東京女子大トポロジーセミナー2013年10月19日

曲面に接した空間グラフのトポロジー Topology of spatial graphs attaching to a surface

河内 明夫 Kawauchi, Akio

大阪市立大学数学研究所 Osaka City University Advanced Mathematical Institute

References for this special topics

- [1] A. Kawauchi, On a complexity of a spatial graph. in: Knots and soft-matter physics, Topology of polymers and related topics in physics, mathematics and biology, Bussei Kenkyu 92-1 (2009-4), 16-19.
- [2] A. Kawauchi, On transforming a spatial graph into a plane graph, in: Statistical Physics and Topology of Polymers with Ramifications to Structure and Function of DNA and Proteins, Progress of Theoretical Physics Supplement, No. 191(2011),

235-244.

[3] A. Kawauchi, Spatial graphs attaching to a surface, in preparation.

<u>Question</u>. In what sense , this object is "knotted" or "unknotted" ?

In this talk, the answer will be "β-unknotted" but "knotted", "γ-knotted" and "Γ-knotted" under some definitions introduced from now.

Example B: Proteins attached to a cell surface Some points of S. B. Prusiner's theory are:

By losing the N-terminal region, Prion precursor protein changes into Cellular PrP (PrP^c) or Scrapie PrP (PrP^{SC}), and α-helices change into β-sheets.
The conformations of PrP^c and PrP^{SC} may differ although the linear structures are the same.
There is one S-S combination.

- Z. Huang et al., Proposed three-dimensional Structure for the cellular prion protein, Proc. Natl. Acad. Sci. USA, 91(1994), 7139-7143.
- K. Basler et al., Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene, Cell 46(1986), 417-428.

Prion Precursor Protein

From:

K. Yamanouchi & J. Tateishi Editors, Slow Virus Infection and Prion (in Japanese), Kindaishuppan Co. Ltd. (1995)

<u>Definition.</u> A prion-string is a spatial graph $K = \ell$ (K) $\cup \alpha(K)$ in the upper half space H^3 consisting of <u>S-S loop</u> $\ell(K)$ and <u>GPI-tail</u> $\alpha(K)$ joining the S-S vertex in $\ell(K)$ with the <u>GPI-anchor</u> in ∂H^3 .

Type IType IIType III

Topological models of prion-proteins (cf. [J. Math. System Sci. 2012])

[J. Math. System Sci. 2012]

A. Kawauchi and K. Yoshida, Topology of prion proteins, Journal of Mathematics and System Science 2(2012), 237-248.

Example C: A string-shaped virus

A virus of EBOLA haemorrhagic fever

http://www.scumdoctor.com/Japanese/disease-prevention/infectiousdiseases/virus/ebola/Pictures-Of-The-Effects-Of-Ebola.html

1. Several notions on unknotted graphs

1.1. A based diagram and a monotone diagram Let Γ be a graph without degree one vertices, and G = G(Γ) a spatial graph in R³. Let Γ_i (i=1,2,...,r) be an ordered set of the components of Γ , and $G_i = G(\Gamma_i)$ the corresponding spatial subgraph of $G = G(\Gamma)$. Let T_i be a <u>maximal tree</u> of G_i . Note: We consider a topological graph without degree 2 verticies, so that $T_i = \phi$ if G_i is a knot or link, and T_i = one vertex if G_i has just one vertex (of degree \geq 3).

Let $T = T_1 \cup T_2 \cup \dots \cup T_r$. Call it a <u>base</u> of G. <u>Note:</u> There are only finitely many bases of G. G is obtained from a basis T by attaching <u>edges</u> (i.e., arcs or loops) to T.

Let D be a diagram of a spatial graph $G=G(\Gamma)$, and D_T the sub-diagram of D corresponding to T. Let $c_D(D_T)$ be the number of crossing points of D whose upper or lower crossing points belong to D_T . **<u>Definition.</u>** D is a <u>based diagram</u> (on base T), written as (D;T) if $c_D(D_T)=0$.

Lemma. For ∀base T of G, ∀diagram D of G is deformed into a based diagram on T by generalized Reidemeister moves.

The generalirez Reidemeister moves:

Let α be an edge of G=G(Γ) attaching to a base T.

<u>Definition</u>. An edge diagram D_{α} in a diagram D of G is <u>monotone</u> if:

A sequence on the edges of a based graph (G ,T) is <u>regularly ordered</u> if an order on the edges such that any edge belonging to G_i is smaller than any edge belonging to G_j for i<j is specified. **<u>Definition.</u>** A based diagram (D;T) is <u>monotone</u> if there is a regularly ordered edge sequence α_i (i=1,2,...,m) of (G,T) such that D_{α_i} is monotone and D_{α_i} is upper than D_{α_i} for i<j.

1.2. Complexity

Definition.

The <u>warping degree</u> d(D;T) of a based diagram (D;T) is the least number of crossing changes on edge diagrams attaching to T needed to obtain a monotone diagram from (D;T).

The crossing number of (D;T) is denoted by c(D;T).

If D is a knot or link diagram or an edge diagram, then the warping degree and crossing number of D are denoted by d(D) and c(D), respectively.

A similar notion for a knot or link is given in :

[Lickorish-Millett 1987] W. B. R. Lickorish and K. C. Millett, A polynomial invariant of oriented links, Topology 26(1987), 107-141.

[Fujimura 1988] S. Fujimura, On the ascending number of knots, thesis, Hiroshima University, 1988.

