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Example A: 

 

 

 

 

Question.  In what sense , this object  is  

                                        “knotted” or “unknotted” ? 
 
In this talk, the answer will be “β-unknotted”   

but “knotted”, “γ-knotted” and “Γ-knotted”  

under some definitions introduced from now. 

 

 



Some points of S. B. Prusiner’s theory are: 
 
(1) By losing the N-terminal region,  Prion precursor  
protein changes into Cellular PrP (PrPc) or Scrapie PrP  
(PrPSC ) , and α-helices change into β-sheets.  
(2) The conformations of PrPc and PrPSC may differ  
although the linear structures are the same. 
(3) There is one S-S combination. 
  

●Z. Huang et al., Proposed three-dimensional Structure for 
the cellular prion protein, Proc. Natl. Acad. Sci. USA, 
91(1994), 7139-7143. 

● K. Basler et al., Scrapie and cellular PrP isoforms are 
encoded by  the same chromosomal gene, Cell 46(1986), 
417-428. 

 
 
 
 

Example B:  Proteins attached to a  cell surface                    



     Prion Precursor Protein 



Definition.  A prion-string  is a spatial graph  

K = (K)∪α(K)   in the upper half space  H3 

consisting of S-S loop   (K)  and GPI-tail  α(K)  

joining the S-S vertex in   (K)  with the  

GPI-anchor in ∂H3.  

 

 
 
 

α(K)  

(K) 



Topological models of prion-proteins 
（cf. [J. Math. System Sci.  2012]） 

 
 

 

[J. Math. System Sci. 2012]  
A. Kawauchi and K. Yoshida,  Topology of prion proteins,  
Journal of Mathematics and System Science 2(2012), 237-248.  



http://www.scumdoctor.com/Japanese/disease-prevention/infectious-
diseases/virus/ebola/Pictures-Of-The-Effects-Of-Ebola.html 

 A virus of  EBOLA  
haemorrhagic fever  
    

Example C:    A string-shaped virus 



 
  

 1.  Several notions on unknotted  
         graphs 



 
 
 
 
 
  
 
 
 
 
 

 

  

 

1.1. A based diagram and a monotone diagram 

Let Γ be a graph without degree one vertices, and 

 G = G(Γ) a spatial graph in R3.  Let Γi  (i=1,2,…,r) be  

an ordered set of  the components of Γ, and  

Gi =G(Γi ) the corresponding spatial subgraph of  

G = G(Γ).  Let Ti be a  maximal tree of Gi. 

Note: We consider a topological graph without  

degree 2 verticies, so that Ti ＝φ  if Gi is a knot or  

link, and Ti = one vertex  if  Gi  has just one vertex  

(of degree≧3).  
 



 
 
 
 
 
  
 
 
 
 
 

 

  

 

 

 

 

 
 

Let T= T1 ∪T2∪ … ∪Tr . Call it a base of G.  

Note: There are only finitely many bases of G.  

G is obtained from a basis T by attaching edges  

(i.e., arcs or  loops) to T. 
 

Let D be a diagram of  a spatial graph G=G(Γ), and  

DT the sub-diagram of D corresponding to T.   

Let  cD(DT) be the number of  crossing points of D  

whose upper or lower crossing points belong  to DT. 

 



 

 

 

⇒ 

Definition.   D is a based diagram (on base T),  

written as (D;T) if cD(DT)=0. 



⇔ 
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Lemma.  For ∀base T of G, ∀diagram D of G 
is deformed into  a based  diagram on T by 
generalized Reidemeister moves.  
 
The generalirez Reidemeister moves: 



 

Let  α be an edge of G=G(Γ) attaching to a base T.  

 

Definition.  An edge diagram Dα  in a diagram   

D  of G is monotone  if: 

 

 

 

 

 
 
 
 
 
 



 

A sequence on the edges of a based graph  (G ,T ) 

is regularly  ordered  if  an  order on the edges  

such that any edge belonging to Gi  is smaller  

than any edge belonging to Gj  for  i<j  is specified. 
 

 



Definition.   A based diagram (D;T) is monotone   

if there is a regularly ordered edge sequence α i  

(i=1,2,…,m) of  (G ,T)  such that Dαi is monotone  

and Dαi  is upper than Dαj for i<j . 
 

 



Definition.  
The warping degree d(D;T) of a based diagram  
(D;T) is the least number of  crossing changes on  
edge diagrams attaching to T needed  to obtain a  
monotone diagram from (D;T). 
 
The crossing number of (D;T) is denoted by c(D;T).  
 
If D is a knot or link diagram or an edge diagram,  
then the warping degree and crossing number of  
D are denoted by d(D) and c(D), respectively. 
 

 

1.2. Complexity  
 



A similar notion for a knot or link is given  in : 
 
[Lickorish-Millett 1987] W. B. R. Lickorish and K. C. Millett, A  
polynomial invariant of oriented links, Topology 26(1987), 107-141. 
 
[Fujimura 1988] S. Fujimura, On the ascending number of knots,  
thesis, Hiroshima University, 1988.  
 
