2 = y(1− y)∂2
y + x(1− y)∂x∂y + (c− (a+ b2 + 1)y)∂y − b2x∂x − ab2

and parameters a, b1, b2, c. Both the indicial and the regular indicial polynomials along

the origin (0, 0) are s(s+ c− 1) for arbitrary values of the parameters although DXu is

holonomic if and only if c ̸= a+ 1.

Example 1.3. Let MA(β) be the A-hypergeometric (GKZ) system for an arbitrary

d × n integer matrix A such that rankA = d with parameters β = (β1, . . . , βd). Then

MA(β) is regular specializable along the origin for any β (see [3]). In particular we

have isomorphisms

Extk(DX)0(MA(β),C{x}) ≃ Extk(DX)0(MA(β),C[[x]]) (∀k ∈ Z).

§ 2. The b-function with respect to a graph embedding

We follow the method of the definition of Bernstein-Sato polynomial for an arbitrary

variety, possibly with multiplicities, by Budur-Mustata-Saito [1]. Let J be a coherent

ideal of OX . Let f1, . . . , fd be a set of local generators of J on an neighborhood U of

x0 ∈ Y . Consider the associated embedding

ι : U ∋ x 7−→ (x, f1(x), . . . , fd(x)) ∈ U × Cd

and set Z = ι(U), which depend on the choice of local generators f1, . . . , fd of J .

Let BZ|U×Cd = Hd
[Z](OU×Cd) be the d-th local cohomology group. Suppose that

M is a coherent left DX -module defined on X and u is a section of M defined on a

neighborhood of x0. Then ι∗(u) = u⊗ δ(t1 − f1) · · · δ(td − fd) is defined as a section of

ι∗(M) = M⊗OX
BZ|U×Cd .

Theorem 2.1. Let b(s) be the (regular) indicial polynomial of ι∗(u) along U ×{0}.
Then b(s−d) does not depend on the choice of local generators f1, . . . , fd of J . We call

b(s− d) the (regular) b-function of u with respect to J .

If M = OX and u = 1, then the b-function in the above sense conicides with b(−s),

where b(s) is the Bernstein-Sato polynomial of the variety (with respect to the ideal J )

defined by Budur-Mustata-Saito [1].

Proof. Suppose that there exist sections a1, . . . , ad of OX at x0 such that fd+1 =

a1f1 + · · ·+ adfd. Define an embedding

ι : X × Cd −→ X × Cd+1
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by

ι(x, t1, . . . , td) = (x, t1, . . . , td, a1(x)t1 + · · ·+ ad(x)td).

Set Z = {(x, t1, . . . , td) | t1 = · · · = td = 0}. Then we have

ι(Z) = {(x, t1, . . . , td, td+1) ∈ X × Cd | t1 = · · · = td = td+1 = 0}

and

ι∗(u⊗ δ(t1 − f1) · · · δ(td − fd))

= u⊗ δ(t1 − f1) · · · δ(td − fd)δ(td+1 − a1(x)t1 − · · · − ad(x)td)

= u⊗ δ(t1 − f1) · · · δ(td − fd)δ(td+1 − a1(x)f1 − · · · − ad(x)fd)

= u⊗ δ(t1 − f1) · · · δ(td − fd)δ(td+1 − fd+1).

Let b(s) be the b-function of u ⊗ δ(t1 − f1) · · · δ(td − fd) along Z and b̃(s) be that

of u ⊗ δ(t1 − f1) · · · δ(td − fd)δ(td+1 − fd+1) along ι(Z). Then it is easy to see that

b(s− d) = b̃(s− d− 1) holds in view of the lemma below. This completes the proof.

Lemma 2.2 (Budur-Mustata-Saito). Let M be a coherent left DX-module and u a

section of M. Let Y be a non-singular complex hypersurface of X and let ι : X → X×C
be a holomorphic embedding. Let b(s) be the b-function of u along Y at x0 ∈ Y and b̃(s)

be that of u⊗ δ(t) along ι(Y ) at (x0, 0). Then one has b̃(s− 1) = b(s).

Proof. We may assume Y = {x ∈ X | x1 = · · · = xd = 0} and ι(x) = (x, 0), and

conequently

ι(Y ) = {(x, t) ∈ X × C | x1 = · · · = xd = t = 0}.

There exists Q ∈ V −1
Y (DX) such that

(b(x1∂1 + · · ·+ xd∂d) +Q)u = 0.

Then we have

(b(x1∂1 + · · ·+ xd∂d + ∂tt) +Q)(u⊗ δ(t)) = 0

and Q belongs to V −1
ι(Y )(DX×C). Thus b̃(s) is a factor of b(s+ 1).

On the other hand, there exists Q ∈ V −1
ι(Y )(DX×C) such that

(b̃(x1∂1 + · · ·+ xd∂d + t∂t) +Q)(u⊗ δ(t)) = 0.