[Fung 1996] T. S. Fung, Immersions in knot theory, a dissertation, Columbia University, 1996.

[Kawauchi 2007] A. Kawauchi, Lectures on knot theory (in Japanese), Kyoritu Shuppan, 2007.

[Ozawa 2010] M. Ozawa, Ascending number of knots and links. J. Knot Theory Ramifications 19 (2010), 15-25.

[Shimizu 2010] A. Shimizu, The warping degree of a knot diagram, J. Knot Theory Ramifications 19(2010), 849-857.

Properties of the warping degree

(1) For the warping degree \vec{d} of an *oriented* edge diagram D_{α} ,

$$\vec{d}(D_{\alpha}) + \vec{d}(-D_{\alpha}) = c(D_{\alpha}),$$

$$d(D_{\alpha}) = \min\{\overrightarrow{d}(D_{\alpha}), \overrightarrow{d}(-D_{\alpha})\}.$$

(2) [**Shimizu** 2010] For an oriented knot diagram D,

$\overrightarrow{d}(D) + \overrightarrow{d}(-D) \leq c(D)-1,$

where the equality holds if and only if D is an alternating diagram.

Definition.

The <u>complexity</u> of a based diagram (D;T) is the pair cd(D;T)=(c(D;T), d(D;T)) together with the dictionary order. $d(D;T) \leq c(D;T)$ implies:

<u>Note (</u>A. Shimizu).

The dictionary order on cd(D;T) is equivalent to the numerical order on c(D;T)²+d(D;T).

Definition.

The complexity of a spatial graph G is

 $\gamma(G) = \min\{cd(D;T) | (D;T) \in [D_G]\}$ (in the dictionary order).

Let $\gamma(G) = (c_{\gamma}(G), d_{\gamma}(G)).$

<u>**Our basic viewpoint of complexity.</u>** This complexity is reducible by a crossing change $\checkmark \Leftrightarrow \checkmark$ or a splice $\checkmark \Rightarrow$ (or until we obtain a graph in a plane.</u> (1) If $d_{\gamma}(G)>0$, then $\exists G'$ with $\gamma(G')<\gamma(G)$ by a crossing change. $d_{\gamma}(G)=0 \Leftrightarrow G$ is equivalent to G' with a monotone diagram (D';T') with $c_{\gamma}(D';T')=c_{\gamma}(G)$.

(2) If $c_{\gamma}(G)>0$, then $\exists G'$ with $\gamma(G')<\gamma(G)$ by a splice.

 $c_{\gamma}(G)=0 \Leftrightarrow G$ is equivalent to a graph in a plane.

1.3. The warping degree and an unknotted graph

Definition.

The <u>warping degree</u> of G is : $d(G) = min\{d(D;T) | (D;T) \in [D_G]\}$

Definition.

G is **<u>unknotted</u>** if d(G)=0.

When Γ consists of loops, G is unknotted ⇔ G is a trivial link. Assume Γ has a vertex of degree ≥ 3 . Lemma 1.3.1. For $\forall G$, \exists finitely many crossing changes on G to make G with d(G)=0.

Lemma 1.3.2. For \forall given graph Γ , \exists only finitely many G of Γ with d(G)=0 up to equivalences.

Lemma 1.3.3. If d(G)=0, then $\exists T$ such that G/T is equivalent to $S^1 \vee S^1 \vee ... \vee S^1 \subset R^2$. **Lemma 1.3.4.** A connected G with d(G)=0 is deformed into a basis T by a sequence of edge reductions:

<u>Corollary 1.3.5.</u> For \forall G with d(G)=0, \exists T such that every edge (arc or loop) attaching to T is in a trivial constituent knot.

cross index =0

cross index =1

The <u>total cross index</u> of Γ on D_T : $\epsilon(\Gamma; D_T) = \sum_{i < j} \epsilon(\alpha_i, \alpha_j).$ <u>Lemma 1.3.6.</u> Let d(G)=0. Then $\min\{c(D;T) | (D;T) \in [D_G], d(D;T)=0\} = \epsilon(\Gamma; D_T).$

Conway-Gordon Theorem.

Every spatial 6-complete graph K₆ contains a non-trivial constituent link.

Every spatial 7-complete graph K₇ contains a non-trivial constituent knot.

An unknotted K₆

An unknotted K₇

1.4. The γ-warping degree and a γ-unknotted graph

Definition.

The γ -**warping degree** of G is the number $d_{\gamma}(G)$ for the complexity $\gamma(G) = (c_{\gamma}(G), d_{\gamma}(G))$ of G.

Definition. G is γ -**unknotted** if d_{γ}(G) =0.

 γ -unknotted \Rightarrow unknotted

<u>1.5. A Γ-unknotted graph and the (γ,Γ)-warping</u> <u>degree</u>

Let $\gamma(\Gamma) = \min{\{\gamma(G) \mid G \text{ is a spatial graph of } \Gamma\}}$.

Definition.

A Γ -**unknotted** graph G is a spatial graph of Γ with $\gamma(G) = \gamma(\Gamma)$.

Note.

- (1) Let $\gamma(\Gamma) = (c_{\gamma}(\Gamma), d_{\gamma}(\Gamma))$. Then $d_{\gamma}(\Gamma) = 0$.
 - Γ -unknotted $\Rightarrow \gamma$ -unknotted \Rightarrow unknotted.
- (2) $c_v(\Gamma)=0$ if and only if Γ is a plane graph.
- (3) A spatial plane graph G is Γ-unknotted⇔ G is equivalent to a graph in a plane.

