On various b-functions of specializable D-modules
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Abstract

We recall several notions known under the name of b-function, indicial polynomial, or
Bernstein-Sato polynomial, for D-modules. We summarize relations among these notions as
well as algorithms for computation.

§1. Introduction

Mikio Sato, Masaki Kashiwara, and J. Bernstein introduced the b-function or the
Bernstein-Sato polynomial for a polynomial, or more generally, for a germ of holomor-
phic function. This notion is closely related to the classical notion of the indicial poly-
nomial. So let us first recall the defintion of the indicial polynomial, or the b-function,
of a section of a D-module along a submanifold.

Let X be an n-dimensional complex manifold and Y a complex analytic submanifold
of X. Let Ox be the sheaf of holomorphic functions on X and Zy be the defining ideal
of Y, which is a sheaf of ideals of Ox. We denote by Dx the sheaf on X of (rings of)
differential operators with holomorphic coefficients.

The V-filtration {Vi*(Dx)}icz of Dx along Y is defined by

Vi(Dx):={P e Dxl|y | PL, cT/" (VjeZ)}

with the convention I{, = Oxly for j < 0. Let 6 be a vector field on a neighborhood
of Y in X which induces the identity map on Zy /ZZ. In a local coordinate z =
(1., Tdy Tg41,--.,%n) such that Y = {z; = -+ = x4 = 0}, we may take

0==x 0 +-- 0
Yo, COrq’
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Definition 1.1. Let M be a coherent left Dx-module defined on X. Let u be a
section of M defined on a neighborhood of zy € Y. The indicial polynomial or the
b-function of u along Y at ¢ is the monic polynomial b(s), if any, in an indeterminate
s of the least degree such that

b(0)u € Vi (Dx ) o

holds, that is, there exists P € V3~ ' (Dx)., such that

(b(6) + P)u = 0.

If we impose the condition ord P < degb(s), then b(s) is called a reqular indicial poly-
nomial of u along Y at xg. M is called (regular) specializable along Y if each section
u of M on a neighborhood of an arbitrary zo € Y has a (regular) indicial polynomial
along Y at xg.

If P is an ordinary differential operator and z is its regular singular point, then the
indicial polynomial of u such that Pu = 0 (i.e., u is the residue class of 1 in Dx /Dx P)
along the point {xg} coincides (basically) with the classical definition of the indicial
polynomial at xy. For example, the indicial (and the regular indicial) polynomial of
u such that (zd, — a)u = 0 along {0} is s — a, where we assume X = C and denote
Oy = d/dx. On the other hand, the b-function of u with (229, — a)u = 0 along {0} is 1
if a # 0, and s(s+1) if @ = 0 (this is the classical indicial polynomial of d,229,). There
is no regular indicial polynomial of a section u such that (220, — a)u = 0 along {0} if
a # 0.

Regular indicial polynomial is not necessarily unique. For example, for v such that
?02u = x(0y + 0] )u =0

in two variables (x,y), the indicial polynomial of u along x = 0 is s, while s(s —¢) is a
regular indicial polynomial of u along x = 0 for any c, of the least degree. This follows
from £0,u = —xd;u and (2?97 + cxd,)u = —cxd u. Note that Dxu is holonomic since
its characteristic variety is

{(z,y,&dx +ndy) | x =1 =0} U{(z,y,{dx +ndy) | £ =n = 0}.

Hence we mean by ‘the regular indicial polynomial’ the set of the regular indicial poly-
nomials of the least degree.

In general, the computation of (regular) indicial polynomial is not trivial. If u
satisfies a system of linear (ordinary or partial) differential equation with polynomial
coefficients, then an algorithm to detect the existence of and to compute, if any, the b-
function of v along a hyperplane was given in [2] by the present author, and consequently
in [4] for linear submanifold of arbitrary codimension. A similar algorithm for the regular
indicial polynomial along a linear submanifold was introduced in [3].
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Example 1.2. The D-module for Appell’s F} is defined by Pyu = Pou = 0 with

Py =2(1—2)02 +y(1 —2)0,0, + (c — (a+ by + 1)x)d; — byyd, — abs,
Py, =y(1— y)(‘?; +2(1 —y)0;0, + (¢ — (a+ by + 1)y)0y — baxdy — aby

and parameters a, by, bs, c. Both the indicial and the regular indicial polynomials along
the origin (0,0) are s(s+ c— 1) for arbitrary values of the parameters although Dxu is
holonomic if and only if ¢ # a + 1.