[Fung 1996] T. S. Fung, Immersions in knot theory, a dissertation,  
Columbia University, 1996.  
 
[Kawauchi 2007] A. Kawauchi, Lectures on knot theory (in Japanese),  
Kyoritu  Shuppan, 2007. 
 
[Ozawa 2010] M. Ozawa, Ascending number of knots and links.  
J. Knot Theory Ramifications 19 (2010), 15-25. 
 
[Shimizu 2010]  A. Shimizu, The warping degree of a knot diagram,  
J. Knot Theory Ramifications 19(2010), 849-857. 

 

 



Properties of the warping degree 
(1) For the warping degree      of an oriented  
edge diagram Dα, 
                        (Dα) +    (-Dα)  = c(Dα),   
   
                 d(Dα) = min{    (Dα),     (-Dα)}. 
 
Example.   d(                 ) =1, for 
  

             (           )=1,         (                     )=3.                         

→ 
d 
 

→ 
d 
 

→ 
d 
 

 
→ 
d 
 

→ 
d 
 

→ 
d 
 

→ 
d 
 



 
(2) [Shimizu 2010]  
 For an oriented knot diagram D,  
 
                              (D)+   (-D) ≦ c(D)-1, 
 
where the equality holds if and only if D is an 
alternating diagram. 
                                    

→ 
d 
 

→ 
d 
 



Definition. 

The complexity of a  based diagram (D;T) is the  

pair  cd(D;T)= (c(D;T), d(D;T)) together with  the  

dictionary order.  

d(D;T)≦c(D;T) implies:  
 

Note (A. Shimizu).  

The dictionary order on cd(D;T) is equivalent to  

the numerical order on c(D;T)2+d(D;T) . 

 

 

 



 
Definition.   
 
The complexity of a spatial graph G is  
 
 
           γ(G) = min{cd(D;T)| (D;T)∈[DG]} 

(in the dictionary order). 
 

Let γ(G)= (cγ (G), dγ(G)).  

Our basic viewpoint of complexity. This complexity  

is reducible by  a crossing change          ⇔             or   

a splice    ⇒   or            until we obtain a graph  

in a plane. 

 

 



 
(1)  If dγ(G)>0, then ∃G’ with γ(G’)< γ(G) by a  

crossing change.   

dγ(G)=0 ⇔ G is equivalent to  G’ with a  

monotone diagram (D’;T’) with cγ (D’;T’)=cγ(G).  

 

(2) If cγ (G)>0, then ∃G’ with γ(G’)< γ(G) by a  

splice.   

cγ (G)=0 ⇔ G is equivalent to a graph in a plane.  

 

 

 



Definition.   
The warping degree of G is :  
       d(G)= min{d(D;T)| (D;T)∈[DG]} 
 
Definition.   
G is unknotted if d(G)= 0.  
 

When Γ consists of loops,  
        G is unknotted ⇔ G  is a trivial link.   
 

 
  
 

1.3. The warping degree and an unknotted graph 



Assume Γ has a vertex of degree≧3. 

Lemma 1.3.1. For∀G, ∃finitely many crossing  

changes on G to make G with d(G)=0. 

 

Lemma 1.3.2.  For∀given graph Γ ,∃only finitely  

many  G  of Γ  with d(G)=0  up to equivalences.  

 

Lemma 1.3.3. If d(G)=0, then ∃T such that 

       G/T is equivalent to S1∨S1∨... ∨S1⊂R2. 

 

   

 



Lemma 1.3.4.   A connected G with d(G)=0  is  

deformed  into a basis T by  a sequence of edge  

reductions:   
  

                         ⇒                          ⇒ 

   

Corollary 1.3.5. For ∀ G with d(G)=0, ∃T such  

that every edge (arc or loop) attaching to T is  in  

a trivial constituent knot.                                          



Given DT , the cross index of αi and αj (i≠j): 

ε(αi,αj)=[1-(-1) #(Dαi∩Dαj)]/2 (=0 or 1). 

 

 

 

 

The total cross index of Γ on DT : 

                   ε(Γ; DT) =∑i<j ε(αi,αj). 

Lemma 1.3.6.  Let d(G)=0.  Then  

min{c(D;T)|(D;T)∈[DG], d(D;T)=0} = ε(Γ; DT). 

cross index =0 cross index =1 

Dαi Dαi 

Dαj 

Dαj 

DT DT 



 

Conway-Gordon Theorem.   
Every spatial 6-complete graph K6  contains a 
non-trivial constituent link. 
Every spatial 7-complete graph K7  contains a  
non-trivial constituent knot. 
 
 

 
 
 
 
 

  

         An unknotted  K6             An  unknotted K7   



1.4.  The γ-warping degree and a γ-unknotted   

graph 
 
Definition.  

The γ-warping degree of G is the number dγ (G)  

for the complexity γ(G)= (cγ (G), dγ(G)) of G. 
 
Definition.  G is γ-unknotted if dγ (G) =0. 

