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Alexander polynomials of knots which are transformed into the trefoil

knot by a single crossing change

In this talk, we will characterize the Alexander polynomials of knots which are
transformed into the trefoil knot (and into the figure-eight knot) by a single cross-

ing change.
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The differences of Alexander polynomials caused by a single crossing
change in the case of 103,
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Open flat virtual links and homotopy invariants of nanophrases
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Bounds for minimum step number of knots in the simple cubic lattice

Knots appear in DNA as well as in proteins. The number of monomers needed
to construct such a knot is an important parameter. We address this problem by
considering, both analytically and numerically, minimum step number of knots in
the simple cubic lattice. This is a joint work with R. Scharein, K. Ishihara, J.
Arsuaga, Y. Diao and M. Vazquez.

FW FIE (KRTMILKEHFIEA)
An enumeration of non-prime theta-curves and handcuff graphs with
up to seven crossings

We have enumerated all the prime theta-curves and handcuff graphs with up to
seven crossings by using algebraic tangles and prime basic theta-polyhedra. Here, a
theta-polyhedron is a connected graph embedded in a 2-sphere, whose two vertices
are 3-valent, and the rest are 4-valent. We can obtain theta-curve and handcuff
graph diagrams from theta-polyhedra by substituting algebraic tangles for their 4-
valent vertices. We can composite many spatial graphs by using “connected sum”
of them. However, for spatial graphs, “connected sum” is not unique. Therefore
we improve theta-polyhedra to enumerate non-prime theta-curves and handcuff
graphs. In this talk, we enumerate non-prime theta-curves and handcuff graphs

with up to seven crossings.
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Producing new intrinsically knotted or 3-linked graphs

A graph is said to be intrinsically knotted or 3-linked if every spatial embedding
of the graph contains either a nontrivial knot or a nonsplittable 3-component
link. We show that a graph consisting of the complete graph on six vertices and
the complete graph on five vertices connected by disjoint five edges and a graph
consisting of the complete tripartite graph on 3 + 3 + 1 vertices and the complete
graph on five vertices connected by disjoint five edges are intrinsically knotted or
3-linked.

BEA BE (KRTIIAXZEXFEREZHEH)
The table of pseudo-prime genus two handlebody-knots with up to six



crossings

This is a joint work with Atsushi Ishii, Hiromasa Moriuchi and Masaaki Suzuki.
A genus two handlebody-knot is a genus two handlebody embedded in the 3-sphere.
A handlebody-knot can be represented by a spatial trivalent graph as its regular
neighborhood. A handlebody-knot is pseudo-prime if every spatial trivalent graph
which represents the handlebody-knot does not have a composite minimal diagram.
Our aim is to enumerate all pseudo-prime genus two handlebody-knots with up to

SiX crossings.
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Unknotting singular charts with no black vertices by reducing node-
pairs

We see whether singular charts without black vertices can be deformed to the
trivial chart by reducing node-pairs only. It is not true if the degree of the singular

chart is at least four, while it is true if the degree is at most three.
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Knots with two trivial coefficient polynomials
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H(2)-Gordian distance of knots

An H(2)-move is a local move of a knot which is performed by adding a half-
twisted band. It is known an H(2)-move is an unknotting operation. We define
the H(2)-Gordian distance of two knots to be the minimum number of H(2)-moves
needed to transform one into the other. We give several methods to estimate the
H(2)-Gordian distance of knots. Then we give tables of H(2)-Gordian distances

of knots with up to 7 crossings.
fEX B (RREXZXREZERZTFZHER)
Invariants of knot projections
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A note on positive knots of genus two



This is a joint work with Kengo Kishimoto. We show that positive knots of
genus two are positive alternating or almost positive alternating. Here a knot is
almost positive alternating if the knot is non-alternating and has a diagram such

that a single crossing change turns the diagram into a positive alternating one.
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Applying spatial graph imitations to links

Some applications on imitations of spatial graphs to links are given.
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Boundary slopes and degeneracy slopes for knots

We will consider the distances between degeneracy slopes for essential lamina-
tions and boundary slopes of essential embedded surfaces in a compact orientable
irreducible 3-manifold with toral boundary. There are two applications:

(a) Any degeneracy slope for an essential lamination in the exterior of a hyperbolic
alternating knot must be meridional. This affirmatively answers a part of the
conjecture raised by Gabai and Kazez;

(b) There are two bounds about boundary slopes for a hyperbolic knot in an
integral homology sphere, at least one of which always holds: One is about de-
nominators of boundary slopes, and the other is about the differences of boundary
slopes. This gives a generalization to the result on Montesinos knots obtained by

the author and Mizushima.
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Algorithm for finding parameter of tunnels

Cho and McCullough show that there is a numerical parameterization for any
tunnel of a knot or link in the 3-sphere. In this talk we show an algorithm for

finding the parameter by using its Heegaard diagram.
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