Writing Q in the form

Q =
∑
i,j≥0

Qij(x, ∂)∂
i
tt

j ,
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we have

0 = (b̃(x1∂1 + · · ·+ xd∂d + t∂t) +Q)(u⊗ δ(t))

= b̃(x1∂1 + · · ·+ xd∂d + ∂tt− 1)(u⊗ δ(t)) +
∑
i,j≥0

Qij(x, ∂)u⊗ ∂i
tt

jδ(t)

= b̃(x1∂1 + · · ·+ xd∂d − 1)u⊗ δ(t) +
∑
i≥0

Qi0(x, ∂)u⊗ δ(i)(t).

This implies, in particular,

(b̃(x1∂1 + · · ·+ xd∂d − 1) +Q00)u = 0.

Since Q00 belongs to V −1
Y (DX), we know that b(s) divides b̃(s − 1). In conclusion, we

get b(s) = b̃(s− 1).

Existing algorithms ([4], [3]) for (regular) indicial polynomials along linear subman-

ifolds provide ones for the (regular) b-function with respect to a graph embedding.

Example 2.3. LetMA(β) = DXu be theA-hypergeometric system forA =

(
1 1 1

0 1 2

)
with parameters β = (β1, β2); i.e.,

(x1∂1 + x2∂2 + x3∂3 − β1)u = (x2∂2 + 2x3∂3 − β2)u = (∂1∂3 − ∂2
2)u = 0.

The singular locus of MA(β) is

{(x1, x2, x3) ∈ C3 | x1x3(4x1x3 − x2
2) = 0}.

The b-function of u with respect to the ideal OXf with f := 4x1x3−x2
2 is s(s−β1−1/2)

at any point p ∈ C3 such that f(p) = 0.

Example 2.4. With X = C3 ∋ (x, y, z), set J = OX(x3 − y2) +OX(x2 − z), which

is the defining ideal of a monomial curve x3 − y2 = x2 − z = 0.

1. The b-function of 1 ∈ OX with respect to J at 0 is (s− 2)(6s− 11)(6s− 13).

2. The b-function of u such that ∂xu = ∂yu = (z∂z − a)u = 0 with respect to J at 0 is

b(s, a) := (s− 2)(s− a− 2)(2s− 2a− 5)(6s− 4a− 11)× (6s− 4a− 13)(6s− 4a− 15)

if a ̸= 0,−1,−2. If a = 0, then the b-function of u is (s−2)(2s−5)(6s−11)(6s−13)

whereas b(s, 0) = (s− 2)2(2s− 5)2(6s− 11)(6s− 13). If a = −1, then the b-function

is (s − 1)(s − 2)(2s − 3)(6s − 7)(6s − 11) whereas b(s,−1) = (s − 1)(s − 2)(2s −
3)2(6s−7)(6s−11). If a = −2, then the b-function is s(s−2)(2s−1)(6s−5)(6s−7)

whereas b(s,−2) = s(s− 2)(2s− 1)2(6s− 5)(6s− 7).
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§ 3. Comparison between the indicial polynomial and the b-function via

graph embedding

Probably, the following theorem is well-known to specialists:

Theorem 3.1. Let X be a complex manifold and M be a coherent (sheaf of) left

DX-module on X. Let f1, . . . , fd be holomorphic functions on X and set Y = {x ∈
X | f1(x) = · · · = fd(x) = 0}. Assume that df1 ∧ · · · ∧ dfd ̸= 0 at x0. Set Z =

{(x, t1, . . . , td) ∈ X × Cd | ti = fi(x) (i = 1, . . . , d)} and BZ|X×Cd = Hd
Z(OX×Cd).

Set N := M ⊗OX
BZ|X×Cd , which has a structure of left DX×Cd-module. Then M is

(regular) specializable along Y at x0 if and only if N is (regular) specializable along

X×{0} at (x0, 0). Moreover, for any u in the stalk of M at x0, the (regular) b-function

of u along Y at x0 coincides with that of u⊗ δ(t1 − f1) · · · δ(td − fd) along X × {0} at

(x0, 0).

Proof. We may assume that X is an open set of Cn containing x0 = 0 ∈ Cn, and

that fi = xi for i = 1, . . . , d . We use the notation x = (x′, x′′) with x′ = (x1, . . . , xd),

x′′ = (xd+1, . . . , xn), and ∂′ = (∂1, . . . , ∂d), ∂
′′ = (∂d+i, . . . , ∂n) with ∂i = ∂/∂xi. .

Assume that M is specializable along Y at 0 and let u belong to the stalk of M at

0. Let b(s) ∈ C[s] be the b-function of u along Y at 0. Then there exists a differential

operator Q = Q(x′, x′′, ∂′, ∂′′) ∈ V −1
Y (DX)0 such that

(b(x1∂1 + · · ·+ xd∂d) +Q)u = 0.

