On the knotted projections of spatial graphs^{*}

Ryo Nikkuni[†]

1. Knotted projections of spatial graphs

Let G be a finite graph. We give a label to each of vertices and edges of G. An embedding of G into \mathbf{R}^3 is called a *spatial embedding* of G or simply a *spatial graph*. A graph G is said to be *planar* if there exists an embedding of G into \mathbf{R}^2 . A spatial embedding of a planar graph G is said to be *trivial* if it is ambient isotopic to an embedding of G into $\mathbf{R}^2 \subset \mathbf{R}^3$. We note that a trivial spatial embedding of a planar graph is unique up to ambient isotopy in \mathbf{R}^3 [2].

A regular projection of G is an immersion $G \to \mathbb{R}^2$ whose multiple points are only finitely many transversal double points away from vertices. Let $\pi : \mathbb{R}^3 \to \mathbb{R}^2$ be the natural projection. For a regular projection \hat{f} of G, by giving over/under information to each double point, we can obtain a regular diagram of a spatial embedding f of G such that $\hat{f} = \pi \circ f$. Then we say that f is obtained from \hat{f} .

It is well known that for any regular projection \hat{f} of G which is homeomorphic to the disjoint union of 1-spheres there exists a trivial spatial embedding of G which is obtained from \hat{f} . This fact plays an important role in knot theory. For example, the theory of skein polynomial invariants is based on this fact. But this fact does not always hold for a regular projection of a planar graph. Let G be the octahedron graph and \hat{f} a regular projection of G as illustrated in Fig.

^{*}Intelligence of Low Dimensional Topology, Oct. 26, 2004.

 $^{^\}dagger {\rm The}$ author was supported by Fellowship of the Japan Society for the Promotion of Science for Young Scientists.

1.1. K. Taniyama pointed out that any of the spatial embeddings of G which is obtained from \hat{f} is non-trivial [11]. A regular projection \hat{f} of a planar graph G is said to be *knotted* if any spatial embedding of G which is obtained from \hat{f} is non-trivial.

Fig. 1.1. A knotted projection $\hat{f}: G \to \mathbf{R}^2$

A planar graph is said to be *trivializable* if it has no knotted projections. Thus a graph which is homeomorphic to the disjoint union of 1-spheres is trivializable, and the octahedron graph is not trivializable.

Question 1.1. When is a planar graph trivializable?

It is known that there exist infinitely many trivializable graphs. Taniyama showed that every *bifocal* as illustrated on the left-hand side in Fig. 1.2 is trivializable [11]. I. Sugiura and S. Suzuki showed that every *3-line web* as illustrated on the right-hand side in Fig. 1.2 is trivializable [8]. N. Tamura showed that every *neo-bifocal* is trivializable and gave a systematic construction of trivializable graphs in terms of an *edge sum* of graphs [9].¹ We refer the reader to [11], [9] and [8] for the precise definitions of the bifocal, the neo-bifocal and the 3-line web, respectively. But trivializable graphs have not been characterized completely yet.

 $^{^1}$ Her method can generate a trivializable graph which is not a minor of a bifocal or neo-bifocal. But the author does not know whether her method generates a trivializable graph which is not a minor of a 3-line web or not.

Fig. 1.2. A bifocal and a 3-line web

2. Forbidden graphs for the trivializability

We investigate trivializable graphs from a stand point of graph minor theory. A graph H is called a *minor* of a graph G if H can be obtained from G by a finite sequence of an edge contraction or taking a subgraph. We say that a property \mathcal{P} of a graph is *inherited by minors* if a graph has \mathcal{P} then each proper minor of the graph also has \mathcal{P} . Let $\Omega(\mathcal{P})$ be the set of all graphs which do not have \mathcal{P} and whose all proper minors have \mathcal{P} . This set is called the *obstruction set* for \mathcal{P} and each of the elements in $\Omega(\mathcal{P})$ is called a *forbidden graph* for \mathcal{P} . It is clear that a graph G has \mathcal{P} if and only if G does not have a minor which belongs to $\Omega(\mathcal{P})$. Then, according to N. Robertson-P. Seymour's Graph Minor Theorem [5], the following fact holds.