Definition.

- $O = \{ unknotted graphs of \Gamma \}.$
- $O_{\gamma}^{G} = \{\gamma \text{-unknotted graphs on } (D;T) \in [D_{G}]$ with $cd(D;T)=\gamma(G)\}.$
- $O_{\gamma} = \bigcup \{O_{\gamma}^{G} | G \text{ is a spatial graph of } \Gamma \}$ = { γ -unknotted graphs of Γ }.
- $O_{\Gamma} = \{\Gamma \text{-unknotted graphs}\}.$

Then $O \supset O_{\gamma} \supset O_{\Gamma}$.

<u>Note</u>: $O_{\gamma}^{G} \subset O_{\Gamma}$ or $O_{\gamma}^{G} \cap O_{\Gamma} = \phi$ for every G.

Definition.

The (γ, Γ) -**warping degree** $d_{\gamma}^{\Gamma}(G)$ of G is: $d_{\gamma}^{\Gamma}(G) = d_{\gamma}(G) + \rho(O_{\gamma}^{G}, O_{\Gamma}).$

(p denotes the Gordian distance.)

By definition,
$$d(G) \leq d_{\gamma}(G) \leq d_{\gamma}^{\Gamma}(G)$$
.

 $d_{\gamma}^{\Gamma}(G) = 0$ if and only if G is Γ -unknotted.

1.6. Examples

G has $c_{\gamma}(G)=2$, for G has a Hopf link as a constituent link.

$$d(G)=d_{\gamma}(G)=0.$$

Because G is a planar graph, if G is Γ -unknotted, then c $_{\gamma}(G)=0$, a contradiction. Hence d $_{\gamma}(G)=1$. Lemma 1.6.2. (1) ([Fung 1996] , [Ozawa 2010]) If K is a knot with d(K)=1, then K is a non-trivial twist knot.

(2) If G is a θ-curve with d(G)=1, then the 3 constituent knots of G consist of two trivial knots and one non-trivial twist knot.

<u>Example 1.6.3.</u> (([Fung 1996] , [Ozawa 2010], [Shimizu 2010])

For K=
$$5_2$$
, we have

$$c_{\gamma}(K)=5, d(K)=1 < d_{\gamma}(K)=d_{\gamma}^{I}(K)=2.$$
Example 1.6.4.

$$c_{\gamma}(K)=6, d(K)=d_{\gamma}(K)=d_{\gamma}^{I}(K)=2.$$

In fact, $d_{\gamma}^{\Gamma}(K) \leq 2$:

By Lemma, $d(K) \ge 2$ (, for K is not any twist knot).

Example 1.6.5. (Kinoshita's θ-curve)

$$c_{\gamma}(G) = 7 \text{ and } d(G) = d_{\gamma}(K) = d_{\gamma}^{\Gamma}(G) = 2.$$

a based diagram of G a monotone diagram

 $O_{\gamma}^{G}=O_{\Gamma}$ implies $\rho(O_{\gamma}^{G},O_{\Gamma})=0$. Hence $d_{\gamma}(G)=d_{\gamma}^{\Gamma}(G)$. Since G is non-trivial and the 3 constituent knots are trivial, we have $d(G) \ge 2$ by Lemma. Hence, if $c_{\gamma}(G)=7$, then $d(G)=d_{\gamma}(G)=d_{\Gamma}^{\Gamma}(G)=2$. By the diagram, $c_{\gamma}(G) \leq 7$. We show $c_{\gamma}(G) \geq 7$. By the classification of algebraic tangles with crossing numbers ≤ 6 in:

[Moriuchi 2008] H. Moriuchi, Enumeration of algebraic tangles with applications to theta-curves and handcuff graphs, Kyungpook Math. J. 48(2008), 337-357

the Kinoshita's θ -curve G cannot have any based diagram with crossing number ≤ 6 . Hence $c_{\gamma}(G)=7$.

For a base $T = T_1 U T_2 U ... U T_r$ of G, let B be the disjoint union of mutually disjoint 3-ball neighborhoods B_i of T_i in S^3 (i=1,2,...,r). Let $B^{c} = cl(S^{3}-B)$ be the complement domain of B with $L=B^{c} \cap G=a_{1} \cup a_{2} \cup \dots \cup a_{n}$ an n-string tangle in B^c, called the **complementary tangle** of T.

Definition. G is <u> β -unknotted</u> if \exists a base T of G

whose complementary tangle (B^c,L) is trivial.

A trivial complementary tangle

Example 1.7.1. For a θ -curve Γ , $\exists \infty$ -many

 β -unknotted graphs G of Γ up to equivalences.

Example 1.7.2. Triviality of the complementary tangle (B^c,L) depends on a choice of a base.

Example 1.7.3. If G is β -unknotted, then G is a **free graph** (i.e., $\pi_1(\mathbb{R}^3-\mathbb{G})$ is a free group), but the converse is not true.

A free β -knotted graph

By definitions and examples explained above, we have:

Theorem.

 Γ -unknotted⇒γ-unknotted⇒unknotted ⇒ β-unknotted ⇒ free.

These concepts are mutually distinct.

<u>Note</u>: Given a Γ, \exists only finitely many Γ-unknotted, γ-unknotted, or unknotted graphs of Γ.

