
DELTA LINK-HOMOTOPY ON SPATIAL GRAPHS

RYO NIKKUNI

Abstract. Delta link-homotopy is an equivalence relation on oriented links
generated by delta moves on the same component and ambient isotopies, and
extended to spatial graphs naturally. In this talk, we will explain the content
of the papers [18, 19, 20]. We also refer the reader to [22, 23, 24] for their
outlines in Japanese.
In this note we will discuss about
• the relation between delta link-homotopy and the other equivalence rela-

tions and
• (complete) classifications of spatial embeddings of certain graphs up to

delta link-homotopy.
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0. Equivalence relations on spatial graphs

Throughout this talk, we only consider a finite graph without free vertices (i.e.,
vertices with valency 0, 1). We always regard a graph G as a 1-dimensional CW - or
simplicial complex as usual. We call an embedding f : G → S3 a spatial embedding

of G, or simply, a spatial graph.

Example 0.1. Throughout the following, all vertices and edges of graphs will be
assumed to be labeled with numbers.
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Fig. 0.1

In this section we recall basic definitions, which will be used throughout the talk.
First we give a summary of known equivalence relations for spatial graphs.

Date: 2004/2/2 13:30–17:30.

1



2 RYO NIKKUNI

Definition 0.2 (equivalence relations, [32]). Let f , g be spatial embeddings of a
graph G.

( 1 ) f and g are ambient isotopic if there exists an orientation preserving home-
omorphism Φ : S3 → S3 such that f ◦ Φ = g holds.

It is known by [6, 35] that this is equivalent to that f and g are trans-
formed into each other by the Reidemeister moves ; that are (I), (II), (III)
(original) Reidemeister moves for knots, and (IV), (V), see Fig. 0.2.

( I )

(II)

(III)

(IV)

(V)

Fig. 0.2. Reidemeister moves

This is also equivalent to that there exists a level preserving locally flat
embedding Φ : G × I → S3 × I between f and g. Here Φ : G × I → S3 × I
is said to be
(a) between f and g if there is a real number ε > 0 such that Φ(x, t) =
(f(x), t) for any x ∈ G, 0 ≤ t ≤ ε and Φ(x, t) = (g(x), t) for any x ∈ G,
1 − ε ≤ t ≤ 1,
(b) locally flat if every point p ∈ Φ(G × I) has a neighborhood N such
that (N, N ∩Φ(G× I)) is pairwise homeomorphic to the standard disk pair
(D4, D2) or (D3, Xn)× I , where (D3, Xn) denotes the pair as illustrated in
Fig. 0.3 and
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(c) level preserving if there is a map φt : G → S3 for each t ∈ I such that
Φ(x, t) = (φt(x), t) for any x ∈ G, t ∈ I .

D

Xn

3

(D3 ,Xn )    I

Fig. 0.3

( 2 ) f and g are cobordant, denoted by f (Cob) g, if there exists a locally flat
embedding Φ : G × I → S3 × I between f and g (see Fig. 0.4).

f g

(cob)

Fig. 0.4. Cobordant spatial embeddings

( 3 ) f and g are isotopic, denoted by f (Iso) g, if there exists a level preserving
embedding Φ : G× I → S3 × I between f and g. Isotopy on spatial graphs
is an application of Alexander trick, see Fig. 0.5.

(Iso)

f g

Fig. 0.5. Isotopic spatial embeddings
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( 4 ) f and g are I-equivalent if they are “cobordant” or “isotopic”. Precisely
they are I-equivalent if there exists an embedding Φ : G × I → S3 × I
between f and g.

( 5 ) f and g are edge-homotopic, denoted by f (EH) g, if f and g are transformed
into each other by self crossing changes and ambient isotopic, see Fig. 0.6.

f g

(EH)

Fig. 0.6. Edge-homotopic spatial embeddings (2-component links)

Here self crossing changes mean the crossing changes on the same spatial
edge as illustrated in Fig. 0.7.

Fig. 0.7. Self crossing change

Remark. Edge-homotopy on spatial graphs is a generalization of link-homotopy on
links in the sense of Milnor [10].

A graph G is said to be planar if there exists an embedding f : G → S2, and
is said to be non-planer otherwise. By the well-known Kuratowski’s theorem, G is
non-planar if and only if it contains a subgraph which is homeomorphic to K5 or
K3,3 as illustrated in Fig. 0.8

K5 K3,3

Fig. 0.8



5

Definition 0.3. Suppose that G is planar. Let f be a spatial embedding of G.