Theorem 2.1. (Robertson-Seymour [5]) $\Omega(\mathcal{P})$ is a finite set. \Box

In particular for the trivializability, it is known the following.

Proposition 2.2. (Taniyama [11]) The trivializability is inherited by minors. \Box

Therefore by Theorem 2.1, we have that $\Omega(\mathcal{T})$ is a finite set, namely the trivializability of a graph can be determined by finitely many forbidden graphs. Thus we would like to determine all elements in $\Omega(\mathcal{T})$, namely we consider the following problem.

Problem 2.3. Find all forbidden graphs for the trivializability.

Sugiura and Suzuki found seven forbidden graphs for the trivializability as follows:

Theorem 2.4. (Sugiura-Suzuki [8]) The seven graphs G_1, G_2, \ldots, G_7 as illustrated in Fig. 2.1 belong to $\Omega(\mathcal{T})$. \Box

Fig. 2.1. Forbidden graphs G_1, G_2, \ldots, G_7 for the trivializability

On the other hand, the author, M. Ozawa, Taniyama and Y. Tsutsumi found nine more forbidden graphs for the trivializability.

Theorem 2.5. (N-Ozawa-Taniyama-Tsutsumi [4]) The nine graphs G_8, G_9, \ldots, G_{16} as illustrated in Fig. 2.2 belong to $\Omega(\mathcal{T})$. \Box

Fig. 2.2. Newly found forbidden graphs G_8, G_9, \ldots, G_{16} for the trivializability

Indeed, each G_i has a knotted projection \hat{f}_i (i = 8, 9, ..., 16) as illustrated in Fig. 2.3. Therefore each G_i is not trivializable. Moreover we can see that each of the proper minors of G_i (i = 8, 9, ..., 16) is also a minor of a 3-line web. Thus by Proposition 2.2 we have that $G_8, G_9, \ldots, G_{16} \in \Omega(\mathcal{T}).$

It seems that $\Omega(\mathcal{T})$ is not determined by these sixteen forbidden graphs. Actually we have candidates for forbidden graphs for the trivializability. Let H be the graph as illustrated in Fig. 2.4. Sugiura asked in his master thesis [7] whether H is trivializable or not. This question is still open. Since we can see that each of the proper minors of H is trivializable, if H is not trivializable then $H \in \Omega(\mathcal{T})$.

Fig. 2.3. Knotted projections $\hat{f}_i: G_i \to \mathbf{R}^2 \ (i = 8, 9, \dots, 16)$

Besides, let H_1 , H_2 and H_3 be three graphs as illustrated in Fig. 2.4. Then we have that each H_i has a knotted projection \hat{g}_i (i = 1, 2, 3) as illustrated in Fig. 2.5. We note that each of H_i has a minor which is homeomorphic to H. Thus if H is not trivializable then H_1, H_2 and H_3 are not forbidden graphs for the trivializability, and if H is trivializable then there is a possibility that $H_1, H_2, H_3 \in \Omega(\mathcal{T})$.

Fig. 2.4.

Fig. 2.5. Knotted projections $\hat{g}_i: H_i \rightarrow \mathbf{R}^2 \ (i=1,2,3)$

3. Identifiable projections of spatial graphs

A regular projection \hat{f} of a graph is said to be *identifiable* [1] if any two spatial embeddings of the graph obtained from \hat{f} are ambient isotopic. For example, each of the regular projections as illustrated in Fig. 3.1 (1), (2) and (3) is identifiable. We note that a non-planar graph does not have an identifiable projection [1]. Actually this is shown by calculating the *Simon invariant* [10] of spatial subgraph which is homeomorphic to K_5 or $K_{3,3}$.