Example 1.3. Let M 4(5) be the A-hypergeometric (GKZ) system for an arbitrary
d x n integer matrix A such that rank A = d with parameters § = (f1,...,84). Then
M 4(B) is regular specializable along the origin for any 5 (see [3]). In particular we

have isomorphisms

Extlp ), (Ma(8), Cla}) ~ Extfp ) (Ma(8),Clle]]) (VK € Z).

§ 2. The b-function with respect to a graph embedding

We follow the method of the definition of Bernstein-Sato polynomial for an arbitrary
variety, possibly with multiplicities, by Budur-Mustata-Saito [1]. Let J be a coherent
ideal of Ox. Let f1,..., fq be a set of local generators of J on an neighborhood U of
xo € Y. Consider the associated embedding

L:Usx+— (z, fi(x),. .., fa(z)) € U x C?

and set Z = +(U), which depend on the choice of local generators fi,..., fs of J.

Let Bzjuxce = HfZ](OUX(Cd) be the d-th local cohomology group. Suppose that
M is a coherent left Dx-module defined on X and u is a section of M defined on a
neighborhood of . Then ty(u) = u® 6(t; — f1)---0(tq — fq) is defined as a section of
Lx(M) = M @0y Bzjuxca-

Theorem 2.1. Let b(s) be the (regular) indicial polynomial of v.(u) along U x {0}.
Then b(s —d) does not depend on the choice of local generators fi,..., fqa of J. We call
b(s — d) the (regular) b-function of u with respect to J.

If M = 0Ox and u = 1, then the b-function in the above sense conicides with b(—s),
where b(s) is the Bernstein-Sato polynomial of the variety (with respect to the ideal )
defined by Budur-Mustata-Saito [1].

Proof. Suppose that there exist sections aq,...,aq of Ox at xy such that fg11 =
a1 f1 + -+ aqfq. Define an embedding

L X xC4 — X x ¢t
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by
vz ty, ... tq) = (z,t1, ..., tg,a1(x)ty + -+ - + ag(x)tq).
Set Z = {(x,t1,...,tq) | t1 =--- =tq = 0}. Then we have
(Z) ={(z,t1,... ,tatar1) EX X Cl |ty = =ty =tg1 =0}

and

L(u®@0(ty — f1) - 6(ta — fa))

=u®6(tr — f1) - 0(ta — fa)d(tar1 — ar(@)ts — - -+ — aa(z)ta)

=u®6(t — f1) - 6(ta — fa)0(tarr — ar(@) fr — -+ — aa(@) fa)

=u®(ty — f1) - 6(ta — fa)d(tarr — far1)-

Let b(s) be the b-function of u ® 6(t; — f1)---0(tq — f4) along Z and b(s) be that
of u®d§(ty — f1) - 0(ta — fa)0(tas1 — far1) along ¢(Z). Then it is easy to see that
b(s —d) = b(s —d—1) holds in view of the lemma below. This completes the proof. [J

Lemma 2.2 (Budur-Mustata-Saito). Let M be a coherent left Dx-module and u a
section of M. LetY be a non-singular complex hypersurface of X andlett: X — X xC
be a holomorphic embedding. Let b(s) be the b-function of u alongY at xg € Y and 5(8)
be that of u® 6(t) along 1(Y) at (x0,0). Then one has b(s — 1) = b(s).