2. Several notions of unknotting numbers of a spatial graph

Let $O = \{$ unknotted graphs of $\Gamma \}$.

Definition.

The <u>unknotting number</u> u(G) of a spatial graph G of Γ is the distance from G to O by crossing changes on edges attaching to a base: $u(G) = \rho(G,O).$

2.2. A β-unknotting number

Let $O_{\beta} = \{\beta \text{-unknotted graphs of } \Gamma\}$.

Definition.

The <u>**β-unknotting number</u></u> u_{\beta}(G) of a spatial graph G of \Gamma is the distance from G to O_{\beta} by crossing changes on edges attaching to a base:</u>**

$$u_{\beta}(G) = \rho(G,O_{\beta}).$$

2.3. A γ-unknotting number

Given G, let

 $\{D_{G,\gamma}\} = \{(D;T) \in [D_G] \mid c(D;T) = c_{\gamma}(G)\}$

(the set of minimal crossing based diagrams).

Definition.

The <u>**y-unknotting number**</u> $u_{\gamma}(G)$ of a spatial graph G of Γ is the distance from $\{D_{G,\gamma}\}$ to O by crossing changes on edges attaching to a base:

$$u_{\gamma}(G) = \rho(\{D_{G,\gamma}\}, O).$$

<u>Note</u>. G is γ -unknotted $\Leftrightarrow u_{\gamma}(G) = 0$.

<u>2.4. Г-unknotting number</u>

Let $O_{\Gamma} = \{\Gamma - \text{unknotted graphs}\}.$

Definition.

The Γ -**unknotting number** $u^{\Gamma}(G)$ of G is the distance from G to O_{Γ} by crossing changes on edges attaching to a base:

 $u^{\Gamma}(G) = \rho(G,O_{\Gamma})$

Definition.

The (γ, Γ) -unknotting number $u_{\gamma}^{\Gamma}(G)$ of G is the distance from $\{D_{G,\gamma}\}$ to O_{Γ} by crossing changes on edges attaching to a base:

$$u_{\gamma}^{\Gamma}$$
 (G) = $\rho(\{D_{G,\gamma}\},O_{\Gamma}\})$.

2.5. Dsitinctness of the unknotting numbers

<u>Theorem 2.5.1</u>. The unknotting numbers $u_{\beta}(G), u(G), u^{\Gamma}(G), u_{\gamma}(G), u_{\gamma}^{\Gamma}(G)$ of \forall spatial graph G of \forall graph Γ are mutually distinct topological invariants and satisfy the following inequalities :

 $u_{\beta}(G) \leq u(G) \leq \{u_{\gamma}(G), u^{\Gamma}(G)\} \leq u_{\gamma}^{\Gamma}(G).$

<u>Proof.</u> The inequalities are direct from definitions. We show that these invariants are distinct.

(1)

G has $c_{\gamma}(G)=2$ and hence $u_{\beta}(G)=u(G)=u_{\gamma}(G)=0$. On the other hand, we have $u^{\Gamma}(G)=u_{\gamma}^{\Gamma}(G)=1$,

for G is a spatial graph of a plane graph with a Hopf link as a constituent link and hence not Γ-unknotted.

G=10₈ has $u(10_8)=2$ and $u_{\gamma}(10_8)=3$ by [Nakanishi 1983] and [Bleiler 1984]. Hence

$$u_{\beta}(G) = u(G) = u^{\Gamma}(G) = 2 < u_{\gamma}(G) = u^{\Gamma}_{\gamma}(G) = 3.$$

[Nakanishi 1983] Y. Nakanishi, Unknotting numbers and knot diagrams with the minimum crossings,
Math. Sem. Notes Kobe Univ. 11 (1983), no. 2, 257-258.
[Bleiler 1984] S. A. Bleiler, A note on unknotting number, Math. Proc. Cambridge Philos. Soc. 96 (1984), 469-471.

Since G is a Θ -curve,

 $u(G)=0 \Leftrightarrow G$ is isotopic to a plane graph.

G has a trefoil constituent knot.

Hence $u(G) \ge 1$.

Thus, we have $u(G) = u^{\Gamma}(G) = u_{\gamma}(G) = u_{\gamma}^{\Gamma}(G) = 1.//$

2.6. The values of the unknotting numbers

<u>Theorem 2.6.1.</u> For ∀ given graph Γ and ∀ integer n ≥ 1, ∃ ∞-many spatial graphs G of Γ such that $u_{\beta}(G) = u(G) = u_{\gamma}(G) = u^{\Gamma}(G) = u^{\Gamma}(G) = n.$

Infinite cyclic covering homology of a spatial graph

- For a spatial graph G of Γ in S³=R³ U { ∞ }with a base T and <u>oriented</u> edges α_i (i=1,2,...,s) attaching to T.
- Let $E(G)=cl(S^3-N(G))$ for a regular neighborhood N(G) of G in S^3 .

Let χ : H₁(E(G)) \rightarrow Z be the epimorphism sending the meridians of α_i (i=1,2,...,m) to 1 \in Z. Let E(G) $_{\infty} \rightarrow$ E(G) be the ∞ -cyclic cover of E(G) associated with χ . Let $\Lambda = Z[t,t^{-1}]$.