( 1 ) f is trivial if f is ambient isotopic to an embedding h : G → S2 ⊂ S3.
( 2 ) f is slice if f is cobordant to the trivial embedding.

Remark. The well-definedness of the trivial embedding was shown in [8]: Any two
embeddings of G into S2 ⊂ S3 are actually ambient isotopic.

1. Delta edge-homotopy, Delta vertex-homotopy

In this section, we introduce two more equivalence relations, which can be re-
garded as a natural extension of delta link-homotopy on links. These are the main
subjects in this talk.

A delta move is a local move on links as illustrated in Fig. 1.1. This move was
introduced in [9, 12] and showed that it is an unknotting operation for knots. This
is naturally extended to a local move to spatial graphs.

Fig. 1.1. Delta move

Remark. The delta move is not an unlinking operation for links. Because it keeps
linking numbers of links invariant.

Adding certain restrictions, let us introduce two similar local moves. A self delta

move is defined to be the delta move on the same spatial edge as illustrated in Fig.
1.2.

Fig. 1.2. Self delta move

A quasi adjacent-delta move is defined to be the delta move on exactly two
adjacent spatial edges as illustrated in Fig. 1.3.

By using these moves, two equivalence relations are defined.

Definition 1.1. ([18]) Two spatial embedding f, g : G → S3 are

( 1 ) delta edge-homotopic, denoted by f (DEH)g, if f and g are transformed into
each other by self delta moves and ambient isotopies,

( 2 ) delta vertex-homotopic, denoted by f (DVH)g, if f and g are transformed into
each other by quasi adjacent-delta moves and ambient isotopies,
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Fig. 1.3. Quasi adjacent-delta move

Remark.

• In the case of G = S1 q · · · q S1, delta edge-homotopy and delta vertex-
homotopy are equivalent as equivalence relations, for they are natural ex-
tension of delta link-homotopy on links [29, 30, 17, 13, 14, 15].

• In general, a self delta move is not an unlinking operation. However it
actually is for ribbon links and for 2-component boundary links [29, 30]. It
is still open for boundary links with three or more components.

A motivation to study these moves, at least for the author, is to classify spatial
graphs without considering ‘local knots’. In some sense, the properties of spatial
graphs invariant under self crossing changes or self delta moves must be essential
in spatial graph theory independent from knot theory.

2. Relation to the other equivalence relations

Theorem 2.1. The following implications hold [32].

Ambient isotopy

���

Isotopy
@@R

Cobordism
@@R

���

I-equivalence - Edge-homotopy

Moreover the following implications hold [18].

Ambient isotopy - Isotopy - Edge-homotopy

@@R @@R
Delta edge-homotopy - Delta vertex-homotopy

���

In the theorems above, (1) → (2) means that f
(1)
∼ g implies f

(2)
∼ g. It is

remarked that there are no implications between ones where no vectors are drawn,
and no converses of the implications described above do not hold.

Outline of proof. We can see that (DEH) → (DVH) → (EH) by Fig. 2.1.

To show that (Iso) → (DVH) , we use the next claim.
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(DEH)

(DVH)

(DVH)

(EH) (EH)

Fig. 2.1

Claim. Each of the moves as illustrated in Fig. 2.2 is realized by delta moves and

ambient isotopies.

Fig. 2.2

Proof. See Fig. 2.3 for example.

delta

delta

Fig. 2.3

�
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We note that crossing changes can be regarded as a ‘band sum of Hopf links’, see
Fig. 2.4. With the claim above and the fact that isotopy implies edge-homotopy,

Fig. 2.5 illustrates the implication (Iso) → (DVH) .

Fig. 2.4

(DVH)

isotopic

Fig. 2.5

Please see [18] for detailed proofs and proofs of other parts. �

Together with v’s result [32], we have the following corollary.

Corollary 2.2. Let G be a finite graph. Then the following are equivalent.

( 1 ) Every pair of spatial embeddings of G are isotopic.

( 2 ) Every pair of spatial embeddings of G are I-equivalent.

( 3 ) Every pair of spatial embeddings of G are delta vertex-homotpic.

( 4 ) Every pair of spatial embeddings of G are edge-homotpic.

