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1. Ck-moves on spatial graphs and finite type invariants

Let S
3 be the unit 3-sphere in R

4 centered at the origin and S
2 the unit 2-sphere

in S
3. Let f be an embedding of a finite graph G into S

3. Then f is called a

spatial embedding of G or simply a spatial graph. Two spatial embeddings f and

g of G are said to be ambient isotopic if there exists an orientation-preserving self

homeomorphism Φ on S
3 such that Φ ◦ f = g. A graph G is said to be planar if

there exists an embedding of G into S
2. A spatial embedding f of a planar graph

G is said to be trivial if there exists an embedding h of G into S
2 such that f and

h are ambient isotopic.

A C1-move is a crossing change and a Ck-move is a local move on spatial graphs

as illustrated in Fig. 1.1 for k ≥ 2 [4], [2]. Note that a C2-move is equal to a

delta move [8], [12], and a C3-move is equal to a clasp-pass move [3]. Two spatial

embeddings of a graph are said to be Ck-equivalent if they are transformed into

each other by Ck-moves and ambient isotopies. By the definition of a Ck-move, it

is easy to see that Ck-equivalence implies Ck−1-equivalence.

0 1 2 k k-1 0 1 2 k k-1

Figure 1.1.

A Ck-move is closely related to finite type invariants of knots, links and spatial

graphs. For a graph G, we give an orientation to each of the edges of G. A

singular spatial embedding of G is an immersion of G into S
3 whose multipoints are

only transversal double points away from vertices. Let v be an ambient isotopy

invariant of spatial graphs taking values in an additive group. We extend v to
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singular spatial embeddings of G by v(K×) = v(K+)− v(K−), where K×, K+ and

K− are singular spatial embeddings of G which are identical except inside the

depicted regions as illustrated in Fig. 1.2. Then v is called a finite type invariant

of order ≤ n if v vanishes on every singular spatial embedding of G with at least

n + 1 double points [18], [1], [14]. If v is of order ≤ n but not of order ≤ n − 1,

then v is called a finite type invariant of order n.

K K K

Figure 1.2.

We say that two spatial embeddings f and g of G are FTn-equivalent if v(f) =

v(g) for any finite type invariant v of order ≤ n. In particular for oriented knots,

Goussarov and Habiro showed independently the following.

Theorem 1.1. ([2], [4]) Two oriented knots J and K are Ck-equivalent if and

only if they are FTk−1-equivalent.

The ‘only if’ part of Theorem 1.1 is also true for oriented links [2], [4] and spatial

graphs [17], but the ‘if’ part does not always hold. For example, the Whitehead

link and the trivial 2-component link are FT2-equivalent but not C3-equivalent

[16]. By finding a basis for the space of finite type invariants for knots, we also

have the following.

Theorem 1.2. Let J and K be two oriented knots. Then we have the following.

( 1 ) ([12], [8]) J and K are C2-equivalent.

( 2 ) ([3]) J and K are C3-equivalent if and only if a2(J) = a2(K).

( 3 ) J and K are C4-equivalent if and only if they are C3-equivalent and P
(3)
0 (J ; 1) =

P
(3)
0 (K; 1).

( 4 ) J and K are C5-equivalent if and only if they are C4-equivalent, a4(J) = a4(K)

and P
(4)
0 (J ; 1) = P

(4)
0 (K; 1).

Here, an(·) denotes the nth coefficient of the Conway polynomial and P
(n)
m (·; 1)

denotes the nth derivative at 1 of the HOMFLYPT mth coefficient polynomial

Pm(·; t). For spatial embeddings of a graph which may not be homeomorphic to

the circle, a Ck-classification of them has been completed with the comparatively

small k. The following table shows the present status of the completion of these

classifications.

2



C2 C3 C4 C5 · · ·

knots
[8], [12]

C2 = FT1

[4], [2]

Ck = FTk−1

2-component links
[12]

C2 = FT1

[16]

C3 6= FT2

[9]

C4 = FT3

?