The homology $H_1(E(G)_{\infty})$ is a finitely generated Λ -module which we denote by $M(G,T)_{\infty}$. We take an exact sequence (over Λ)

 $\Lambda^{a} \rightarrow \Lambda^{b} \rightarrow M(G,T)_{\infty} \rightarrow 0,$

where we take $a \ge b$. A matrix $A(G,T)_{\infty}$ over Λ representing the homomorphism $\Lambda^a \rightarrow \Lambda^b$ is called a **presentation matrix** of the module $M(G,T)_{\infty}$. For an integer $d \ge 0$, the <u>dth</u> ideal $\varepsilon_d(G,T)_{\infty}$ of $M(G,T)_{\infty}$ is the ideal generated by all the (b-d)-minors of $A(G,T)_{\infty}$.

The ideals $\varepsilon_d(G,T)_{\infty}$ (d=0,1,2,3,...) are invariants of the Λ -module M(G,T)_{∞}.

Let (Δ_d) be the smallest principal ideal containing $\varepsilon_d(G,T)_{\infty}$. Then the Laurent polynomial $\Delta_d \in \Lambda$ is called the <u>dth Alexamder polynomial</u> of M(G,T)_{\infty}. If G is a knot (with T= ϕ), then $\Delta_0 \in \Lambda$ is called the <u>Alexander polynomial</u> of the knot G. Assume that G* is obtained from G by k crossing changes on α_i (i=1,2,...,m). Then χ induces the epimorphism $\chi^*:H_1(E(G^*)) \rightarrow Z$. Let m(G,T)_{∞} and m(G*,T)_{∞} be the numbers of minimal Λ -generators of the Λ -modules M(G,T)_{∞} and M(G*,T)_{∞}, respectively. We use the following lemma:

Lemma A (cf. [Kobe J. Math. 1996]).

$$m(G,T)_{\infty} - m(G^*,T)_{\infty} | \leq k.$$

[Kobe J. Math. 1996]

A. Kawauchi, Distance between links by zero-linking twists, Kobe J. Math.13(1996), 183-190. **Proof.**

(-1)-crossing

(+1)-crossing

G* is obtained from G by k crossing changes on the edges α_i (i=1,2,...,m).

G is also obtained from G* by k crossing changes on the corresponding edges α_i^* (i=1,2,...,m).

Let W=E(G) × I $\bigcup_{i=1}^{n} D^2 \times D^2_i$ be a surgery trace from E(G) to E(G*) by 2-handles $D^2 \times D^2_i$ (i=1,2,...,n), which is also a surgery trace from E(G*) to E(G) by the "dual" 2handles $D^2 \times D^2_i$ (i=1,2,...,n).

By construction, χ and χ^* extend to an epimorphism $\chi^+:H_1(W) \rightarrow Z$. Let $(W_{\infty};E(G)_{\infty},E(G^*)_{\infty})$ be the ∞ -cyclic cover of $(W;E(G), E(G^*))$ associated with χ^+ .

Let m(W_{∞}) be the minimal number of Λ -generators of the Λ -module H₁(W_{∞}). Then we have $m(W_{\infty}) \leq m(G,T)_{\infty},$ $m(W_{\infty}) \leq m(G^*,T)_{\infty}.$

Because, the natural homomorphisms $\pi_1(E(G)) \rightarrow \pi_1(W)$ and $\pi_1(E(G)) \rightarrow \pi_1(W)$ are onto, so that the natural homomorphisms $H_1(E(G)_{\infty}) \rightarrow H_1(W_{\infty})$ and $H_1(E(G)_{\infty}) \rightarrow H_1(W_{\infty})$ are onto.

By the exact sequence of the pair $(W_{\infty}, E(G)_{\infty})$ $H_2(W_{\infty}, E(G)_{\infty}) \rightarrow H_1(E(G)_{\infty}) \rightarrow H_1(W_{\infty}) \rightarrow 0$ and $H_2(W_{\infty}, E(G)_{\infty}) = \Lambda^k$, we obtain $m(G,T)_{\infty} \leq k + m(W_{\infty}) \leq k + m(G^*,T)_{\infty}$. Similarly, $m(G^*,T)_{\infty} \leq k + m(W_{\infty}) \leq k + m(G,T)_{\infty}$. Thus, we have

$$|m(G,T)_{\infty} - m(G^*,T)_{\infty}| \leq k.//$$

Proof of Theorem 2.6.1.

Let G₀ be a Γ-unknotted graph. Let K be a trefoil knot, and K(n) the n-fold connected sum of K. Then

 $u(K(n))=u_{\gamma}(K(n))=n \text{ for } \forall n \ge 1.$ Let $G = G_0 \# K(n)$ be the connected sum of K(n)and an edge attaching to a base T_0 of G_0 . Then $u_{\gamma}^{\Gamma}(G) \le n$ since $c_{\gamma}(G) = c_{\gamma}(G_0) + c_{\gamma}(K(n))$.

We show $u_{\beta}(G) \ge n$.

Assume that $u_{\beta}(G)=k$. Then a β -unknotted graph G^* is obtained from G by k crossing changes on edges α_i (i=1,2,...,m) attaching to a base T in G.

We choose orientations on α_i (i=1,2,...,m) as it is stated in the following two cases.

Case (I): K(n) is in an edge α_i .

Case (II): K(n) is in a component T' of the base T.

In Case (I), take any orientations on α_i (i=1,2,...,m).