( 5 ) G is a generalized bouquet, i.e., G does not contain a subgraph which is

homeomorphic to disjoint cycles, K4 or D3 as illustrated in Fig. 2.6.

Recently the author obtained the following related result.
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K4 D3

Fig. 2.6

Theorem 2.3. ([21]) Let G be a finite graph. Then the following are equivalent.

( 1 ) Every pair of spatial embeddings of G are delta edge-homotpic.

( 2 ) G does not contain a subgraph which is homeomorphic to a θ-curve or dis-

joint cycles.

( 3 ) G is a bouquet as illustrated in Fig. 2.7.

Fig. 2.7

3. Delta edge- & Delta vertex-homotopy invariants

We start with an example of a delta edge-homotopy invariant. A subgraph of G
is called a cycle if it is homeomorphic to S1. A cycle of a graph is called a k-cycle

if it contains exactly k edges.

Example. Set G denotes a θ-curve, and give labels to its vertices and edges as in
Fig. 3.1. We denote the three cycles e2 ∪ e3, e3 ∪ e1 and e1 ∪ e2 of G by γ1, γ2 and
γ3 respectively.

u v

e

e

e

1

2

3

1

2

3

Fig. 3.1
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Given spatial embedding f : G → S3, we define

α̃(f) ≡
3∑

i=1

a2(f(γi)) (mod 2)

where a2 denotes the second coefficient of the Conway polynomial of the knot.
This α̃ become a delta edge-homotopy invariant, showed as follows. Recall that
a2(K+) − a2(K−) = 1 holds for the knots K+ and K− as illustrated in Fig. 3.2
[26].

K+ K-

Fig. 3.2

Assume that a θ-curve g is obtained from f by a single self delta move on f(e1)
as illustrated in Fig. 3.3. Then we have that

α̃(f) − α̃(g) ≡
3∑

i=2

{a2(f(γi)) − a2(g(γi))} = 2 ≡ 0 (mod 2).

e1

e2

e3

e1

e2

e3

f g

f(   )

f(   )

f(   ) g(   )

g(   )

g(   )

Fig. 3.3

This implies that α̃ is a delta edge-homotopy invariant.
Now let h be a trivial θ-curve and f a θ-curve as illustrated in Fig. 3.4. Then,

by direct calculations, we have that α̃(h) ≡ 0 and α̃(f) ≡ 1 (mod 2). Thus we

can conclude that h (DEH)f . However it depends only upon the Arf invariant of
constituent knots, so, it seems to be not strong enough. For example, we cannot
distinguish any almost trivial theta curve (i.e., spatial embedding with no non-trivial
knots) from the trivial one by α̃.
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f h

Fig. 3.4

We generalize this invariant in the following way. Let Γ(G) be the set of all
cycles of a graph G and E(G) the set of all edges of G. For an edge e ∈ E(G), we
set

Γe(G) := {γ ∈ Γ(G) | γ ⊃ e}.

Also, for edges e1, e2 ∈ E(G), we set

Γe1,e2
(G) := {γ ∈ Γ(G) | γ ⊃ e1, e2}.

Definition 3.1. Let ω : Γ(G) → Zm be a map, which we call a weight, where Zm

denotes the subset {0, 1, . . . , m−1} of the infinite cyclic group Z (we admit m = 0,
and then Z0 denotes Z).

( 1 ) ω is weakly balanced on an edge e ∈ E(G) if
∑

γ∈Γe(G)

ω(γ) ≡ 0 (mod m).

is satisfied.
( 2 ) ω is weakly balanced on a pair of adjacent edges e1, e2 ∈ E(G) if

∑

γ∈Γe1,e2
(G)

ω(γ) ≡ 0 (mod m)

is satisfied.

Given spatial embedding f : G → S3 and a weight Γ(G) → Zm, we define

α̃ω(f) ≡
∑

γ∈Γ(G)

ω(γ)a2(f(γ)) (mod m).

Theorem 3.2. Let f : G → S3 be a spatial embedding of a finite graph G and

Γ(G) → Zm a weight.

( 1 ) If ω is weakly balanced on every edge in E(G), then α̃ω is a delta edge-

homotopy invariant.

( 2 ) If ω is weakly balanced on every pair of adjacent edges in E(G), then α̃ω is

a delta vertex-homotopy invariant.
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The proof is similar to the discussion given in the first example in this section,
and so we omit it. The invariant α̃ω is an extension of α̃: In fact α̃ is obtained by
choosing a weight ω : Γ(G) → Z2 with ω(γ) = 1 for any γ ∈ Γ(G) if G is a θ-curve.