 

γ-unknotted⇒unknotted 

 

 



 
1.5. A Γ-unknotted  graph and the (γ,Γ)-warping  
degree  
 
Let  γ(Γ) =min{γ(G) | G is a spatial graph of Γ}. 
 
 
Definition.   
A Γ-unknotted  graph G is a spatial graph of Γ  
with γ(G) = γ(Γ). 
                  
  
 
 

   
   



 
 
Note.    
 
 (1) Let γ(Γ)= (c γ(Γ), d γ(Γ)). Then dγ(Γ)=0.  
  

Γ-unknotted⇒γ-unknotted⇒unknotted. 
 

(2) c γ (Γ)=0 if and only if Γ is a plane graph. 
 
(3) A spatial plane graph G is Γ-unknotted  
    ⇔ G is equivalent to a graph in a plane.                    
 
  
 
 

   
   



Definition. 
        O    = {unknotted graphs of Γ}. 
      
    O    = {γ-unknotted graphs on (D;T)∈[DG]     
                                                     with cd(D;T)=γ(G)}.     
    
    Oγ    = ∪{O   |G is a spatial graph of Γ} 
               = {γ-unknotted graphs of Γ}. 
    
   OΓ   = {Γ-unknotted graphs}. 
 
Then  O⊃ Oγ ⊃ OΓ. 
 
Note:  O   ⊂OΓ   or  O  ∩OΓ = φ for every G. 
 
   
   

G 
   γ
 

 

G 
   γ
 

 

G 
   γ
 

 

G 
   γ
 

 



Definition.   
The (γ,Γ)-warping degree  d   (G) of G is: 
 

d   (G) =dγ(G)+ ρ(O   ,OΓ). 
 

(ρ denotes the Gordian distance.) 
 
 
By definition,     d(G)≦ dγ(G)≦ d    (G). 
 
d    (G) =0 if and only if  G is Γ-unknotted. 
 
   
   
 
         
 
 

Γ  
   γ
 

 

G 
   γ
 

 

Γ  
   γ
 

 

Γ  
   γ
 

 

Γ  
   γ
 

 



 
1.6. Examples 

 

Example 1.6. 1.  Let  G =               .  

 

G has cγ(G)=2, for G has a Hopf link as a  

constituent link.  

d(G)=dγ(G)= 0. 

Because G is a planar graph, if G  is Γ-unknotted,  

then c γ(G)=0, a contradiction.  

Hence d   (G) =1.  
 

Γ  
   γ
 

 



 
Lemma 1.6.2.  (1) ([Fung 1996] , [Ozawa 2010])  

If K is a knot with d(K)=1, then K is a non-trivial  

twist knot. 

                                       = 

 

 (2) If G is a θ-curve with d(G)=1, then the 3  

constituent knots of G consist of two trivial  

knots and one non-trivial twist knot .  
 



Example 1.6.3. (([Fung 1996] , [Ozawa 2010],  

[Shimizu 2010]) 

 

 

For K=                                52 , we have  

 

 

          cγ (K)=5,  d(K)=1< dγ(K)= d   (K)=2. 

 

  

 

Γ  
   γ
 

 



Example 1.6.4.   

 

For    K =                    62, 

  

cγ
 (K)=6,  d(K)= dγ(K)= d   (K)=2. 

In fact, d   (K)≦2: 

 

 

 

By Lemma, d(K)≧2  (, for K is not any twist knot). 

 

Γ  
   γ
 

 
Γ  
   γ
 

 



 
Example 1.6.5. (Kinoshita’s θ-curve)       
     
 
        
For G =                    ,  we have  
 
 
 
 
 
    cγ(G) = 7 and d(G)= dγ(K)= d   (G)= 2. 
 

 

 

 

 

 

Γ  
   γ
 

 



 

 

 

 

 

 

 

Γ  
   γ
 

 

 
     
        
        
        a based diagram of G      a monotone diagram           
  
O  =OΓ  implies ρ(O  ,OΓ)=0. Hence dγ(G)= d   (G).  
Since G is non-trivial and the 3 constituent knots 
are trivial, we have d(G)≧2 by Lemma. 
Hence,  if cγ (G)=7, then  d(G)= dγ (G)= d   (G)=2. 
 
 

G 
   γ
 

 

Γ  
   γ
 

 

G 
   γ
 

 



 By the diagram, cγ(G) ≦7.  We show  cγ(G) ≧7. 

By the classification of algebraic tangles with  

crossing numbers≦6 in:  
 

[Moriuchi 2008] H. Moriuchi, Enumeration of algebraic tangles  

with applications to theta-curves and handcuff graphs,  

Kyungpook Math. J. 48(2008), 337-357 
 

the Kinoshita’s θ-curve G cannot have any  

based diagram with crossing number ≦6 .   

Hence cγ(G)=7.  

 



1.7. A β-unknotted graph 

 

For a base T= T1∪T2∪…∪Tr of G, let B be the  

disjoint union of  mutually disjoint 3-ball  

neighborhoods Bi of Ti in S3 (i=1,2,...,r).  