In Case (II), let T'_1 and T'_2 be the components of T'-{p} for a point $p \in K(n)$, and α_i (i=1,2,...,u) the edges joining T'_1 and T'_2 . We take orientations of the edges α_i (i=1,2,...,u) going from T'_2 to T'_1 and any orientations of the other edges α_i (i=u+1,u+2,...,m).

- Let χ : H₁(E(G)) \rightarrow Z be the epimorphism sending the oriented meridians of α_i (i=1,2,...,m) to 1 \in Z. Then we have
- in Case(I), $M(G,T)_{\infty} = \Lambda^{m-1} \bigoplus [\Lambda/(\Delta_{K}(t))]^{n}$, and in Case(II), $M(G,T)_{\infty} = \Lambda^{m-1} \bigoplus [\Lambda/(\Delta_{K}(t^{u}))]^{n}$.
- In either case, we have $m(G,T)_{\infty} = m+n-1$.

On the other hand, $\pi_1(E(G^*))$ is a free group of rank m and hence $M(G^*,T)_{\infty} = \Lambda^{m-1}$. Thus, $m(G^*,T)_{\infty} = m-1$. By Lemma A, $|(m(G,T)_{\infty}-m(G^*,T)_{\infty})|=n \leq k$. Hence $u_{\beta}(G) \ge n$ and $u_{\beta}(G) = u(G) = u_{\nu}(G) = u^{\Gamma}(G) = u_{\nu}^{I}(G) = n. //$

3. Applying the unknotting notions to a spatial graph attached to a surface

3.1. A spatial graph attached to a surface

Let Γ be a finite graph, and v(Γ) the set of degree one vertices. Assume $|v(\Gamma)| \ge 2$.

Let F be a compact surface in R³.

Definition.

A <u>spatial graph on F</u> of Γ is the image G of an embedding f: $\Gamma \rightarrow R^3$ such that

(1) G meets F with $G \cap F = f(v(\Gamma)) = v(G)$,

(2) G-v(G) is contained in one component of R³-F,

(3) \exists a homeomorphism h: $\mathbb{R}^3 \rightarrow \mathbb{R}^3$ such that h(G U F) is a polyhedron.

- F does not need $\partial F = \phi$.
- Though Γ , G or F may be disconnected, but assume that $|F' \cap v(G)| \ge 2$ for \forall component F' of F.
- Ignore the degree 2 vertices in G.

<u>Definition</u>. A spatial graph G on F is <u>equivalent</u> to a spatial graph G' on F' if \exists an orientation-preserving homeomorphism h: $\mathbb{R}^3 \rightarrow \mathbb{R}^3$ such that $h(F \cup G)=F' \cup G'$.

Let [G] be the class of spatial graphs G' on F' which are equivalent to G on F.
3.2. An unknotted graph on a surface and the induced unknotting number

Definition. G on F is **unknotted** if \exists a 2-cell Δ' in \forall component F' of F such that the union Δ of all Δ' contains v(G) and the *shrinked spatial graph* G^ with v(G^)= ϕ (i.e. a spatial graph obtained from G by shrinking $\forall \Delta'$ into a point) is unknotted in R³.

<u>Note</u>. If $\forall F' = S^2$ or a 2-cell, then [G^] does not depend on a choice of Δ .

However, in a genral F, [G[^]] depends on a choice

of Δ , although the <u>shrinked graph</u> Γ° with $v(\Gamma^{\circ}) = \phi$ associated with F is uniquely defined.

Because $\forall G^{\circ}$ is a spatial graph of the same graph Γ° , we have:

Lemma. For ∀ given graph Γ and ∀ given F in R³, ∃ only finitely many unknotted graphs G of Γ on F up to equivalences. Let $O = \{ \text{unknotted graphs of } \Gamma^{\}}.$

Definition.

The <u>unknotting number</u> u(G) of a spatial graph G of Γ on F is the distance from the set {G^} to O by crossing changes on edges attaching to a base: $u(G) = \rho(\{G^{A}\}, O).$

3.3. A β-unknotted graph on a surface and the induced unknotting number

<u>Definition.</u> G on F is <u>**β-unknotted</u>** if \exists a 2-cell Δ' in \forall component F' of F such that the union Δ of all Δ' contains v(G) and the shrinked spatial graph G^ with v(G^)= ϕ is β-unknotted in R³.</u>

unknotted $\Rightarrow \beta$ -unknotted

Let $O_{\beta} = \{\beta \text{-unknotted graphs of } \Gamma^{\}}$.

Definition.

The <u>**β-unknotting number</u>** $u_{\beta}(G)$ of a spatial graph G of Γ on F is the distance from the set {G^} to O_{β} by crossing changes on edges attaching to a base:</u>

 $u_{\beta}(G) = \rho(\{G^{*}\}, O_{\beta}).$

3.4. A γ-unknotted graph on a surface and the induced unknotting number

<u>Definition.</u> G on F is <u> γ -unknotted</u> if \exists a 2-cell Δ' in \forall component F' of F such that the union Δ of all Δ' contains v(G) and the shrinked spatial graph G^ with v(G^)= ϕ is γ -unknotted in R³.

 γ -unknotted \Rightarrow β -unknotted

Given G, let

${D_{G^{,\gamma}}} = {(D;T) \in [D_{G^{,\gamma}}] | c(D;T)=c_{\gamma}(G^{,\gamma}), \forall G^{,\gamma}}.$ <u>**Definition.**</u>

The <u>**y-unknotting number**</u> $u_{\gamma}(G)$ of a spatial graph G of Γ on F is the distance from $\{D_{G^{\Lambda},\gamma}\}$ to O by crossing changes on edges attaching to a base:

$$u_{\gamma}(G) = \rho(\{D_{G^{*},\gamma}\}, O\}).$$

<u>Note</u>. G on F is γ -unknotted $\Leftrightarrow u_{\gamma}(G) = 0$.

