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Abstract

Two spatial embeddings of a graph are said to be delta (resp. sharp) edge-
homotopic if they are transformed into each other by self delta (resp. sharp) moves
and ambient isotopies. We show that any two spatial embeddings of a graph are
delta (resp. sharp) edge-homotopic if and only if the graph does not contain a
subgraph which is homeomorphic to the theta graph or the disjoint union of two
1-spheres, or equivalently G is homeomorphic to a bouquet.
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1. Introduction

Let G be a finite graph which does not contain a free vertex. We consider
G as a topological space in the usual way. An embedding f : G → S

3 is
called a spatial embedding of G or simply a spatial graph. A graph G is said
to be planar if there exists an embedding G → S

2. For a planar graph G,
a spatial embedding of G is said to be trivial if it is ambient isotopic to an
embedding G → S

2 ⊂ S
3. We note that a trivial spatial embedding of a

planar graph is unique up to ambient isotopy in S
3 [6].

In the following we recall the three equivalence relations on spatial
graphs generated by specific local moves as follows:

(1) A crossing change is a local move on a spatial graph as illustrated in
Fig. 1.1. A crossing change is called a self crossing change if all two strings
in the move belong to the same spatial edge. Two spatial embeddings of
a graph are said to be edge-homotopic 1 if they are transformed into each
other by self crossing changes and ambient isotopies.

(2) A delta move [7], [11] is a local move on a spatial graph as illustrated
in Fig. 1.2. A delta move is called a self delta move if all three strings in
the move belong to the same spatial edge. Two spatial embeddings of a

1 This equivalence relation was called simply a homotopy in [23].
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graph are said to be delta edge-homotopic if they are transformed into each
other by self delta moves and ambient isotopies.

(3) A sharp move [10] is a local move on a spatial oriented graph as
illustrated in Fig. 1.3. A sharp move is called a self sharp move if all
four strings in the move belong to the same spatial edge. Two spatial
embeddings of a graph are said to be sharp edge-homotopic if they are
transformed into each other by self sharp moves and ambient isotopies. If
we turn the orientations of all strings in a self sharp move the other way
at once, then the concluded move is also a self sharp move. Therefore this
equivalence relation does not depend on the edge orientations.

Fig. 1.1.

Fig. 1.2.

Fig. 1.3.

Edge-homotopy on spatial graphs was introduced by Taniyama in [23]
as a generalization of link homotopy in the sense of Milnor [8]. Delta edge-
homotopy and sharp edge-homotopy on spatial graphs were introduced by
the author in [15] and [17] as generalizations of self ∆-equivalence [22]
(or delta link homotopy [12]) and self ♯-equivalence [20] on oriented links,
respectively. It is known that the implication (2) ⇒ (3) ⇒ (1) holds [17,
Theorem 1.1].
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Obviously the crossing change is an unknotting operation, namely every
knot can be undone by crossing changes and ambient isotopies. Besides it
is well known that the delta move and the sharp move are also unknotting
operations [7], [11], [10]. In general, if any two spatial embeddings of a
graph G are transformed into each other by a finite sequence of specific local
moves and ambient isotopies, then the local move is called a uniforming
operation for the spatial embeddings of G [18]. We have already known
when the self crossing change is a uniforming operation as follows:

Theorem 1.1. ([23, Theorem B]) For a graph G, the following are equiv-
alent.
(1) Any two spatial embeddings of G are edge-homotopic.
(2) G does not contain a subgraph which is homeomorphic to K4, D3 or the
disjoint union of two 1-spheres, where K4 and D3 are graphs as illustrated
in Fig. 1.4.
(3) G is a generalized bouquet, namely there exists a vertex v of G such
that H1(G − v; Z) = 0. 2

K4 D3

Fig. 1.4.

Therefore Theorem 1.1 is an unknotting theorem for edge-homotopy on
spatial graphs. Our purpose in this paper is to determine when the self delta
(resp. sharp) move is a uniforming operation, namely giving an unknotting
theorem for delta (resp. sharp) edge-homotopy on spatial graphs. The
following is our main result.

Theorem 1.2. For a graph G, the following are equivalent.
(1) Any two spatial embeddings of G are delta edge-homotopic.
(2) Any two spatial embeddings of G are sharp edge-homotopic.
(3) G does not contain a subgraph which is homeomorphic to the graph Θ
as illustrated in Fig. 1.5 or the disjoint union of two 1-spheres.
(4) G is a bouquet, namely there exists a positive integer m such that G is
homeomorphic to the graph Bm as illustrated in Fig. 1.5.

