Euclid 空間の連結性についての補足

幾何学 AII/幾何学 I (担当: 新國)

2013年10月30日(水)

以下で、講義における§ 6.3 で時間の都合上述べなかった、Euclid 空間の連結性に関する次の定理の証明を述べる。

定理 6.3.1. 標準的な位相による 1 次元 Euclid 空間 $(\mathbb{R}, \mathcal{O}(\mathbb{R}))$ は連結である.

定理 6.3.1 を示すためには、実数の連続性についての知識を必要とするが、本稿ではそれを既知として話を進める。実数の連続性については、例えば「連続と極限」 (2 年後期, DA104) でも述べられたことと思う。

実数全体の集合 $\mathbb R$ の部分集合 A において、任意の $a \in A$ に対し $a \le a'$ が成り立つような $a' \in \mathbb R$ を A の上界といい、一方、任意の $a \in A$ に対し $a'' \le a$ が成り立つような $a'' \in \mathbb R$ を A の下界という。A の上界が少なくとも 1 つ存在するとき、A は上に有界であるといい、一方、A の下界が少なくとも 1 つ存在するとき、A は下に有界であるという。上にも下にも有界であるような $\mathbb R$ の部分集合 A は単に有界であるといわれる。これは A がある閉区間に含まれることと同じである。このとき、次の定理が成り立つ。A

定理. (実数の連続性、Weierstrassの定理) \mathbb{R} の空でない上に有界な部分集合 A に対し、必ず A の最小の上界が存在する. また、 \mathbb{R} の空でない下に有界な部分集合 A に対し、必ず A の最大の下界が存在する.

上の定理における "最小の上界" を A の上限といって $\sup A$ で表し、一方、"最大の下界" を A の下限といって $\inf A$ で表す.即ち、

 $\sup A = \min \{ a' \in \mathbb{R} \mid$ 任意の $a \in A$ に対し $a \le a' \}$, $\inf A = \max \{ a'' \in \mathbb{R} \mid$ 任意の $a \in A$ に対し $a'' \le a \}$

である. 例えば \mathbb{R} の開区間 (-1,1) を A とおけば, A 内における最大及び最小の元は定まらないが, A は有界で, $\sup A=1$, $\inf A=-1$ である.

¹解析学の適当な教科書には必ず書いてある(と思うよ).

更にいま、次のことに注意しておく.一般に位相空間 (X,\mathcal{O}) が連結でないとすると、 (X,\mathcal{O}) のある閉集合 U_1,U_2 が存在して、

$$U_1 \cup U_2 = X, \ U_1 \cap U_2 = \emptyset, \ U_1 \neq \emptyset, \ U_2 \neq \emptyset$$
 (i)

となる. 即ち, 連結でない位相空間は, 互いに交わらない 2 つの空でない閉集合にも分割される. 実際, (X, \mathcal{O}) が連結でなければ, ある開集合 $O_1, O_2 \in \mathcal{O}$ が存在して,

$$O_1 \cup O_2 = X, \ O_1 \cap O_2 = \emptyset, \ O_1 \neq \emptyset, \ O_2 \neq \emptyset$$
 (ii)

が成り立つ. このとき

$$U_1 = O_1^c, \ U_2 = O_2^c$$

とおけば、(ii) により、これらは (X, \mathcal{O}) の空でない閉集合で、

$$U_1 \cup U_2 = O_1^c \cup O_2^c = (O_1 \cap O_2)^c = \emptyset^c = X,$$

$$U_1 \cap U_2 = O_1^c \cap O_2^c = (O_1 \cup O_2)^c = X^c = \emptyset$$

となる.2 以上の準備のもとで、定理 6.3.1 の証明に入ろう.

(定理 6.3.1 の証明) 背理法で示す。即ち、 $(\mathbb{R}, \mathcal{O}(\mathbb{R}))$ が連結でないと仮定する。すると、先程述べたように、 $(\mathbb{R}, \mathcal{O}(\mathbb{R}))$ のある閉集合 U_1, U_2 が存在して、

$$U_1 \cup U_2 = \mathbb{R},\tag{iii}$$

$$U_1 \cap U_2 = \emptyset,$$
 (iv)

$$U_1 \neq \emptyset, \ U_2 \neq \emptyset$$
 (v)