Let Bc = cl(S3-B) be the complement domain of B  

with L=Bc∩G=a1∪a2∪…∪an  an n-string tangle  

in Bc, called the complementary tangle of T. 
 



Definition. G is β-unknotted if ∃a base T of G  

whose complementary tangle (Bc,L) is trivial. 
      
 

 

A trivial complementary tangle 

Example 1.7.1.  For a θ-curve Γ, ∃∞-many  

β-unknotted graphs G of Γ up to equivalences.  

 

 



Example 1.7.2. Triviality of the complementary  

tangle (Bc,L) depends on a choice of a base. 

 

 

 

Example 1.7.3. If  G is β-unknotted, then G is a free  

graph (i.e., π1(R3-G) is a free group), but  the  

converse is not true. 

 

 

 

A free β-knotted graph 

 



By definitions and examples explained above,  

we have: 

Theorem.  

   Γ-unknotted⇒γ-unknotted⇒unknotted  

                                         ⇒ β-unknotted ⇒ free. 

  These concepts are mutually distinct. 

 

Note: Given a Γ, ∃only finitely many Γ-unknotted,  

γ-unknotted, or  unknotted graphs of Γ. 



2. Several notions of unknotting     
    numbers of a spatial graph 



2.1. The  unknotting number 

 

Let O = {unknotted graphs of Γ}. 
 

Definition. 

The unknotting number u(G) of a spatial graph G 

of Γ is the distance from G to O by crossing  

changes on edges attaching to a base:   

u(G) = ρ(G,O).  

 



2.2. A β-unknotting number  
 

Let Oβ = {β-unknotted graphs of Γ}. 
 

Definition. 

The β-unknotting number uβ(G) of a spatial graph  

G of Γ is the distance from G to Oβ by crossing  

changes on edges attaching to a base:   

uβ(G) = ρ(G,Oβ).  

 



2.3. A γ-unknotting number 

Given G, let   

      {DG,γ }= {(D;T)∈[DG] | c(D;T)=cγ(G)} 

        (the set of  minimal crossing based diagrams). 

Definition. 

The γ-unknotting number uγ(G) of a spatial graph  

G of Γ is the distance from {DG,γ} to O by crossing  

changes on edges attaching to a base:   

                     uγ(G) = ρ({DG,γ },O). 

Note. G is γ-unknotted ⇔ uγ(G) =0. 

 
 



2.4. Γ-unknotting number  

Let  OΓ={Γ-unknotted graphs}.  

Definition.  

The Γ-unknotting number uΓ(G) of G is the distance  

from G to OΓ  by crossing changes on edges  

attaching to a base:   

                             uΓ(G) = ρ(G,OΓ)  

  

   

   

 

         



Definition.  

The (γ,Γ)-unknotting number u   (G) of G is the 

distance from {DG,γ} to OΓ by crossing changes on  

edges attaching to a base:  

                            u    (G) =ρ({DG,γ},OΓ). 

 

   

   

 

         
 
 

Γ  
   γ
 

 

Γ  
   γ
 

 



2.5. Dsitinctness of the unknotting numbers 
 
Theorem 2.5.1.  The unknotting numbers  

uβ(G), u(G),  uΓ(G), uγ (G), u   (G)  

of ∀spatial graph G of ∀graph  Γ  are mutually  

distinct topological invariants and satisfy the  

following inequalities :  
            

        uβ(G) ≦ u(G)≦｛uγ (G),uΓ(G)｝≦ u (G).   
 

 

 

Γ  
   γ
 

 

Γ  
   γ
 

 



Proof. The inequalities are direct from definitions.  

We show that these invariants are distinct. 

(1)                 

                    G=                                

 

G  has cγ(G)=2 and hence uβ(G)=u(G)=uγ(G)=0.  

On the other hand, we have   

                               uΓ(G)=u   (G)=1,  

for G is a spatial graph of a plane graph with a Hopf  

link as a constituent link and hence not Γ-unknotted. 

 

 

Γ  
γ
 

 



(2) 
Let   G=                                                  . 

 

 
G=108  has u(108)=2 and uγ (108)=3  by  
[Nakanishi 1983] and [Bleiler 1984] .  Hence 
 
         uβ(G)= u(G) =uΓ(G)=2< uγ (G)=u   (G)=3. 
 
[Nakanishi 1983] Y. Nakanishi, Unknotting numbers and knot 

diagrams with the minimum crossings, 
Math. Sem. Notes Kobe Univ. 11 (1983), no. 2, 257-258.  
[Bleiler 1984] S. A. Bleiler, A note on unknotting number, Math. 

Proc. Cambridge Philos. Soc. 96 (1984), 469-471. 

 
 

Γ  
γ
 

 



(3)   

        G  =            Then uβ(G)= 0.  

 

In fact: 

 

Since G is a Θ-curve,  

        u(G)=0 ⇔ G is isotopic to a plane graph. 

G has a trefoil constituent knot.  