It follows that

(b(t1(∂t1 + ∂1) + · · ·+ td(∂td + ∂d)) + Q̃)(u⊗ δ(t1 − x1) · · · δ(td − xd))

= (b(x1∂1 + · · ·+ xd∂d) +Q)u⊗ δ(t1 − x1) · · · δ(td − xd) = 0

with

Q̃ = Q(t1, . . . , td, x
′′, ∂t1 + ∂1, . . . , ∂td + ∂d, ∂

′′)

since

(ti − xi)(u⊗ δ(t1 − x1) · · · δ(td − xd)) = 0,

(∂ti + ∂i)(u⊗ δ(t1 − x1) · · · δ(td − xd)) = (∂iu)⊗ δ(t1 − x1) · · · δ(td − xd)

hold for i = 1, . . . , d.

Then Q̃ belongs to V −1
X×{0}(DX×Cd). Moreover, we have

b(t1∂t1 + · · ·+ td∂td)− b(t1(∂t1 + ∂1) + · · ·+ td(∂td + ∂d)) ∈ V −1
X×{0}(DX×Cd).
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Hence the b-function of u ⊗ δ(t1 − x1) · · · δ(td − xd) along X × {0} at (0, 0) is a factor

of b(s).

Conversely, let b(s) be the b-function of u ⊗ δ(t1 − x1) · · · δ(td − xd) along X × {0}
at (0, 0). Then there eixsts a differential operator

Q = Q(t1, . . . , td, x
′, x′′, ∂t1 , . . . , ∂td , ∂

′, ∂′′) ∈ V −1
X×{0}(DX×Cd)

such that

(b(t1∂t1 + · · ·+ td∂td) +Q)(u⊗ δ(t1 − x1) · · · δ(td − xd)) = 0.

By using ∂ti = (∂ti + ∂i)− ∂i, we rewrite the operator as

P := b(t1∂t1 + · · ·+ td∂td) +Q

= b(t1(∂t1 + ∂1) + · · ·+ td(∂td + ∂d))

+
∑
α∈Nd

Qα(t1, . . . , td, x, ∂t1 + ∂1, . . . , ∂td + ∂d, ∂
′′)∂′α

with Qα ∈ V −1
X×{0}(DX×Cd).

We have

[t1 − x1, P ](u⊗ δ(t1 − x1) · · · δ(td − xd)) = 0

with

[t1 − x1, P ] =
∑
α∈Nd

α1Qα(t1, . . . , td, x, ∂t1 + ∂1, . . . , ∂td + ∂d, ∂
′′)∂′α−(1,0,...,0).

Now let m be the maximum of α1 such that Qα ̸= 0 with α = (α1, . . . , αd). It follows

that

P̃ := P − 1

m
∂1[t1 − x1, P ]

= b(t1(∂t1 + ∂1) + · · ·+ td(∂td + ∂d))

+
∑
α∈Nd

Qα(t1, . . . , td, x, ∂t1 + ∂1, . . . , ∂td + ∂d, ∂
′′)∂′α

−
∑
α∈Nd

α1

m
∂1Qα(t1, . . . , td, x, ∂t1 + ∂1, . . . , ∂td + ∂d, ∂

′′)∂′α−(1,0,...,0),

which is of order at most m−1 with repect to ∂1, also annihilates u⊗δ(t1−x1) · · · δ(td−
xd). By induction, we conclude that there exists an operator

Q0(t1, . . . , td, x, ∂t1 + ∂1, . . . , ∂td + ∂d, ∂
′′) ∈ V −1

X×{0}(DX×Cd)
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such that

(b(t1(∂t1 + ∂1) + · · ·+ td(∂td + ∂d))

+Q0(t1, . . . , td, x, ∂t1 + ∂1, . . . , ∂td + ∂d, ∂
′′))(u⊗ δ(t1 − x1) · · · δ(td − xd)) = 0,

and consequently

(b(x1∂1 + · · ·+ xd∂d) +Q0(x
′, x, ∂′, ∂′′))u⊗ δ(t1 − x1) · · · δ(td − xd)

= (b(t1(∂t1 + ∂1) + · · ·+ td(∂td + ∂d))

+Q0(t1, . . . , td, x, ∂t1 + ∂1, . . . , ∂td + ∂d, ∂
′′))(u⊗ δ(t1 − x1) · · · δ(td − xd)) = 0.

This implies that the b-function of u along Y at 0 is a factor of b(s).

If u satisfies a system of linear differential equations with polynomial coefficients,

then in view of the theorem above, existing algorithms [2], [4], [3] for linear submanifolds

immediately provide us with algorithms for computing the (regular) indicial polynomial

along an arbitrary algebraic subvariety of Cn at a non-singular point.

Example 3.2. LetMA(β) = DXu be theA-hypergeometric system forA =

(
1 1 1

0 1 2

)
with parameters β = (β1, β2) as in Example 2.3. Then the indicial polynomial of u along

the hypersurface Y = {(x1, x2, x3) | 4x1x3−x2
2 = 0} is s(s−β1−1/2) at any non-singular

point (i.e., other than the origin) of Y .
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