3-component links
[12]

C2 = FT1

[16]

C3 6= FT2

?

k(≥ 4)-component links
[12]

C2 = FT1

?

C3 6= FT2

?

spatial embeddings

of planar graphs

without disjoint cycles

[15], [11]

C2 = FT1

[16]

C3 = FT2

?

spatial embeddings of

planar graphs

with disjoint cycles

[15], [11]

C2 = FT1

?

spatial embeddings

of nonplanar graphs

[15], [11]

C2 = FT1

?

Let Θ be the theta curve and K4 the complete graph on four vertices as illustrated

in Fig. 1.3. Note that each of Θ and K4 is planar and does not contain a pair of

disjoint cycles. The following are C2 and C3-classifications of spatial embeddings

of such graphs.

Theorem 1.3. Let G be a planar graph which does not contain a pair of disjoint

cycles and f and g two spatial embeddings of G. Then we have the following.

( 1 ) ([15], [11]) f and g are C2-equivalent.

( 2 ) ([16]) f and g are C3-equivalent if and only if a2(f(γ)) = a2(g(γ)) for any

subgraph γ of G which is homeomorphic to the circle.

e1

e2

e3

e4

e5

e1 e2

e3

e6

K4Θ

Figure 1.3.

Our purpose in this report is to state classification theorems of spatial theta

curves and spatial complete graphs on four vertices under C4 and C5-equivalences.

For a spatial embedding f of a graph G, a disk/band surface Sf of f(G) is a
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compact and orientable surface in S
3 such that f(G) is a deformation retract of

Sf contained in the interior of Sf [7]. In particular, if G = Θ or K4, then the

disk/band surface of f(G) with zero Seifert linking form is unique with respect to

f under ambient isotopy [7], see Fig. 1.4.

f S f

f S f

Figure 1.4.

Let e1, e2, . . . , el be all edges of G. Let Sf(ε1, ε2, . . . , εl) (εi = 0,±1,∞) be a

surface in S
3 obtained from Sf as illustrated in Fig. 1.5. Note that Sf(ε1, ε2, . . . , εl)

depends only on Sf and ε1, ε2, . . . , εl. Thus in the case of Θ and K4, Sf(ε1, ε2, . . . , εl)

is also the unique surface for f if Sf has zero Seifert linking form. To classify

spatial theta curves and spatial complete graphs on four vertices under C4 and

C5-equivalences, we use some an(·) and P
(n)
0 (·; 1) for knots which appear as the

boundary component of the surfaces above. For a knot J , recall that P (J ; t, z) does

not depend on the orientation of J . Therefore am(J) = Pm(J ; 1) and P
(n)
m (J ; 1)

also do not depend on the orientation of J .

2. Classification of spatial theta curves and spatial complete

graphs on four vertices

First we state complete classifications of spatial theta curves under C4 and C5-

equivalences. Let f be a spatial theta curve and Sf the disk/band surface of f(Θ)
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Figure 1.5.

with zero Seifert linking form. We put

J1(f) = f(e2 ∪ e3), J2(f) = f(e1 ∪ e3), J3(f) = f(e1 ∪ e2).

Let J4(f) (resp. J5(f), J6(f)) be the component of ∂Sf (0, 0,−1) (resp. ∂Sf (−1, 0, 0),

∂Sf (0, 1, 0)) which is not corresponding to J3(f) (resp. J1(f), J2(f)). Now we state

classification theorems for spatial theta curves under C4 and C5-equivalence.

Theorem 2.1. Two spatial theta curves f and g are C4-equivalent if and only if

the following conditions hold:

( 1 ) f and g are C3-equivalent,

( 2 ) P
(3)
0 (Ji(f); 1) = P

(3)
0 (Ji(g); 1) (i = 1, 2, 3, 4).