Hence    u(G)≧1. 

Thus, we have   u(G) =uΓ(G)=uγ (G)=u   (G)=1.//  Γ  
   γ
 

 

＝ 



Γ  
   γ
 

 

2.6. The values of the unknotting numbers 

 

Theorem 2.6.1.  For∀given graph Γ and ∀integer  

n≧1, ∃∞-many spatial graphs G of Γ such that 

              uβ(G)= u(G)= uγ (G)= uΓ(G)= u   (G)=n. 

 
 

 

 

 



Infinite cyclic covering homology of a spatial graph 
 
For a spatial graph G of Γ in S3=R3∪{∞}with a  
base T  and  oriented edges αi(i=1,2,…,s)  
attaching to T.   
Let E(G)=cl(S3-N(G)) for a regular neighborhood  
N(G) of G in S3. 
Let χ: H1(E(G))→Z be the epimorphism sending the  
meridians of αi (i=1,2,…,m) to 1∈Z.  
Let E(G)∞→ E(G) be the ∞-cyclic cover of E(G)  
associated with χ.   
 
 
 
 



Let Λ=Z[t,t-1].  

The homology H1(E(G)∞) is a finitely generated  

Λ-module which we denote by M(G,T)∞. 

We take an exact sequence (over Λ) 

Λa → Λb → M(G,T)∞ →0,  

where we take a≧b. A matrix A(G,T)∞ over Λ  

representing the homomorphism Λa → Λb is  

called a presentation matrix of the module  

M(G,T)∞. 

 

 



For an integer d≧0, the dth ideal εd(G,T)∞  of  

M(G,T)∞ is the ideal generated by all the  

(b-d)-minors of A(G,T)∞. 

The ideals εd(G,T)∞ (d=0,1,2,3,…) are invariants of  

the Λ-module M(G,T)∞. 

Let (Δd) be the smallest principal ideal containing  

εd(G,T)∞. Then the Laurent polynomial Δd∈Λ is  

called the dth Alexamder polynomial of M(G,T)∞. 

If G is a knot (with T=φ), then Δ0∈Λ  is called  

the Alexander polynomial of the knot G. 

 

 



Assume that G* is obtained from G by k crossing  
changes on αi (i=1,2,…,m). Then  χ induces the  
epimorphism χ*:H1(E(G*))→Z .  
Let m(G,T)∞ and m(G*,T)∞ be the numbers of   
minimal Λ-generators of the Λ-modules M(G,T)∞  
and M(G*,T)∞, respectively.  
We use the following lemma:  
 
 
 
 

[Kobe J. Math. 1996] 
A. Kawauchi,  Distance between links by zero-linking twists,  
Kobe J. Math.13(1996), 183-190. 

Lemma A (cf. [Kobe J. Math. 1996]). 

              |m(G,T)∞ - m(G*,T)∞ |≦k. 



Proof. 

 

 

 

 

 

 

G* is obtained from G by k crossing changes on the  

edges αi (i=1,2,…,m).  

G is also obtained from G* by k crossing changes on  

the corresponding edges αi
* (i=1,2,…,m).  

(+1)-twist on O 

(-1)-twist on O 
O O 

(-1)-crossing (+1)-crossing 



Let  W=E(G)×I ∪     D2×D2
i    

be a surgery trace from E(G) to E(G*) by  

2-handles D2×D2
i (i=1,2,...,n), which is also a  

surgery trace from E(G*) to E(G) by the “dual” 2- 

handles D2×D2
i (i=1,2,...,n). 

  n 
i =１ 

W 
E(G) E(G*) 

(∂E(G)) ×I=(∂E(G*))×I 



By construction, χ and χ* extend to an  

epimorphism  χ+:H1(W)→Z.  

Let (W∞;E(G)∞,E(G*)∞) be the ∞-cyclic cover  of  

(W;E(G), E(G*)) associated with χ+. 

 

Let m(W∞) be the minimal number of  

Λ-generators of the Λ-module  H1(W∞).  

 



Then  we have  

                       m(W∞) ≦m(G,T)∞ ,   

                       m(W∞) ≦ m(G*,T)∞ . 

 

Because, the natural homomorphisms  

π1(E(G))→ π1(W) and  π1(E(G))→ π1(W) 

are onto, so that the natural homomorphisms  

H1(E(G)∞)→ H1(W∞) and  H1(E(G)∞)→ H1(W∞) 

are onto.  



By the exact sequence of the pair (W∞,E(G)∞) 

H2(W∞,E(G)∞)→ H1(E(G)∞) → H1(W∞) → 0  

and H2(W∞,E(G)∞)=Λk, we obtain  

m(G,T)∞ ≦ k + m(W∞) ≦ k + m(G*,T)∞ . 

Similarly,  

m(G*,T)∞ ≦ k + m(W∞) ≦ k + m(G,T)∞ . 