Next we will construct another invariant by using an order three Vassiliev invari-
ant of knots. In the following the graph G is assumed to be oriented, i.e., each edge
of G are assumed to be oriented. We set the orientation of each cycle γ ∈ Γe(G)
induced from that of e. Also we set the orientation of each cycle γ ∈ Γe1,e2

(G)
induced from that of e1.

Definition 3.3 ([33]). Let ω : Γ(G) → Zm be a weight.

( 1 ) ω is balanced on an edge e ∈ E(G) if
∑

γ∈Γe(G)

ω(γ) · γ = 0 in H1(G; Z/mZ)

is satisfied.
( 2 ) ω is balanced on a pair of adjacent edges e1, e2 ∈ E(G) if

∑

γ∈Γe1,e2
(G)

ω(γ) · γ = 0 in H1(G; Z/mZ)

is satisfied.

Remark. If a weight ω is balanced on every edge in E(G), the invariant α̃ω is equal
to the α-invariant αω in [33]. Also note that a balanced weight is weakly balanced.

Now, for a spatial embedding f : G → S3, we define

nω(f) ≡
1

18

∑

γ∈Γ(G)

ω(γ) · V
(3)
f(γ)(1) (mod m),

where VL(t) denotes the Jones polynomial1 of the link L and

V
(3)
L (1) =

d3

dt3

∣∣∣∣
t=1

VL(t).

Remark. As we will say later, the value 1
18V

(3)
K (1) is always an integer. It is known

that this 1
18V

(3)
K (1) is a basis of Vassiliev invariants of knots of order three.

Theorem 3.4. Let f : G → S3 be a spatial embedding of a finite graph G and

Γ(G) → Zm a weight.

( 1 ) If ω is balanced on every edge in E(G), then nω is a delta edge-homotopy

invariant.

( 2 ) If ω is balanced on every pair of adjacent edges in E(G), then nω is a delta

vertex-homotopy invariant.

Key of the proof. Let K+, K− and K0 be two knots and a 3-component link as
illustrated in Fig. 3.5.

Then we have that
1

18
V

(3)
K+

(1) −
1

18
V

(3)
K

−

(1) = 2Lk(K0) − 1,

1We calculate the Jones polynomial of a link by the skein relation tVJ+
(t) − t−1VJ

−

(t) =

(t−
1
2 − t

1
2 )VJ0

(t).
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K KK+ - 0

Fig. 3.5

where Lk denotes the total linking number (i.e., sum of pairwise linking numbers)
of the link K0. This is a corollary of more general formula obtained in [5]. Since

the delta move is an unknotting operation, this formula implies that 1
18V

(3)
K (1) is

an integer for any knot K.
Using this, the theorem follows from direct calculations. �

Remark. The original idea of the theorem above is the construction of an edge-
homotopy invariant of spatial graphs in [33] by using the formula a2(J+)−a2(J−) =
lk(K0), where J+, J− and J0 are two knots and a 2-component link as illustrated
in Fig. 3.6.

J + J - J 0

Fig. 3.6

Example 3.5. Let G be K4 and m ∈ Z. Let fm be a spatial embedding of G as
illustrated in Fig. 3.7 and h the trivial one.

1

2

3

4

1

2

3

4

DVH

m full twists

G=K 4

mf h

(      )

Fig. 3.7
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Let ω1 : Γ(K4) → Z4 be the weight defined by ω(γ) = 1 for every cycle γ ∈
Γ(K4). It is easily checked that this ω1 is weakly balanced on every edge in E(K4).

The image fm(K4) contains two non-trivial knots J1 and J2 as illustrated in Fig.
3.8.

1

2
4

3
1

2 3

J J1 2

Fig. 3.8

We can calculate that a2(J1) = 1 and a2(J2) = 1. Thus we have

α̃ω1
(fm) ≡ 2 (mod 4)

and also obviously we have

α̃ω1
(h) ≡ 0 (mod 4).

These conclude that fm
(DEH)h for any m ∈ Z.

Remark. It is easy to see that fm
(DVH)h for any m ∈ Z. Thus α̃ω1

can detect the
difference between delta edge-homotopy and delta vertex-homotopy.

Next we consider the weight ω2 : Γ(K4) → Z defined by

Γ(K4) 3 γ 7→

{
1 γ : 3-cycle
−1 γ : 4-cycle.