Proof. We may assume ¥ = {z € X | 21 = -+ = 24 = 0} and «(z) = (,0), and
conequently

There exists Q € V;-'(Dx) such that
(b(x181 + -+ xd('?d) + Q)u =0.
Then we have
(b(z101 + -+ -+ xala + Ot) + Q)(u® 6(t)) =0

and ) belongs to VL(_;)(DXX@). Thus b(s) is a factor of b(s + 1).
On the other hand, there exists @ € VL(_;)(DXXC) such that

(b(x18y + -+ + q0q + t0y) + Q) (u ® d(t)) = 0.
Writing ) in the form

4,520
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we have
= (b(x101 + -+ + 2404 + t0) + Q) (u ® 5(25))
= b(2101 + -+ + zada + Ot — D(w@5(t) + > Qij(z, d)u® o’ (1)
1,7 >0
=b(x101 + -+ + 2ala — Du®5(t) + Y Qio(x, 0)u® 5 (1).
>0

This implies, in particular,
(B(:z:181 + -+ xg0q — 1) + Qoo)u =0.

Since Qoo belongs to V' (Dx), we know that b(s) divides b(s —1). In conclusion, we
get b(s) = b(s —1). O

Existing algorithms ([4], [3]) for (regular) indicial polynomials along linear subman-
ifolds provide ones for the (regular) b-function with respect to a graph embedding.

111
Example 2.3. Let M 4(8) = Dxu be the A-hypergeometric system for A = (0 ) 2)

with parameters 8 = (1, 82); i.e.,
(2101 + 2202 + 1305 — f1)u = (2202 + 22303 — Bo)u = (0103 — 93)u =
The singular locus of M 4(f) is
{(z1,22,23) € C3 | z123(4x123 — x3) = 0}.

The b-function of u with respect to the ideal Ox f with f := 4z z3—23 is s(s— 31 —1/2)
at any point p € C3 such that f(p) =

Example 2.4. With X = C3 > (z,v, 2), set J = Ox (2% — y?) + Ox (2 — 2), which
is the defining ideal of a monomial curve 23 — 3% = 22 — 2 = 0.
1. The b-function of 1 € Ox with respect to J at 0 is (s — 2)(6s — 11)(6s — 13).
2. The b-function of u such that 0,u = dyu = (20, —a)u = 0 with respect to J at 0 is

b(s,a) :=(s—2)(s—a—2)(2s —2a—5)(6s —4a —11) x (6s —4a —13)(6s — 4a — 15)

ifa #0,—1,—2. If a = 0, then the b-function of u is (s —2)(2s—5)(6s—11)(6s —13)
whereas b(s,0) = (s —2)%(2s —5)?(6s — 11)(6s — 13). If a = —1, then the b-function
is (s —1)(s — 2)(2s — 3)(6s — 7)(6s — 11) whereas b(s,—1) = (s — 1)(s — 2)(2s —

3)2(65s—7)(6s—11). If a = —2, then the b-function is s(s —2)(2s—1)(6s—5)(65—7)
whereas b(s, —2) = s(s — 2)(2s — 1)2(6s — 5)(6s — 7).
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§3. Comparison between the indicial polynomial and the b-function via
graph embedding

Probably, the following theorem is well-known to specialists:

Theorem 3.1. Let X be a complex manifold and M be a coherent (sheaf of) left
Dx-module on X. Let fi,...,fa be holomorphic functions on X and set Y = {x €
X | file) = -+ = fa(z) = 0}. Assume that dfy N\ --- Ndfqg # 0 at xg. Set Z =
{(@,t1,...,ta) € X xC* | t; = fi(x)(i = 1,...,d)} and Bzxxct = HE(Oxxca).
Set N := M ®oy Bz|xxca, which has a structure of left Dx yca-module. Then M is
(regular) specializable along Y at xo if and only if N is (reqular) specializable along
X x{0} at (z0,0). Moreover, for any u in the stalk of M at x¢, the (reqular) b-function
of u along Y at xy coincides with that of u® §(t1 — f1)---0(tqa — fa) along X x {0} at
(x0,0).

Proof. We may assume that X is an open set of C" containing zog = 0 € C™, and
that f; = z; for i = 1,...,d . We use the notation = = (2’,2") with 2’ = (x1,...,z4),
" = (z441,...,2n), and &' = (01,...,04), 0" = (Odti,-..,0n) With 0; = 0/0x;. .