Thus, we have  

 |m(G,T)∞ - m(G*,T)∞ |≦k.// 

 



Proof of Theorem 2.6.1.   
Let G0  be a Γ-unknotted graph.  
Let K be a trefoil knot, and K(n) the n-fold  
connected sum of K. Then  
             u(K(n))=uγ(K(n))=n  for ∀n≧1. 
Let  G =G0#K(n)  be the connected sum of K(n)  
and  an edge attaching to a base T0 of G0.  
Then u (G)≦ n since cγ(G) =cγ(G0 )+cγ (K(n)) . 
 
We show uβ (G)≧ n.  
 

Γ  
γ
 

 



Assume that uβ(G)=k. Then a β-unknotted graph  
G* is obtained from G  by k crossing changes on  
edges αi(i=1,2,…,m) attaching to a base T in G.   
 
We choose orientations on αi (i=1,2,…,m) as  
it is stated in the following two cases.   
Case (I): K(n) is in an edge αi.  
Case (II): K(n) is in a component T’ of the base T.  
 

In Case (I), take any orientations on αi (i=1,2,…,m). 
 
 



In Case (II), let T’1 and T’2 be the components of  
T’-{p} for a point p ∈K(n), and αi (i=1,2,…,u) the  
edges joining T’1 and T’2.  
We take  orientations of  the edges αi (i=1,2,…,u)  
going from T’2 to T’1 and any orientations of the  
other edges αi (i=u+1,u+2,…,m).  
 

 
 
 



 
Let χ: H1(E(G))→Z be the epimorphism sending 

 the oriented meridians of αi (i=1,2,…,m) to 1∈Z.  

Then we have  

in Case(I),  M(G,T)∞ = Λm-1  +  [Λ/(ΔK(t))]n, and  

in Case(II), M(G,T)∞ = Λm-1  +  [Λ/(ΔK(tu))]n. 

 

In either case, we have  m(G,T) ∞ = m+n-1. 

 

 

 

 
 



On the other hand, π1(E(G*)) is a free group of  

rank m and hence M(G*,T)∞ =Λm-1.  

Thus, m(G*,T)∞ =m-1.  

By Lemma A,    |(m(G,T)∞ -m(G*,T)∞ |=n≦k. 

Hence uβ (G)≧ n and  

uβ(G)= u(G)= uγ (G)= uΓ(G)= u   (G)=n. // Γ  
   γ
 

 



3. Applying the unknotting notions  

    to a spatial graph attached to a 
surface 



3.１. A spatial graph attached to a surface  

Let Γ be a finite graph, and v(Γ ) the set of degree  

one vertices.  Assume |v(Γ )|≧2. 

Let F be a compact  surface in R3. 

Definition.   

A spatial graph on F of Γ is  the image G of an 

embedding f: Γ → R3  such that  

(1) G meets  F with G∩F=f (v(Γ ))= v(G),  

(2) G-v(G) is contained in one component of R3-F, 

(3)∃a homeomorphism h: R3 → R3  such that 

      h(G∪F) is a polyhedron. 

 



・ F does not need ∂F=φ. 

・ Though Γ , G or F may be disconnected, but assume   

     that |F’∩v(G)| ≧2 for ∀component F’ of F. 

・ Ignore the degree 2 vertices in G. 
 
Definition.  A spatial graph G on F is equivalent  to a  

spatial graph G' on F’ if ∃an orientation-preserving  

homeomorphism h: R3 → R3 such that h(F∪G)=F’∪G'. 
 

Let [G] be the class of spatial graphs G’ on F’ which are  

equivalent to G on F.  

 



 

Definition.   G on F is unknotted if ∃a 2-cell Δ’ in  

∀component F’ of F such that the union Δ of all  

Δ’ contains v(G) and  the shrinked spatial graph  

G^  with v(G^)=φ (i.e. a spatial graph obtained  

from G by shrinking ∀ Δ’ into a point)  is  

unknotted in R3. 
  

3.2. An unknotted graph on a surface and 
the  induced unknotting number 

 
 



 
 Note.  If ∀F’ =S2 or a 2-cell,  then [G^ ] does not  

depend on a choice of Δ.  

However, in a genral F, [G^ ] depends on a choice  

of Δ, although the shrinked graph  Γ^ with v(Γ^ )=φ 

associated with F is uniquely defined.  



 

Because ∀G^ is  a spatial graph of the same  

graph Γ^, we have: 

 

Lemma.  For ∀ given graph Γ and ∀ given F in R3,  

∃only finitely many unknotted graphs G of Γ on  

F up to equivalences.  
 

 

   

  



Let O = {unknotted graphs of Γ^}. 
 

Definition. 

The unknotting number u(G) of a spatial graph G 

of Γ on F  is the distance from the set {G^} to O by  

crossing changes on edges attaching to a base:   

u(G) = ρ({G^},O).  

 



3.3. A β-unknotted graph on a surface  and  

the  induced unknotting number  
 
 

Definition.   G on F is β-unknotted if ∃a 2-cell  

Δ’ in ∀component F’ of F such that the union Δ  

of all Δ’ contains v(G)  and  the shrinked spatial  

graph G^  with v(G^)=φ is β-unknotted in R3. 

