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1. Completely distinguishable projection

Let G be a finite graph. We give a label to each of vertices and edges of

G and denote the set of all vertices and the set of all edges of a graph G

by V (G) and E(G), respectively. An embedding of G into R3 is called a

spatial embedding of G or simply a spatial graph. Two spatial embeddings

f and g of G are said to be ambient isotopic if there exists an orientation

preserving homeomorphism Φ : R3 → R3 such that Φ ◦ f = g. A graph G

is said to be planar if there exists an embedding of G into R2 . A spatial

embedding of a planar graph G is said to be trivial if it is ambient isotopic

to an embedding of G into R2 ⊂ R3. Such an embedding is unique up to

ambient isotopy in R3 [7].

A regular projection of G is an immersion G → R2 whose multiple points

are only finitely many transversal double points away from vertices. For

a regular projection f̂ of G with p double points, we can obtain 2p regular

diagrams of the spatial embeddings of G from f̂ by giving over/under

information to each double point. Then we say that a spatial embedding

f of G is obtained from f̂ if f is ambient isotopic to a spatial embedding

of G which is represented by one of these 2p regular diagrams. If these

2p regular diagrams represent mutually different spatial embeddings of G

up to ambient isotopy, then we say that f̂ is completely distinguishable.

A completely distinguishable projection of G is said to be trivial if it has

no double points. Therefore every planar graph has a trivial completely
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distinguishable projection.

Example 1.1. Let G be the octahedron graph and f̂ a regular projection

of G as illustrated in Fig. 1.1. We can obtain the eight spatial embeddings

g1, g2, . . . , g8 of G from f̂ as illustrated in Fig. 1.2. Then, by observing

the constituent knots and links we can see that gi and gj are not ambient

isotopic for i 6= j. Thus f̂ is a non-trivial completely distinguishable

projection.
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2. Completely distinguishable projections of planar graphs

A regular projection f̂ of a planar graph G is said to be knotted [13]

if any spatial embedding of G obtained from f̂ is non-trivial. Actually,

the regular projection f̂ of the octahedron graph as in Example 1.1 is an

example of the knotted projection. A planar graph is said to be trivializable

[13] if it has no knotted projections. For example, if G is homeomorphic

to the disjoint union of 1-spheres, then G is trivializable. It is known that

there exist infinitely many trivializable planar graphs [13], [10], [11]. Then

we have the following.

Proposition 2.1. (1) Let G be a trivializable planar graph. Then a regu-

lar projection f̂ of G is completely distinguishable if and only if it has no

double points.

(2) Let G be a non-trivializable planar graph. If a regular projection f̂ of

G is a non-trivial completely distinguishable projection then it is knotted.

Actually it is easy to see that any spatial embedding of a graph which

can be obtained from a non-trivial completely distinguishable projection

of the graph is not ambient isotopic to its mirror image. By this fact, we

can prove Proposition 2.1. We note that the converse of Proposition 2.1

(2) is not true, see Examples 2.2 and 2.3.

Example 2.2. Let G be a non-trivializable planar graph and f̂ a com-

pletely distinguishable projection of G. Then by producing the local parts

in f̂(G) as illustrated in Fig. 2.1, we can construct another knotted pro-

jection which is not completely distinguishable.

Fig. 2.1.
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Example 2.3. Let G be a planar graph and f̂ a regular projection of

G as illustrated in Fig. 2.2. Since f̂(G) contains a image of the knotted

projection of Example 1.1, we have that f̂ is knotted. We can also check

that f̂(G) does not contain any local parts as in Fig. 2.1. But Fig. 2.3

shows that f̂ is not completely distinguishable.
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In this case, let us consider the regular projection of the spatial embed-

ding of G as illustrated in the middle of Fig. 2.3 in the natural way. Then

we can see that this regular projection is completely distinguishable.
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3. Completely distinguishable projections of non-planar graphs

Let Kn be the complete graph on n vertices and Km,n the complete bi-

partite graph on m + n vertices. By Kuratowski’s well known theorem

[6], we have that Kn is non-planar if n ≥ 5, and Km,n is non-planar if

min{m, n} ≥ 3.

Theorem 3.1. Each of Kn and Km,n has a completely distinguishable

projection.

We note that each of Kn for n ≤ 4 and Km,n for min{m, n} ≤ 2 is planar

and trivializable [10]. So in this case only embeddings from the graph into

R2 are completely distinguishable projections by Proposition 2.1 (1).

To prove Theorem 3.1, we recall the Wu invariant [16] of a spatial graph.

Let X be a topological space and

C2(X) = {(x, y) ∈ X × X | x 6= y}

the configuration space of ordered two points of X. Let σ be an invo-

lution on C2(X) defined by σ(x, y) = (y, x). Then we call the integral

cohomology group of Ker(1+σ#) the skew-symmetric integral cohomology

group of the pair (C2(X), σ) and denote it by H∗(C2(X), σ). It is known

that H2(C2(R
3), σ) ∼= Z [16]. We denote a generator of H2(C2(R

3), σ)

by Σ. Let f be a spatial embedding of a graph G. Then f induces a

homomorphism

(f 2)∗ : H2(C2(R
3), σ) −→ H2(C2(G), σ).