This ω2 is also checked to be balanced on every edge in E(K4). By calculations,

we obtain V
(3)
J1

(1) = 36m− 18 and V
(3)
J2

(1) = −18, and so,

nω2
(fm) =

1

18
(−18− 36m + 18) = −2m.

This implies that fi
(DEH)fj for any i 6= j. So there are infinitely many spatial

embeddings of K4 up to delta edge-homotopy which are mutually delta vertex-
homotopic.

Example 3.6. Let G = K5 and m ∈ N ∪ {0}. Let fm be a spatial embedding of

G as illustrated in Fig. 3.9. Note that fm
(EH) f0, which is achieved by the self

crossing changes as in Fig. 3.10.
Let ω : Γ(K5) → Z be the weight defined by

Γ(K5) 3 γ 7→






0 γ : 3-cycle
−1 γ : 4-cycle
1 γ : 5-cycle.

Then we can check that this ω is balanced on every pair of adjacent edges in

E(K5). After calculations, one can get nω(fm) = −2m, and therefore, fi
(DVH)fj

for any i 6= j. By Theorem 2.1, this also implies that fi
(Isot) fj for any i 6= j.
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m

m

=

m times

Fig. 3.9

(EH)

Fig. 3.10

Since all fm’s are mutually edge-homotopic, nω can detect the difference between
edge-homotopy and delta vertex-homotpy. Moreover there are infinitely many spa-
tial embeddings of K5 up to delta vertex-homotopy (resp. isotopy) which are mu-
tually edge-homotopic.

4. Delta vertex- & Edge-homotopy classication of spatial

embeddings of K4

By Corollary 2.2, disjoint cycles, K4, and D3 are the ‘smallest’ graphs admitting
non-trivial spatial embeddings up to delta vertex-homotopy. This also holds for
isotopy, I-equivalence and edge-homotopy. Thus it is natural to ask:

Question. Can we classify spatial embeddings of such ‘smallest’ graphs up to delta

vertex-homotopy?
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We note that if G is the disjoint cycles then delta vertex-homotopy coinsides
with edge-homotopy and all spatial embeddings of G can be classified completely
by the linking number [17]. In this section we give an answer to the case of K4.

Now we put G = K4 or D3 with labels depicted as in Fig. 4.1.

e

e

ee
ee

K4

1 2
3

4

5 6

D3

ee e

e
e

e1

2

3
4

5

6

Fig. 4.1

To classify spatial embeddings of K4 up to delta vertex-homotopy, we use the
weight ω2 : Γ(K4) → Z defined in Example 3.5. To simplify the notation, here we
use ω in stead of ω2. This weight is checked to be balanced on every edge in E(K4).

Remark. The weight ω is actually shown to be the unique Z-valued balanced weight
up to multiplications of constant. Such a ‘canonical’ balanced weight exists for D3,
but here we omit the details.

Since ω is balanced, in particular, is weakly balanced, on every edge in E(K4),
we can consider the invariant α̃ω. In this case, as noted in the remark just after
Definition 3.3, the invariant α̃ω is equal to v’s α-invariant αω, which is an edge
homotopy invariant.

To state our classification theorem, we need to introduce one more equivalence
relation. An adjacent-delta move is defined to be the delta move on exactly three
adjacent spatial edges as illustrated in Fig. 4.2.

Fig. 4.2. Adjacent-delta move

Remark. An adjacent-delta move does not change the types of the knots included
in the spatial graph.

Two spatial embedding f, g : G → S3 are ∆-homotopic if f and g are transformed
into each other by quasi adjacent-delta moves, adjacent-delta moves and ambient
isotopies. Then we have the following theorem.
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Theorem 4.1. Let G = K4 or D3, and ω : Γ(G) → Z the ‘canonical’ balanced

weight. Then two spatial embedding f, g : G → S3 are ∆-homotopic if and only if

αω(f) = αω(g).

It can be seen that, for a trivalent graph, an adjacent-delta move is realized by
a sequence of quasi adjacent-delta moves (see Fig. 4.3). This indicates that, for a

(DVH)

Fig. 4.3

trivalent graph G, in particular, for G = K4, two spatial embedding f, g : G → S3

are ∆-homotopic only if f (DVH)g. Consequently we obtain:

Corollary 4.2. Let f, g : K4 → S3 be two spatial embeddings of K4. Then the

following are equivalent.