<u>3.5. F-unknotted graph on a surface and the induced unknotting numbers</u>

Definition. G on F is Γ -unknotted if \exists a 2-cell

 Δ' in \forall component F' of F such that the union Δ of all Δ' contains v(G) and the shrinked spatial graph G^ with v(G^)= ϕ obtained from G by shrinking $\forall \Delta'$ into a point is Γ -unknotted in R³.

 Γ -unknotted \Rightarrow γ -unknotted \Rightarrow unknotted

 $\Rightarrow \beta$ -unknotted

Let $O_{\Gamma^{n}}=\{\Gamma^{n}-\text{unknotted graphs}\}$. Then $O_{\beta}\supset O\supset O_{\Gamma^{n}}$. **Definition.**

The Γ-**unknotting number** u^Γ(G) of G on F is the distance from the set $\{G^{\wedge}\}$ to $O_{\Gamma^{\wedge}}$ by crossing changes on edges attaching to a base: $u^{\Gamma}(G) = \rho(\{G^{\wedge}\}, O_{\Gamma^{\wedge}})$ The (γ, Γ) -**unknotting number** u_{γ}^{Γ} (G) of G on F is the distance from $\{D_{G^{,v}}\}$ to O_{Γ} by crossing changes on edges attaching to a base: $u_{\nu}^{G}(G) = \rho(\{D_{G^{\prime},\nu}\}, O_{\Gamma^{\prime}})$.

3.6. Properties on the unknotting numbers

<u>Theorem 3.6.1</u>. The topological invariants $u_{\beta}(G), u(G), u^{\Gamma}(G), u_{\gamma}(G), u^{\Gamma}_{\gamma}(G)$ of \forall spatial graph G of \forall graph Γ on \forall surface F satisfy the following inequalities :

$$u_{\beta}(G) \leq u(G) \leq \{u_{\gamma}(G), u^{\Gamma}(G)\} \leq u_{\gamma}^{\Gamma}(G),$$

and are distinct for some graphs G of some Γ on F=S².

<u>Theorem 3.6.2.</u> For \forall given graph Γ , \forall surface F in R³ and \forall integer n ≥ 1 , $\exists \infty$ -many spatial graphs G of Γ on F such that

$$u_{\beta}(G) = u(G) = u_{\gamma}(G) = u^{\Gamma}(G) = u_{\gamma}^{\Gamma}(G) = n.$$

Proof of Theorem 4.6.1. The inequalities are direct from definitions.

We show that these invariants are distinct.

G^ has $c_{\gamma}(G^{\gamma})=2$ and hence $u_{\beta}(G)=u(G)=u_{\gamma}(G)=0$. On the other hand, we have

$$u^{\Gamma}(G)=u^{\Gamma}_{v}(G)=1,$$

for G[^] is a spatial graph of a plane graph with a Hopf link as a constituent link and hence not Γ-unknotted. (2)

 G^{-10_8} has $u(10_8)=2$ and $u_{\gamma}(10_8)=3$ by [Nakanishi 1983] and [Bleiler 1984].

Hence

$$u_{\beta}(G) = u(G) = u^{\Gamma}(G) = 2 < u_{\gamma}(G) = u_{\gamma}^{\Gamma}(G) = 3.$$

(3)

Then $u_{\beta}(G)=0$. Since G^ is a Θ -curve, by definition, $u(G^{\circ})=0 \Leftrightarrow G^{\circ}$ is isotopic to a plane graph. Thus, $u(G) \ge 1$ and we have $u(G) = u^{\Gamma}(G) = u_{\gamma}(G) = u_{\gamma}^{\Gamma}(G) = 1.//$

Proof of Theorem 3.6.2.

<u>Assume v(Γ)≠φ.</u>

Assume Γ and F are connected for simplicity.

Let F be in the interior of a 3-ball $B \subset S^3$, and $S^2=\partial B$.

Let G_0 be a Γ -unknotted graph on S^2 in $B^c=cl(S^3-B)$ and extend it to a Γ -unknotted graph G_1 on F by taking in B a 1-handle H joining a 2-cell Δ_0 of S^2 and a 2-cell Δ_1 of F and then taking $|v(\Gamma)|$ parallel arcs in H.

A Γ -unknotted graph G_1 on F A Γ -spatial graph G on F

Note that $G_0^{-1} = G_0 / \Delta_0$ and $G_1^{-1} = G_1 / \Delta_1$ are isotopic Γ -unknotted graphs in S³.

We take a Γ -spatial graph G on F with $v(G) \subset \Delta_1$ such that $G^{-1} = G / \Delta_1$ is a connected sum $G_1^{+} = K(n)$ of an edge of G_1^{-1} (in a part of G_0) and K(n) attaching to a base of G_1^{-1} , where K(n) is the n-fold connected sum of a trefoil knot K. Then $u_{\gamma}^{\Gamma}(G) \leq n$. We show $u_{\beta}(G) \ge n$. Let $u_{\beta}(G) = u_{\beta}(G^{\prime})$ for $G^{\prime} = G / \Delta'$ for a 2-cell Δ' in F.