Theorem 2.2. Two spatial theta curves f and g are C5-equivalent if and only if

the following conditions hold:

( 1 ) f and g are C4-equivalent,

( 2 ) a4(Ji(f)) = a4(Ji(g)) (i = 1, 2, 3, 5),

( 3 ) P
(4)
0 (Ji(f); 1) = P

(4)
0 (Ji(g); 1) (i = 1, 2, 3, 5, 6).

Example 2.3. There exists a spatial theta curve f such that Ji(f) is trivial for

i = 1, 2, 3 but f is not C4-equivalent to the trivial spatial theta curve h. For

example, let f be Kinoshita’s theta curve as illustrated in Fig. 1.4. It is clear that

Ji(f) is trivial for i = 1, 2, 3. But we have P
(3)
0 (J4(f); 1) = 48 6= 0. Thus f and

h are not C4-equivalent by Theorem 2.1. Note that f and h are C3-equivalent by

Theorem 1.3.

Next we give complete classifications of spatial complete graphs on four vertices

under C4 and C5-equivalences. Let f be a spatial complete graph on four vertices
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and Sf the disk/band surface of f(K4) with zero Seifert linking form. We put

J1(f) = f(e1 ∪ e2 ∪ e5 ∪ e6), J2(f) = f(e2 ∪ e3 ∪ e4 ∪ e6),

J3(f) = f(e1 ∪ e3 ∪ e4 ∪ e5), J4(f) = f(e2 ∪ e4 ∪ e5),

J5(f) = f(e3 ∪ e5 ∪ e6), J6(f) = f(e1 ∪ e4 ∪ e6), J7(f) = f(e1 ∪ e2 ∪ e3).

Let J8(f) (resp. J9(f), J10(f)) be the component of ∂Sf (∞, 0, 0, 0,−1, 0) (resp.

∂Sf (0,∞, 0, 0, 0, 1), ∂Sf (0, 0,∞,−1, 0, 0)) which is not corresponding to J2(f)

(resp. J3(f), J1(f)). Let J11(f) (resp. J12(f), J13(f)) be the component of

∂Sf (0, 0, 0,∞, 1, 0) (resp. ∂Sf (0, 0, 0, 0,∞, 1), ∂Sf (0, 0, 0,−1, 0,∞)) which is not

corresponding to J7(f). Let J14(f) (resp. J15(f)) be the component of ∂Sf (∞,−1, 0, 0, 0, 0)

(resp. ∂Sf (−1,∞, 0, 0, 0, 0)) which is not corresponding to J5(f). Let J16(f) (resp.

J17(f)) be the component of ∂Sf (−1, 0,∞, 0, 0, 0) (resp. ∂Sf (∞, 0, 1, 0, 0, 0)) which

is not corresponding to J4(f). Let J18(f) (resp. J19(f)) be the component

of ∂Sf (0,∞, 1, 0, 0, 0) (resp. ∂Sf (0, 1,∞, 0, 0, 0)) which is not corresponding to

J6(f). Let J20(f) (resp. J21(f), J22(f)) be the component of ∂Sf (0, 0, 0, 0,−1, 1)

(resp. ∂Sf (0, 0, 0,−1,−1, 0), ∂Sf (0, 0, 0,−1, 0, 1)) which is not corresponding to

J7(f). Let J23(f) (resp. J24(f)) be the component of ∂Sf (1, 0, 0, 0,∞, 0) (resp.

∂Sf (0, 1, 0, 0, 0,∞)) which is not corresponding to J2(f) (resp. J3(f)). Now we

state classification theorems for spatial complete graphs on four vertices under C4

and C5-equivalence.

Theorem 2.4. Two spatial complete graphs on four vertices f and g are C4-

equivalent if and only if the following conditions hold:

( 1 ) f and g are C3-equivalent,

( 2 ) P
(3)
0 (Ji(f); 1) = P

(3)
0 (Ji(g); 1) (i = 1, 2, . . . , 13).

Let Θi be the subgraph of Θ which is obtained from Θ by deleting the edge ei

(i = 1, 2, . . . , 6). Note that Θi is homeomorphic to Θ. Then, by Theorems 2.1 and

2.4, we have the following.