Fig. 3.1. Identifiable projections

Let \hat{f} be an identifiable projection of a trivializable graph G. Then we have that any of the spatial embeddings of G which is obtained from \hat{f} is trivial because there exists a trivial spatial embedding of Gwhich is obtained from \hat{f} . But this argument does not work for nontrivializable planar graphs because the projection may be knotted. Thus it is natural to ask the following question.

Question 3.1. Is any of the spatial embeddings of a non-trivializable planar graph which is obtained from an identifiable projection trivial?

We give an affirmative answer for Question 3.1, namely we have the following.

Theorem 3.2. (N [3]) A regular projection of a planar graph is identifiable if and only if any of the spatial embeddings which is obtained from the projection is trivial. In the following we give a proof of Theorem 3.2. A spatial embedding f of a graph G is said to be *free* if $\pi_1(\mathbf{R}^3 - f(G))$ is a free group. The following is M. Scharlemann-A. Thompson's famous criterion.

Theorem 3.3. (Scharlemann-Thompson [6]) For a planar graph G, a spatial embedding f of G is trivial if and only if $\pi_1(\mathbf{R}^3 - f(H))$ is a free group for any subgraph H of G. \Box

On the other hand, Ozawa pointed out the following fact.

Lemma 3.4. (N-Ozawa-Taniyama-Tsutsumi [4]) Let \hat{f} be a regular projection of a graph. Then there exists a free spatial embedding of the graph which is obtained from \hat{f} . \Box

Proof of Theorem 3.2. By the uniqueness of the trivial spatial embeddings of a planar graph up to ambient isotopy, we have the 'if' part. Next we show the 'only if' part. Let \hat{f} be an identifiable projection of a planar graph G and f the spatial embedding of G obtained from \hat{f} . We note that $\hat{f}|_H$ is also identifiable for any subgraph H of G. Then by Lemma 3.4 the spatial embedding g of H obtained from $\hat{f}|_H$ is free. Since $g = f|_H$, we have that $f|_H$ is free for any subgraph H of G. Therefore by Theorem 3.3 we have that f is trivial. This completes the proof. \Box

References

- Y. Huh and K. Taniyama, Identifiable projections of spatial graphs, to appear in Journal of Knot Theory and its Ramifications.
- [2] W. K. Mason, Homeomorphic continuous curves in 2-space are isotopic in 3-space, Trans. Amer. Math. Soc. 142 (1969), 269–290.
- [3] R. Nikkuni, An identifiable projection of a graph produces only the trivial spatial embedding, unpublished note.
- [4] R. Nikkuni, M. Ozawa, K. Taniyama and Y. Tsutsumi, Newly found forbidden graphs for trivializability, to appear in Journal of Knot Theory and its Ramifications.

- [5] N. Robertson and P. Seymour, Graph minors XVI. Wagner's conjecture, preprint.
- [6] M. Scharlemann and A. Thompson, Detecting unknotted graphs in 3-space, J. Diff. Geom. 34 (1991), 539–560.
- [7] I. Sugiura, On trivializability of spatial graph projections, Master thesis, Waseda University (1997).
- [8] I. Sugiura and S. Suzuki, On a class of trivializable graphs, Sci. Math. 3 (2000), 193–200.
- [9] N. Tamura, On an extension of trivializable graphs, J. Knot Theory Ramifications 13 (2004), 211–218.
- [10] K. Taniyama, Cobordism, homotopy and homology of graphs in R³, Topology 33 (1994), 509–523.
- [11] K. Taniyama, Knotted projections of planar graphs, Proc. Amer. Math. Soc. 123 (1995), 3575–3579.

Department of Mathematics, School of Education, Waseda University Nishi-Waseda 1-6-1, Shinjuku-ku, Tokyo, 169-8050, Japan

nick@kurenai.waseda.jp