となる. (v) より、ある $x_1 \in U_1$ 、 $x_2 \in U_2$ が存在して、(iv) から $x_1 \neq x_2$ である. そこで特に $x_1 < x_2$ と仮定しても一般性を失わない. いま、

$$V = U_1 \cap (-\infty, x_2)$$

とおくと, $x_1 \in U_1$ かつ $x_1 \in (-\infty, x_2)$ であるから, $x_1 \in V$, 即ち $V \neq \emptyset$ である. 更に x_2 は B の上界であるから, V は上に有界である。従って Weierstrass の定理により, V の上限 c が存在する。c は V の最小の上界であるから,

$$c \le x_2$$
 (vi)

である. ここで上限 c に関して, 任意の $\varepsilon > 0$ に対し, ある $x_1' \in V$ が存在して,

$$c - \varepsilon < x_1' \le c$$
 (vii)

 $^{^2}$ 逆に, (X,\mathcal{O}) のある閉集合 U_1,U_2 が存在して (i) が成り立つならば, (X,\mathcal{O}) は連結でないことも同様に示される. 詳細は演習問題とする.

が成り立つ (実際, もしそのような $x_1' \in V$ が存在しないなら, $c - \varepsilon$ は V の上界となり, c が V の最小の上界であることに反する). $x_1' \in U_1$ でもあるから, (vii) より

$$(c - \varepsilon, c + \varepsilon) \cap U_1 \neq \emptyset$$
 (viii)

となる. このとき, c の $(\mathbb{R}, \mathcal{O}(\mathbb{R}))$ における任意の開近傍 O に対し, $O \cap U_1 \neq \emptyset$ であることが以下のようにしてわかる: O が $(\mathbb{R}, \mathcal{O}(\mathbb{R}))$ の開集合であることと, \mathbb{R} の開区間全体の集合が $(\mathbb{R}, \mathcal{O}(\mathbb{R}))$ の基底であること $(\S 2.4)$ 例 A で n=1 の場合) から,

$$O = \bigcup_{\lambda \in \Lambda} (a_{\lambda}, b_{\lambda}) \tag{ix}$$

とかけて, $c \in O$ より, ある $\lambda_0 \in \Lambda$ が存在して $c \in (a_{\lambda_0}, b_{\lambda_0})$ となる. このとき

$$\varepsilon_0 = \min \left\{ b_{\lambda_0} - c, c - a_{\lambda_0} \right\}$$

とおけば、

$$(a_{\lambda_0}, b_{\lambda_0}) \supset (c - \varepsilon_0, c + \varepsilon_0) \tag{x}$$

となり、この ε_0 について (viii) から、

$$(c - \varepsilon_0, c + \varepsilon_0) \cap U_1 \neq \emptyset \tag{xi}$$

となる. 即ち (x) と (xi) を合わせて

$$(a_{\lambda_0}, b_{\lambda_0}) \cap U_1 \neq \emptyset$$

が得られるので、(ix) より $O \cap U_1 \neq \emptyset$ である。従って 10 月 9 日 (水) 配付の「位相空間の部分集合の触点についての補足」における補題 2.2.9 から、 $c \in \bar{U}_1$ となる。ここで U_1 は $(\mathbb{R}, \mathcal{O}(\mathbb{R}))$ の閉集合であったから, $\bar{U}_1 = U_1$ である。故に

$$c \in U_1$$
 (xii)

となり、(iv)、(xii) 及び $x_2 \in U_2$ から、 $c \neq x_2$ である.従って (vi) と合わせて $c < x_2$ となる.一方、 $c < x \leq x_2$ なる x は必ず U_2 に属する (実際、もしそのような x が U_2 に属さないとすると、(iii)、(iv) から $x \in U_1$ となり、故に $x \in B$ かつ c < x となって、c が B の上界であることに反する).従って任意の $\varepsilon > 0$ に対し

$$(c-\varepsilon,c+\varepsilon)\cap U_2\neq\emptyset$$

となり、これより U_1 の場合と全く同様に $c\in \bar U_2$ であることが示される. U_2 も $(\mathbb{R},\mathcal{O}\left(\mathbb{R}\right))$ の閉集合であったから, $\bar U_2=U_2$ である. 故に

$$c \in U_2$$
 (xiii)

となる. 従って (xii), (xiii) から $c \in U_1 \cap U_2$, 即ち $U_1 \cap U_2 \neq \emptyset$ となるが, これは (iv) と矛盾する.