Corollary 2.5. Two spatial complete graphs on four vertices f and g are C4-

equivalent if and only if f |Θi
and g|Θi

are C4-equivalent (i = 1, 2, . . . , 6).

Example 2.6. Let f and g be two spatial complete graphs on four vertices as

illustrated in Fig. 2.1. Since Ji(f) is trivial for i = 1, 2, . . . , 7, by Theorem 1.3 it

follows that f is C3-equivalent to the trivial spatial complete graph on four vertices

h. But we can see that f |Θ1
is the Kinoshita’s theta curve. Thus by Example 2.3

and Corollary 2.5, f and h are not C4-equivalent. On the other hand, we can see

that g|Θi
is trivial for i = 1, 2, . . . , 6. Thus by Corollary 2.5, it follows that g and

h are C5-equivalent. Note that g is not trivial under ambient isotopy.

6



f(e  )1

f g

Figure 2.1.

Theorem 2.7. Two spatial complete graphs on four vertices f and g are C5-

equivalent if and only if the following conditions hold:

( 1 ) f and g are C4-equivalent,

( 2 ) a4(Ji(f)) = a4(Ji(g)) (i = 1, 2, . . . , 16),

( 3 ) P
(4)
0 (Ji(f); 1) = P

(4)
0 (Ji(g); 1) (i = 1, 2, . . . , 24).

Example 2.8. There exists a spatial complete graph on four vertices f such that

f |Θi
is C5-equivalent to the trivial spatial embedding of Θi for i = 1, 2, . . . , 6 but

f is not C5-equivalent to the trivial spatial complete graph on four vertices h. For

example, let f be the spatial complete graph on four vertices as illustrated in Fig.

2.2. We can see that f |Θi
is trivial for i = 1, 2, . . . , 5. Though f |Θ6

is not trivial,

by checking the conditions in Theorem 2.2, we can see that f |Θ6
is C5-equivalent

to the trivial spatial embedding of Θ6. But we have P
(4)
0 (J20(f); 1) = 384 6= 0.

Thus f and h are not C5-equivalent by Theorem 2.7.

f(e  )6

f(e  )3

f(e  )4f(e  )1

f(e  )2

f(e  )5

Figure 2.2.

Question 2.9. Does there exist a spatial complete graph on four vertices f such

that f |Θi
is trivial for i = 1, 2, . . . , 6 but f is not C5-equivalent to the trivial spatial

complete graph on four vertices?
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Let f be a spatial theta curve (resp. spatial complete graph on four vertices)

and Sf the disk/band surface of f(Θ) (resp. f(K4)) with zero Seifert linking form.

Then it is known that a finite type invariant of order ≤ n of ∂Sf (ε1, ε2, ε3) (resp.

∂Sf (ε1, ε2, . . . , ε6)) is also a finite type invariant of order ≤ n of f [13], [19]. On

the other hand, an(·) is a finite type invariant of order ≤ n [1], and P
(n)
0 (·; 1) is

a finite type invariant of order ≤ n [6]. Therefore, by Theorems 1.3, 2.1, 2.2, 2.4

and 2.7, we have the following.

Corollary 2.10. Let G = Θ or K4. For k ≤ 5, two spatial embeddings f and g

of G are Ck-equivalent if and only if they are FTk−1-equivalent.

Remark 2.11.

( 1 ) Proofs of Theorems 2.1, 2.2, 2.4 and 2.7 are done by showing a slightly mod-

ified version of Meilhan and the second author’s C4 and C5-classifications of

string links [10].

( 2 ) Let H be the handcuff graph, which is constructed by connecting two loops

by a single edge. Then, there exists a spatial handcuff graph f such that

f is FTk−1-equivalent to the trivial spatial handcuff graph h but not Ck-

equivalent to h for k = 3, 4, 5. Classification of spatial handcuff graphs under

Ck-equivalence for k = 3, 4, 5 are due to be mentioned in [5].
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