Assume that u_{β} (G)=k and a β -unknotted graph (G^')' is obtained from G^' by k crossing changes on edges α_i (i=1,2,...,m) attaching to a base T' in G^'.

As it is explained in the case $v(\Gamma) = F = \phi$, we take orientations on the edges α_i (i=1,2,...,m) and take an epimorphism χ : $H_1(E(G^{\prime})) \rightarrow Z$.

By Lemma A, $|m(G^{\prime},T^{\prime})_{\infty} - m((G^{\prime})^{\prime},T^{\prime})_{\infty}| \leq k$. Note that $m((G^{\prime})^{\prime},T^{\prime})_{\infty} = m-1$. Let C'= G^{\prime} \cap B and G'= G^{\prime} \cap B^c. Then G^{\prime}=G' \cup C'. Let E(G')=cl(B^c-N(G')), E(C')=cl(B-N(C')) and ∂ 'E(C')= E(C') \cap ∂ B.

Let $E(G')_{\infty}$, $E(C')_{\infty}$ and $\partial' E(C')_{\infty}$ be the lifts of E(G'), E(C') and $\partial' E(C')$ under the covering $E(G^{\prime'})_{\infty} \rightarrow E(G^{\prime'})$, respectively. Let

 $M(G')_{\infty} = H_1(E(G')_{\infty}) \text{ and}$ $M(C',\partial'C')_{\infty} = H_1(E(C')_{\infty},\partial'E(C')_{\infty}).$

Lemma B. \exists a short exact sequence $0 \rightarrow M(G')_{\infty} \rightarrow M(G^{\prime},T')_{\infty} \rightarrow M(C',\partial'C')_{\infty} \rightarrow 0,$ Further, the finite Λ -torsion part $DM(C',\partial'C')_{\infty} = 0.$

Proof. By excision,

 $H_{d}(E(G^{\prime})_{\infty}, E(G^{\prime})_{\infty}) = H_{d}(E(C^{\prime})_{\infty}, \partial^{\prime}E(C^{\prime})_{\infty}).$

Since $H_d(E(C'), \partial' E(C'))=0$ for d=1,2, we see from [Osaka J. Math. 1986]

A. Kawauchi, Three dualities on the integral homology of infinite cyclic coverings of manifolds, Osaka J. Math. 23(1986),633-651. that $H_2(E(C')_{\infty}, \partial' E(C')_{\infty})=0$ and $M(C', \partial' C')_{\infty}$ is a torsion Λ -module with $DM(C', \partial' C')_{\infty}=0$. The homology exact sequence of the pair $(E(G^{\prime})_{\infty}, E(G^{\prime})_{\infty})$ induces an exact sequence: $0 \rightarrow H_1(E(G^{\prime})_{\infty}) \rightarrow H_1(E(G^{\prime\prime})_{\infty})$ $\rightarrow H_1(E(G^{\prime\prime})_{\infty}, E(G^{\prime})_{\infty}) \rightarrow 0.$ This sequence is equivalent to an exact

sequence

 $0 \rightarrow \mathsf{M}(\mathsf{G}')_{\infty} \rightarrow \mathsf{M}(\mathsf{G}^{\prime\prime},\mathsf{T}')_{\infty} \rightarrow \mathsf{M}(\mathsf{C}',\partial'\mathsf{C}')_{\infty} \rightarrow 0. //$

Note that $M(G')_{\infty} = M(G^{T})_{\infty}$ for a base T of G^ corresponding to the base T'of G^'.

By an argument of the case v(Γ)= F = ϕ ,

$$m(G')_{\infty} = m(G^{T})_{\infty} = m + n - 1$$

for the minimal number $m(G')_{\infty}$ of Λ -generators of $M(G')_{\infty}$.

Lemma C (cf. [Kobe J. Math, 1987]).

Let M' be a Λ -submodule of a finitely generated Λ -module M. Let m' and m be the minimal numbers of Λ -generators of M' and M, respectively. If D(M/M') =0, then m' \leq m.

[Kobe J. Math, 1987]

A. Kawauchi, On the integral homology of infinite cyclic coverings of links, Kobe J. Math. 4(1987),31-41.

<u>**Proof.</u>** For a Λ -epimorphism f: $\Lambda^m \rightarrow M$, let B=f⁻¹(M') $\subset \Lambda^m$, which is mapped onto M'. Since Λ^m/B is isomorphic to M/M' which has projective dimension ≤ 1 , B is Λ -free, i.e., B= Λ^b with b \leq m. Hence m' \leq b \leq m.//</u> By Lemma C,

$$\begin{split} m(G^{\prime\prime},T^{\prime})_{\infty} &\geqq m(G^{\prime})_{\infty} = m+n-1. \\ \text{Since } m((G^{\prime\prime})^{\prime},T^{\prime})_{\infty} = m-1, \text{ we have} \\ k &\geqq m(G^{\prime\prime},T^{\prime})_{\infty} - m((G^{\prime\prime})^{\prime},T^{\prime})_{\infty} &\geqq n. \\ \text{Hence } u_{\beta}(G) &\geqq n \text{ and} \end{split}$$

$$u_{\beta}(G) = u(G) = u_{\gamma}(G) = u^{\Gamma}(G) = u^{\Gamma}_{\gamma}(G) = n.//$$

Thank you for your attention. ご静聴ありがとうございました。