Assume that M is specializable along Y at 0 and let v belong to the stalk of M at
0. Let b(s) € C[s] be the b-function of u along Y at 0. Then there exists a differential
operator Q = Q(2’,2",9',0") € V3 ' (Dx)o such that

(b(x101 + - -+ + x404) + Q)u = 0.
It follows that
(b(t1(e, +01) + -+ + ta(Br, + 0a)) + Q)(u® 8(tr — a1) -+ 6(ta — za))
= (b(x101 + -+ x904) + Qud(t; —x1) - 0(tg —xq) =0

with

Q = Q(tl,...,td,l‘//,atl +81,...,8td —f—@d,@”)
since
(ti — xz)(u X 5(t1 — 33'1) M 5(td — $d)) = O,
(O, +0i)(u®6(ty — 1) -~ 6(tg — 2q)) = (Ou) ® O(t1 — x1) -+ 0(ta — xa)

hold for i =1,...,d.

Then Q belongs to V)?i (0} (Dx xca). Moreover, we have

b(t10s, + -+ tadh,) = b(t1(Dey + O1) + -+ + a9, + 0a)) € Vi) 10 (Dxxca)-
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Hence the b-function of u ® §(t1 — 1) ---0(tqa — zq) along X x {0} at (0,0) is a factor
of b(s).

Conversely, let b(s) be the b-function of u ® §(t1 — x1)---d(tq — x4) along X x {0}
at (0,0). Then there eixsts a differential operator

Q=Q(tr,. . ta, 2’2" 8y, 04,,0',0") € Vi 1y (Dxcca)
such that

(b(t10s, + -+ +1t30:,) + Q) (u®@6(ty — 1) -+ - 0(tg — xq)) = 0.
By using 0;, = (0, + 0;) — 0;, we rewrite the operator as

P = b(tlatl + -+ tdatd) + Q
=b(t1(0, +01) + -+ +ta(9¢, + Oa))
+ ) Qalty,. o ta, @0 + 01, ..., 0, + 04,0")0

aeNd

with Qu € Vi 0y (Px xca)-

We have
[tl — Q?l,P](U, X (S(tl - (El) tee 5(td - xd)) =0
with
[t — 21, Pl = > a1Qaltr,. .. ta, o, 0y, + O1,..., 0, + 04,0")0/ " 1020),
aeNd
Now let m be the maximum of a; such that @, # 0 with « = (o, ..., aq). It follows
that

ﬁ =P — lal[tl —.lel,P]
m
=b(t1(0¢, +01)+ -+ +ta(Or, + 0a))
+ Z Qa(t17"'7td7x78t1 +817"'7atd +ad7all)ala

aeNd

- Z _81QO¢ t17 cee atdwx: atl + 617 s 76td + 8d7 8”)3@(—(1,0,4..,0)7

aeNd

which is of order at most m —1 with repect to 0y, also annihilates u®d§(t1 —x1) - - - §(tq—
zq). By induction, we conclude that there exists an operator

Qo(tl,...,td,x,ﬁtl + 01, ... 8td+8d,8”) );X{O}(DXXcd)
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such that

(b(t1 (O, +O1) + -+ + ta(Or, + 0a))
+ Qo(tl, A ,td,x,atl + 81, A ,8td +8d,8”))(u® 5(t1 — xl) . --5(td — :L‘d)) = O,

and consequently

(b(l’lal + -+ illdad> + Qo(.ﬁEl,CL', (9/, 8"))u ® (5(151 — .CEl) s 5(td — :Il'd)
= (b(t1(0¢, +01) + -+ ta(Or, + 0a))
+Qolt1,- - ta, 2,04 + 01y, 01, +04,0" )N (u®(ty — 1)+ 5(tg — 24)) = 0.

This implies that the b-function of u along Y at 0 is a factor of b(s). O

If u satisfies a system of linear differential equations with polynomial coefficients,
then in view of the theorem above, existing algorithms [2], [4], [3] for linear submanifolds
immediately provide us with algorithms for computing the (regular) indicial polynomial
along an arbitrary algebraic subvariety of C™ at a non-singular point.

111
012
with parameters 5 = (31, 32) as in Example 2.3. Then the indicial polynomial of u along

Example 3.2. Let M 4(8) = Dxu be the A-hypergeometric system for A =

the hypersurface Y = {(z1,22,23) | 4z1273—23 = 0} is s(s— 1 —1/2) at any non-singular
point (i.e., other than the origin) of Y.
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