( 1 ) f and g are ∆-homotopic.

( 2 ) f (DVH) g.

( 3 ) f (EH) g.
( 4 ) αω(f) = αω(g).

Outline of the proof of Theorem 4.1. The ‘only if’ part is almost clear: It follows
from the fact that αω depends essentially upon a2 and that an adjacent-delta move
does not change the types of the knots included in the spatial graph.

To prove the ‘if’ part, we construct a complete system of the representative for
the ∆-homotopy types of spatial embeddings of G. For G = K4, we prepare spatial
embeddings hm (m ∈ Z) as illustrated in Fig. 4.4.

Then we can show that if αω(f) = m, then f is ∆-homotopic to hm. We refer
the reader to [19] for the details. This completes the proof of the theorem. �

Problem. Classify spatial embeddings of D3 up to delta vertex-homotopy or edge-

homotopy.

Remark. We remark here that the α-invariant of a spatial embedding f of K4 can
be interpreted as Milnor’s µ-invariant [10] of an associated 3-component link of f .

5. Delta edge-homotopy on θ-curves

By Theorem 2.3, disjoint cycles and a θ-curve are the ‘smallest’ graphs admitting
non-trivial spatial embeddings up to delta edge-homotopy. Then again it is natural
to ask the following.
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hm

hm(e5) hm(e6)

hm(e4)

 m  times

=
(m     0)

>
=

>

where

(m     0)

Fig. 4.4

Question. Can we classify spatial embeddings of disjoint cycles and a θ-curve up

to delta edge-homotopy?

In the case of disjoint cycles, as we noted in Remark just after Definition 1.1,
the question above is equivalent to the classification problem of 2-component links
up to delta link-homotopy. This question was completely answered as follows.

Theorem 5.1 ([13, 14, 15]). Let L = J1 ∪ J2 and M = K1 ∪ K2 be oriented

2-component links. Then L (DEH) M if and only if

(i) lk(L) = lk(M) and

(ii) a3(L) − lk(L) {a2(J1) + a2(J2)} = a3(M) − lk(M) {a2(K1) + a2(K2)}.

As the result, it suffice to consider the case of a θ-curve. We prepare some
terminology. We give labels to vertices, edges and cycles of a θ-curve, and give
orientations to the edges as illustrated below. Given a spatial embedding f of a
θ-curve, it is known [7] that there uniquely exists an orientable surface Sf such
that Sf has the image of f as a spine and its Seifert linking form vanishes (i.e.,
all pairwise linking numbers of boundary curves are zero). Then we define the
associated 3-component link Lf as the boundary ∂Sf = K1

f ∪K2
f ∪K3

f , see Fig. 5.1.

u v

e

e

e

1

2

3

e1

e2

e3

1

2

3

Kf

Kf

1

Kf
2

3f

Lf

u v

Fig. 5.1. Associated 3-component link
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Note that each knot Ki
f is freely homotopic to f(γi) for i = 1, 2, 3. Let l1(f) :=

K2
f ∪ K3

f , l2(f) := K3
f ∪ K1

f , l3(f) := K1
f ∪ K2

f be the 2-component sublinks of Lf .
Note that these are all algebraically split links. Concerning these links the following
is known.

Proposition 5.2 ([31],[4]). For every spatial embedding f of a θ-curve,

a3(l1(f)) = a3(l2(f)) = a3(l3(f))

holds.

Remark. Since the link li(f) is algebraically split, we have that the Sato-Levine

invariant [28] of li(f) coincides with a3(li(f)) [1].

By virtue of the proposition above, we can define a3(f) as a3(li(f)) for some,
and hence, any i. Now we can state our classification theorem.

Theorem 5.3. Let f and g be two spatial embeddings of a θ-curve. Then f (DEH) g
if and only if a3(f) = a3(g).

Remark. By the result in [34], we can check that

a3(f) ≡
3∑

i=1

a2(f(γi)) ≡ α̃(f) (mod 2),

where the invariant α̃(f) was defined in the first example in Section 3.

Example (Kinoshita’s θ-curve). Let f be the spatial embedding as illustrated in
Fig. 5.2, called Kinoshita’s θ-curve. This is an example of the almost unknotted
theta curve.

e2e3

e1f (

f(u) f(v)

l1  f  

)

f ( )f ( )
( )

Fig. 5.2

For this f , a3(f) = a3(l1(f)) = 2. Thus f (DEH)h, where h is the trivial em-
bedding. Remark that the image of f does not contain nontrivial knots, and so,
α̃(f) = 0.