 

                   unknotted  ⇒ β-unknotted 

 
 



Let Oβ = {β-unknotted graphs of Γ^}. 

 

Definition. 

The β-unknotting number uβ(G) of a spatial graph  

G of Γ on F  is the distance from the set {G^} to Oβ  

by crossing changes on edges attaching to a base:   

uβ(G) = ρ({G^},Oβ).  

 



Definition.   G on F is γ-unknotted if ∃a 2-cell  

Δ’ in ∀component F’ of F such that the union Δ  

of all Δ’ contains v(G)  and  the shrinked spatial  

graph G^  with v(G^)=φ is γ-unknotted in R3. 

 

γ-unknotted⇒unknotted ⇒ β-unknotted 
  

3.4. A γ-unknotted graph on a surface and 
the  induced unknotting number  
 



Given G, let   

      {DG^,γ }= {(D;T)∈[DG^] | c(D;T)=cγ(G^), ∀G^}. 

Definition. 

The γ-unknotting number uγ(G) of a spatial graph  

G of Γ on F  is the distance from {DG^,γ} to O by  

crossing changes on edges attaching to a base:   

                     uγ(G) = ρ({DG^,γ },O). 

Note. G on F is γ-unknotted ⇔ uγ(G) =0. 

 

 



Definition.   G on F is Γ-unknotted if ∃a 2-cell  

Δ’ in ∀component F’ of F such that the union Δ  

of all Δ’ contains v(G)  and  the shrinked spatial  

graph G^  with v(G^)=φ obtained from G by  

shrinking ∀Δ’ into a point is Γ^-unknotted in R3. 
 

Γ-unknotted⇒γ-unknotted⇒unknotted  

                                                          ⇒ β-unknotted 

 
 
 

 
3.5. Γ-unknotted graph on a surface and the   
induced unknotting numbers  
 
   
 
  
 
 

   
   
 
         
 
 

 



Let  OΓ^={Γ^-unknotted graphs}. Then Oβ⊃O⊃ OΓ^. 
 

Definition.  

The Γ-unknotting number uΓ(G) of G on F is the  

distance from the set {G^} to OΓ^  by crossing  

changes on edges attaching to a base:   

uΓ(G) = ρ({G^},OΓ^)  

 The (γ,Γ)-unknotting number u   (G) of G on F is the 

distance from {DG^,γ} to OΓ by crossing changes on  

edges attaching to a base: u   (G) =ρ({DG^,γ},OΓ^). 
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3.6. Properties on the unknotting numbers 
 
Theorem 3.6.1.  The topological  invariants  

uβ(G), u(G),  uΓ(G), uγ (G), u   (G)  
of ∀spatial graph G of ∀graph  Γ on ∀surface F  
satisfy the following inequalities :  
            
        uβ(G) ≦ u(G)≦｛uγ (G),uΓ(G)｝≦ u (G), 
 
and are distinct for some graphs G of some Γ on  
F=S2.   
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   γ
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   γ
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Theorem 3.6.2.  For ∀given graph Γ , ∀surface F  

in R3 and ∀ integer n≧1, ∃∞-many spatial  

graphs G of Γ on F such that 
 
            uβ(G)= u(G)= uγ (G)= uΓ(G)= u   (G)=n.  
 

 

 

 



Proof of Theorem 4.6.1. The inequalities are direct  

from definitions.  

We show that these invariants are distinct. 

(1)                 

                    G=                                

 

G^ has cγ(G^)=2 and hence uβ(G)=u(G)=uγ(G)=0.  

On the other hand, we have   

                               uΓ(G)=u   (G)=1,  

for G^ is a spatial graph of a plane graph with a Hopf  

link as a constituent link and hence not Γ-unknotted. 

 

 

Γ  
γ
 

 



(2) 
                     G= 
 
 

G^=108  has u(108)=2 and uγ (108)=3  
by [Nakanishi 1983] and [Bleiler 1984]. 
 
Hence 
 
         uβ(G)= u(G) =uΓ(G)=2< uγ (G)=u   (G)=3. 
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(3)   

                         

                         G= 

 

 

Then uβ(G)= 0. Since G^ is a Θ-curve, by definition, 

        u(G^)=0 ⇔ G^ is isotopic to a plane graph. 

Thus, u(G)≧1 and we have    

                    u(G) =uΓ(G)=uγ (G)=u   (G)=1.//  Γ  
   γ
 

 



Proof of Theorem 3.6.2.   

Assume v(Γ)≠φ.   

Assume Γ and F are connected for simplicity. 

Let F be in the interior of  a 3-ball B⊂S3, and  

S2=∂B.  

Let G0  be a Γ-unknotted graph on S2 in Bc=cl(S3-B)  

and extend it to a Γ-unknotted graph G1 on F by  

taking in B a 1-handle H joining a 2-cell Δ0 of S2  

and a 2-cell Δ1 of F and then taking |v(Γ)| parallel  

arcs in H.  