We remark here that all of the spatial embeddings of Θ and all of the
spatial embeddings of the disjoint union of two 1-spheres, namely all spatial
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Fig. 1.5.

theta curves and all 2-component links, have been classified completely up
to delta edge-homotopy [16], [13], and up to sharp edge-homotopy [17], [21].
In the next section we prove lemmas needed later. We prove Theorem 1.2
in section 3.

2. Ck-moves on spatial graphs

In this section, we prove lemmas concerning specific local moves needed
later. A C1-move is a crossing change and a Ck-move (k ≥ 2) is a local move
on a spatial graph as illustrated in Fig. 2.1. This move was introduced by
Habiro as a local move on an oriented link [4], [2], and it was extended to
spatial graphs by Taniyama and Yasuhara from a stand point of the “band
description” [26] (see also [25], [19]). We note that the original definition
of the Ck-move is different from the one above, but it is known that each of
the original Ck-moves can be realized by local moves as illustrated in Fig.
2.1 and ambient isotopies [4]. We note that a C2-move is equivalent to a
delta move and a C3-move is called a clasp-pass move [3].

  k    k-1   k-2                     1              0   k    k-1    k-2                    1              0

Fig. 2.1.

For a Ck-move and a self delta move, we have the following.

Lemma 2.1. A Ck-move is realized by self delta moves and ambient iso-
topies if at least three of the (k + 1) strings in it belong to the same spatial
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edge. 2

The statement above was pointed out in [12, p. 179] and the case of
k = 4 was applied to classify 2-component links and spatial theta curves
up to delta edge-homotopy effectively [13], [16]. Actually we can show
Lemma 2.1 by applying ambient isotopic transformations and C2-moves on
the same spatial edge to Fig. 2.1 directly. For example, see Fig. 2.2, where
gray parts belong to the same spatial edge. We omit the details.

self delta 
  moves

Fig. 2.2.

We note that a Ck-move can be realized by a band sum of a (k + 1)-
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component Milnor link 2 [8], see Fig. 2.3. A (k +1)-component Milnor link
is one of the Ck−1-links, and it is known the following. We refer the reader
to [25], [19], [26] for details.

Lemma 2.2. Each of the local moves as illustrated in Fig. 2.4 (1), (2)
and (3) is realized by Ck-moves and ambient isotopies, where Mk denotes
a k-component Milnor link. 2

  k    k-1   k-2                     1              0   k    k-1   k-2                     1              0

  k    k-1   k-2                     0              1

-component Milnor link(k+1)

Hopf link

C  1

C  k

Fig. 2.3.

Therefore, a fusion band with a k-component Milnor link can leap over
a spatial edge, and a root of a fusion band with a k-component Milnor link
can pass through a root of a fusion band with another k-component Milnor

2 A 2-component Milnor link is a Hopf link, and an n(≥ 3)-component Milnor link can be defined as
one of the iterated Bing doubles of a Hopf link [1].
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Fig. 2.4.

link by Ck-moves and ambient isotopies. We note that any of the full twists
of a fusion band with a k-component Milnor link can be cancelled out by
Fig. 2.4 (2).

A Ck-move is called an adjacent Ck-move if all (k + 1) strings in the
move belong to exactly (k + 1) mutually adjacent spatial edges. Here we
regard a loop as two mutually adjacent edges. The following lemma is a
generalization of the facts that a crossing change between adjacent spatial
edges is realized by delta moves and ambient isotopies [9] and a delta move
between exactly three mutually adjacent spatial edges is realized by clasp-
pass moves and ambient isotopies [24, Lemma 3.2].

Lemma 2.3. An adjacent Ck-move is realized by Ck+1-moves and ambient
isotopies.

Proof. We note that any adjacent Ck-move can be realized by a band
sum of a (k+1)-component Milnor link, where the roots of all of the fusion
bands with the link belong to exactly (k + 1) mutually adjacent spatial
edges. It is sufficient to show that this Milnor link can be cancelled out by
Ck+1-moves and ambient isotopies. By Lemma 2.2, we can draw the link
up sufficiently near by the shared vertex and deform it into the one on the
left-hand side in Fig. 2.5 if k = 1 and Fig. 2.6 if k ≥ 2 identically by

Ck+1-moves and ambient isotopies, where = or . In the case
of k = 1, this Hopf link is cancelled out up to ambient isotopy. Thus the
result holds for k = 1.
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Fig. 2.5.

Fig. 2.6.