We call (f 2)∗(Σ) the Wu invariant of f and denote it by L(f). In partic-

ular, if G is homeomorphic to K5 or K3,3 then H2(C2(G), σ) ∼= Z [14] and

L(f) coincides with the Simon invariant [12]. Fig. 3.1 illustrates some

spatial embeddings of K5 and K3,3 with their Simon invariants under the

suitable orientations of edges. We note that L(f) coincides with twice

the linking number if G is homeomorphic to the disjoint union of two 1-

spheres. We refer the reader to [14] for a diagramatic calculation of L(f).

The generator Σ of H2(C2(R
3), σ) depends on the orientation of R3 [16],
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namely it holds that L(f !) = −L(f) for a spatial embedding f of G, where

f ! denotes the mirror image of f . Since H2(C2(G), σ) is torsion free [14],

we have that if f is ambient isotopic to f ! then L(f) = 0. It is known

that L(f) 6= 0 for any spatial embedding f of a non-planar graph, namely

any spatial embedding of a non-planar graph is not ambient isotopic to its

mirror image [9].

In the following we show that Kn has a completely distinguishable pro-

jection. Since Kn has a trivial completely distinguishable projection for

n ≤ 4, we assume that n ≥ 5. We set V (Kn) = {v1, v2, . . . , vn}. We

denote the edge of Kn connecting vi and vj by ei,j (1 ≤ i, j ≤ n). Let

Wn = Cn−1 ∪ st(vn) be a subgraph of Kn embedded in R2 as illustrated in

Fig. 3.2, where Cn−1 = e1,2 ∪ e2,3∪ · · ·∪ e1,n−1 and st(vn) = ∪n−1
i=1 ei,n. Then

Cn−1 divides R2 into two domains and we can construct a regular projec-

tion f̂ : Kn → R2 by embedding each of the edges in E(Kn) − E(Wn)

into the non-compact domain such that any pair of the edges ei,j and ek,l

(1 ≤ i < k < j < l ≤ n − 1) has exactly one double point and the other

pair of the edges has no double points. Let P be the double point between

ei,j and ek,l (1 ≤ i < k < j < l ≤ n − 1). Then we can find a subgraph

H = Cn−1 ∪ ei,n ∪ ek,n ∪ ej,n ∪ el,n ∪ ei,j ∪ ek,l of Kn which is homeomor-
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phic to K5 such that f̂ |H is a regular projection of H with exactly one

double point P . Let g and g! be exactly two spatial embeddings of H

which can be obtained from f̂ |H . Then we have that |L(g)| = |L(g!)| = 1.

Since L(g!) = −L(g), we have that L(g) 6= L(g!). This implies that f̂ is

completely distinguishable. We can also prove that Km,n has a completely

distinguishable projection in a similar way by using the Simon invariant of

a spatial embedding of K3,3 instead of the one of K5. Fig. 3.3 illustrates

a construction of a completely distinguishable projection of Km,n.
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We remark here that the construction above is based on a complete

calculation of the Wu invariants of spatial embeddings of Kn and Km,n by
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the author, see [8] for the details.

Conjecture 3.2. Every graph has a completely distinguishable projection.

4. Minimal crossing projection

Let c(f̂) be the number of double points of a regular projection f̂ : G →

R2. Then we call c(G) = min{c(f̂) | f̂ : G → R2 is a regular projection}

a minimal crossing number of G. A regular projection f̂ : G → R2 of G is

called a minimal crossing projection if c(f̂) = c(G). Let f̂ be a completely

distinguishable projection of K6 (resp. K3,4) constructed by the method

in the proof of Theorem 3.1. Since c(K6) = 3 and c(K3,4) = 2 (cf. [4]),

we can see that f̂ is not a minimal crossing projection. Then we ask the

following.

Question 4.1. (M. Ozawa) Is a minimal crossing projection a completely

distinguishable projection?

Note that a minimal crossing projection of a planar graph is an em-

bedding of the graph into R2, namely a trivial completely distinguishable

projection. Besides we can give an affirmative answer to Question 4.1 for

the case of minimal crossing number one [9].

We present a piece of circumstantial evidence as follows. Let f̂ be the

regular projection of K2n, which is Blažek-Koman’s construction of a can-

didate for the minimal crossing projection of K2n [1]. Fig. 4.1 illustrates

the case of n = 4 and in this case f̂ is a minimal crossing projection of

K8.
1 Then we can see that f̂ is completely distinguishable in a similar

way as the proof of Theorem 3.1.

Next, let f̂ be the regular projection of Km,n, which is Zarankiewicz’s

construction of a candidate for the minimal crossing projection of Km,n

[17]. Fig. 4.2 illustrates the case of m = n = 6 and in this case f̂ is

1 R. K. Guy conjectured in [2] that

c(Kn) =
1

4

⌊n

2

⌋⌊n − 1

2

⌋⌊n − 2

2

⌋⌊n − 3

2

⌋

and showed that the conjecture above is true for n ≤ 10 [3].

8



1

2 3

4

5

6
7

8

1

2 3

4

5

6 7

8

Fig. 4.1. f̂ : K2n → R2 (n = 4)

a minimal crossing projection of K6,6.
2 Then we can also see that f̂ is

completely distinguishable in a similar way as the proof of Theorem 3.1.
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Fig. 4.2. f̂ : Km,n → R2 (m = n = 6)

Conjecture 4.2. Every minimal crossing projection is completely distin-

guishable.
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