 

 



A Γ-unknotted graph G1 on F  A Γ-spatial graph G on F 



Note that G0
^= G0 / Δ0 and G1

^= G1 / Δ1 are  

isotopic Γ-unknotted graphs in S3.  

We take a Γ-spatial graph G on F with v(G)⊂Δ1  

such that G^ =G / Δ1 is  a connected sum G1
^#K(n)  

of an edge of G1
^ (in  a part of  G0 ) and K(n) 

attaching to a base of G1
^, where K(n) is the  

n-fold connected sum of a trefoil knot K.  

Then u (G)≦ n.   
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We show uβ (G)≧ n.  

Let uβ (G)= uβ (G^’) for  G^’ =G / Δ’ for a 2-cell  

Δ’ in F. 

Assume that uβ (G)=k and a β-unknotted graph  

(G^’)’ is  obtained from G^’ by k crossing  

changes on edges αi (i=1,2,…,m) attaching to a  

base T’ in G^’.   

As it is explained in the case v(Γ)= F =φ,  we  

take orientations on the edges αi (i=1,2,…,m)  

and take an epimorphism χ: H1(E(G^’))→Z . 

 

 



By Lemma A, |m(G^’,T’) ∞ – m((G^’)’ ,T’) ∞ |≦k.  

Note that m((G^’)’,T’) ∞ =m-1.  

Let C’= G^’∩B and G’= G^’∩Bc. Then G^’=G’∪C’.  

Let E(G’)=cl(Bc-N(G’)), E(C’)=cl(B-N(C’)) and  

∂’E(C’)= E(C’)∩∂B. 

⊃ 
E(C’) 

∂’E(C’) 



Let E(G’)∞, E(C’)∞ and ∂’E(C’)∞ be the lifts of  

E(G’), E(C’) and ∂’E(C’) under the covering   

E(G^’)∞→E(G^’), respectively.  

Let   

                M(G’)∞ = H1(E(G’)∞)  and 

         M(C’,∂’C’)∞ = H1(E(C’)∞,∂’E(C’)∞).  

 

 

 

 



Proof. By excision,  

         Hd(E(G^’)∞, E(G’)∞)= Hd(E(C’)∞,∂’E(C’)∞).  

Since Hd(E(C’),∂’E(C’))=0 for d=1,2, we see from  
[Osaka J. Math. 1986] 

A. Kawauchi, Three dualities on the integral homology of infinite  

cyclic coverings of manifolds, Osaka J. Math. 23(1986),633-651. 

that H2(E(C’)∞,∂’E(C’)∞)=0 and M(C’,∂’C’)∞ is a  

torsion Λ-module with DM(C’,∂’C’)∞=0. 

Lemma B.   ∃a short exact sequence  
0→M(G’)∞ → M(G^’,T’)∞ →M(C’,∂’C’)∞ →0, 

Further, the finite Λ-torsion part DM(C’,∂’C’)∞ =0. 



The homology exact sequence of the pair  

(E(G^’)∞, E(G’)∞) induces an exact sequence: 

0→ H1(E(G’)∞) → H1(E(G^’)∞)  

                                       → H1(E(G^’)∞, E(G’)∞) →0.  

This sequence is equivalent to an exact  

sequence 

 

  0→M(G’)∞ → M(G^’,T’)∞ →M(C’,∂’C’)∞ →0. // 



Note that M(G’)∞ =M(G^,T)∞ for a base T of G^  

corresponding to the base T’of G^’.  

By an argument of the case v(Γ)= F =φ, 

m(G’)∞ =m(G^,T) ∞ = m+n-1  

for the minimal number m(G’)∞  of Λ-generators  

of M(G’) ∞.  

 

 



Lemma C (cf. [Kobe J. Math,1987]).  

Let M’ be a Λ-submodule of a finitely generated  
Λ-module M. Let m’ and m be the minimal  
numbers of Λ-generators of M’ and M,  
respectively. If D(M/M’) =0, then  m’ ≦ m. 

 

 

Proof.  For a Λ-epimorphism f: Λm →M, let 
B=f-1(M’)⊂Λm, which is mapped onto M’. 
Since Λm/B is isomorphic to M/M’ which has 
projective dimension ≦1, B is Λ-free, i.e., B=Λb 

with b≦m. Hence   m’ ≦b ≦m.// 

[Kobe J. Math,1987] 
A. Kawauchi, On the integral homology of infinite cyclic  
coverings of links, Kobe J. Math. 4(1987),31-41. 



By Lemma C, 

 m(G^’,T’)∞ ≧m(G’)∞ = m+n-1.  

Since m((G^’)’ ,T’) ∞ = m-1, we have  

      k ≧ m(G^’,T’) ∞ – m((G^’)’ ,T’) ∞ ≧ n. 

Hence uβ (G)≧ n and  

  

uβ(G)= u(G)= uγ (G)= uΓ(G)= u   (G)=n.// 
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Thank you for your attention. 
ご静聴ありがとうございました。 