Outline of the proof of Theorem 5.3. The ‘only if’ part follows from the fact that
a3 is invariant under self-delta moves on 2-component links.

To prove the ‘if’ part, we again construct a complete system of the representative
for the delta edge-homotopy types of spatial embeddings of a θ-curves. We prepare
spatial embeddings hm,εf

, where m ∈ Z and εf ∈ {0, 1}, as illustrated in Fig. 5.3.
By a calculation we can see that a3(hm,εf

) = 2m + εf .
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      timesf

|m| times

where

=

=

(m    0)

 >  

>=(m     0)

hm,  f
(u)

hm,  f
(v)

Fig. 5.3

Then we can show that there exists an integer m (resp. n) and εf ∈ {0, 1} (resp.
εg ∈ {0, 1}) such that f (resp. g) is delta edge-homotopic to hm,εf

(resp. hn,εg
).

Thus by the assumption we have that

2m + εf = a3(hm,εf
) = a3(f) = a3(g) = a3(hn,εg

) = 2n + εg .

This implies that εf = εg and m = n. Therefore we have that f and g are delta
edge-homotopic. This completes the proof of the theorem. �

Problem. Classify spatial embeddings of K4 up to delta edge-homotopy.

Finally we give some corollaries of Theorem 5.3 and discuss about related topics.

Corollary 5.4. Any boundary θ-curve is delta edge-homotopically trivial.

Here a spatial embedding f of a θ-curve θ is called a boundary θ-curve [25] if
there exist compact, connected and orientable surfaces S1, S2 and S3 in S3 such
that Si ∩ f(θ) = ∂Si = f(γi) (i = 1, 2, 3) and intSi ∩ intSj = ∅ (i 6= j).

Proof. For a boundary theta curve f , any 2-component sublink of Lf must be a
boundary link. Since the Conway polynomial of any boundary link is zero [2], we
have that a3(f) = 0. Thus we have the result by Theorem 5.3. �

As we noted in Remark just after Definition 1.1, it is known that any 2-component
boundary link is delta edge-homotopically trivial. Thus the corollary above is the
θ-curve version of this fact. We also note that the converse of the corollary above
does not hold. Consider the spatial embedding as illustrated in Fig. 5.5. This is
actually delta edge-homotopically trivial, but is not a boundary θ-curve [27].

Besides we mention the relationship between cobordism and delta edge-homotopy
on spatial embeddings of a θ-curve. If two spatial embeddings f and g of a θ-curve
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Fig. 5.4. Boundary θ-curve

f (e2)

f (e1) l3 (f )

Fig. 5.5

are cobordant, then li(f) and li(g) are cobordant [31]. Thus we have the following
by Theorem 5.3 and the cobordism invariance of the Sato-Levine invariant.

Corollary 5.5. Let f , g be two spatial embeddings of a θ-curve. Then f (Cob) g

implies f (DEH) g. In particular, any slice embedding (recall Definition 0.3(2)) of a

θ-curve is delta edge-homotopically trivial.

It is known that such a implication does not exist for θn of n ≥ 4.
The set of cobordism classes of spatial embeddings of a θ-curve admits a non-

abelian group structure with the vertex connected sum [31, 11]. The corollary above
suggests that the set of delta edge-homotopy classes, which we denote by DEH(θ),
of spatial embeddings of a θ-curve might have a group structure.

This is actually true: DEH(θ) admits an abelian group structure with the vertex
connected sum. Besides we have the following.

Theorem 5.6. The map a3 : DEH(θ)
∼=
→ Z yields an isomorphism. A generator of

DEH(θ) is given by the theta curve f as in Figure 3.4.

Corollary 5.7. The set of delta edge-homotopy classes represented by almost trivial

θ-curves is a subgroup of DEH(θ) isomorphic to 2Z under a3. A generator of

DEH(θ) is given by Kinoshita’s theta curve.

There are infinitely many spatial embeddings of a θ-curve up to cobordism which
are almost trivial and delta edge-homotopically trivial. In fact the set of cobordism
classes of almost trivial and delta edge-homotopically trivial spatial embeddings
form a subgroup of the θ-curve cobordism group that contains Z

∞.
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