Next we show the case of k ≥ 2. Let us consider the diagrams as
illustrated in Fig. 2.7 which satisfies the following:

(1) ci,1 = or (i 6= 1).

(2) If c0,1 = , then c1,1 = or .

(3) If c0,1 = , then c1,1 = or .

(4) If ci,1= , then ci,2= .

(5) If ci,1= , then ci,2= .

It is easy to see that each of the two diagrams on the lower part is ambient
isotopic to the diagram on the upper part. On the other hand, the two
diagrams on the lower part are transformed into each other by an obvious
adjacent Ck-move and ambient isotopies, namely this Ck-move is realized
by a band sum of a (k +1)-component Milnor link. Then we can produce a
(k +1)-component Milnor link with the arbitrary pattern of the half twists
of the fusion bands with the link up to Ck+1-moves and ambient isotopies,
see the case of k = 5 as illustrated in Fig. 2.8. This implies that an adjacent
Ck-move can be realized by Ck+1-moves and ambient isotopies. 2
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Fig. 2.7.

3. Proof of Theorem 1.2

Proof of Theorem 1.2. (1) ⇒ (2): It is known that a delta move
is realized by sharp moves on the strings in the delta move and ambient
isotopies [14]. Thus the result is clear.

(2) ⇒ (3): We note that if two spatial embeddings f and g of G are
sharp edge-homotopic then f |H and g|H are sharp edge-homotopic for any
subgraph H of G. It is known that a spatial theta curve as illustrated in Fig.
3.1 is non-trivial up to sharp edge-homotopy [17, Example 3.6]. Besides we
have that a Hopf link is non-trivial up to sharp edge-homotopy because the
linking number is a sharp-edge homotopy invariant of an oriented link. So
we have the result.

(3) ⇒ (4): Let G be a graph which does not contain a subgraph which
is homeomorphic to Θ or the disjoint union of two 1-spheres. Let K5 and
K3,3 be the graphs as illustrated in Fig. 3.2. It is well known that a graph
is planar if and only if the graph does not contain a subgraph which is
homeomorphic to K5 or K3,3 [5]. Since each of K5 and K3,3 contains a
subgraph which is homeomorphic to Θ, we have that G is a planar graph
which does not contain mutually disjoint cycles. Thus by [23, Theorem C]
we have that G is homeomorphic to a double trident, a multi-spoke wheel or
a generalized bouquet. Here a double trident and a multi-spoke wheel are
graphs as illustrated in Fig. 3.3 (1) and (2), respectively, where a gray edge
is allowed to have arbitrary multiplicity. Since each of double tridents and
multi-spoke wheels contains a subgraph which is homeomorphic to Θ, the
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Fig. 3.1.

graph G must be a generalized bouquet. Moreover G must be a bouquet
because G does not contain a subgraph which is homeomorphic to Θ. So
we have the result.

K5 K3,3

Fig. 3.2.

(1) (2)

Fig. 3.3.

(4) ⇒ (1): We show that any spatial embedding f of Bm is trivial up
to delta edge-homotopy. Let h be the trivial spatial embedding of Bm.
It is clear that f and h are transformed into each other by C1-moves and
ambient isotopies. Then we can regard each of the C1-moves as an adjacent
C1-move. Thus by Lemma 2.3 we have that f and h are transformed into
each other by C2-moves and ambient isotopies. For each of these C2-moves,
if all of the three strings in the C2-move belong to the same knot in f(Bm),
it is realized by self delta moves and ambient isotopies by Lemma 2.1.
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Otherwise we can regard this C2-move as an adjacent C2-move. Thus by
Lemma 2.3 we have that f and h are transformed into each other by C3-
moves, self delta moves and ambient isotopies. For each of these C3-moves,
if at least three of the four strings in the C3-move belong to the same knot
in f(Bm), it is realized by self delta moves and ambient isotopies by Lemma
2.1. Otherwise we can regard this C3-move as an adjacent C3-move. Thus
by Lemma 2.3 we have that f and h are transformed into each other by
C4-moves, self delta moves and ambient isotopies.

By following the procedure above repeatedly, we have that f and h are
transformed into each other by C2m-moves, self delta moves and ambient
isotopies. Then we can see that for each of the C2m-moves there exists
a knot in f(Bm) such that at least three of the (2m + 1) strings in the
C2m-move belong to it. So it is realized by self delta moves and ambient
isotopies by Lemma 2.1. Therefore we have that f and h are transformed
into each other by self delta moves and ambient isotopies, namely f is delta
edge-homotopic to h. This completes the proof. 2
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