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1. Clasp-pass moves on knots and links

Throughout this report we work in the piecewise linear category and our links are

ordered and oriented. K. Habiro introduced a clasp-pass move as a local move on links as

illustrated in Fig. 1.1 [2]. We call an equivalence relation on links generated by clasp-pass

moves and ambient isotopies a clasp-pass equivalence. For knots, he showed the following.

Fig. 1.1.

Theorem 1.1.([3, Proposition 7.1]) Two knots J and K are clasp-pass equivalent if and

only if a2(J) = a2(K). 2

Here ak(L) denotes the k-th coefficient of the Conway polynomial of a link L. Namely

knots are classified geometrically by this numerical invariant up to clasp-pass equivalence.

Besides it is known that if two links L and M are clasp-pass equivalent then v2(L) =

v2(M) for any Vassiliev invariant v2 of order less than or equal to 2 [1] [3] [8] [9]. The

converse is also true for knots (cf. [3, Theorem 1.1]), but not true for n-component links

(n ≥ 2).

We are interested in the question: What invariants do classify n-component links (n ≥

2) up to clasp-pass equivalence? K. Taniyama and A. Yasuhara gave an answer for

n = 2, 3 [10, Theorems 1.5 and 1.7] (see the following table).
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n invariants

linking number lk

2 a2 of each of components

a3 (mod 2)

lk of each of 2-component sublinks

a2 of each of components

3 a3 (mod 2) of each of 2-component sublinks

Milnor invariant µ modulo g.c.d of pairwise linking numbers

a4 (mod 2)

n ≥ 4 ?

We remark here that they give an answer for n-component algebraically split links (namely,

each of pairwise linking numbers is zero). They are classified by a2 of each of compo-

nents, a3 (mod 2) of each of 2-component sublinks and µ of each of 3-component sublinks

[10, Theorem 1.4]. We note that a3 (mod 2) of a 2-component link, a4 (mod 2) of a 3-

component link and µ modulo the greatest common divisor of pairwise linking numbers

of a 3-component link are not Vassiliev invariant of order less than or equal to 2.

Our purpose in this report are to reveal the relationship between the clasp-pass equiv-

alence on links and higher order coefficients of the Conway polynomial. To state our

approach, we transform each of links into a specific one up to ambient isotopy. Let

L = J1∪J2∪· · ·∪Jn be a n-component link. We denote lk(Ji∪Jj) by lij (1 ≤ i, j ≤ n). Let

Xl12l13···ln−1,n
= Y1∪Y2∪· · ·∪Yn be a n-component link with lk(Yi∪Yj) = lij (1 ≤ i, j ≤ n)

as illustrated in Fig. 1.2 where the case n = 4, l12 = −1, l13 = 3, l14 = −2, l23 = 2, l24 = −2

and l34 = −1 is illustrated. A delta move is a local move as illustrated in Fig. 1.3. We

Y1

Y4

Y2Y3

Fig. 1.2.

call an equivalence relation on links generated by delta moves and ambient isotopies a

delta equivalence. Since it is easy to see that a clasp-pass move is realized by two delta
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Fig. 1.3.

moves, so we have that a clasp-pass equivalence implies a delta equivalence. It is known

that two links are delta equivalent if and only if they have same pairwise linking numbers

[7] (see also [10]). Therefore we have the following.

Lemma 1.2. Two links L and Xl12l13···ln−1,n
are transformed each other by delta moves

and ambient isotopies. 2

Then we can regard a delta move as a band sum of a Borromean ring as illustrated

in Fig. 1.4. Namely we pretend to apply a delta move to L. In practice we have that

ambient
isotopy

delta move

Fig. 1.4.

L is a band sum of Borromean rings and Xl12l13···ln−1,n
(see [10, Lemma 2.1] for details).

We call a locall part as illustrated in Fig. 1.5 a Borromean chord. We denote the set of

components which has intersection with the chord C by ε(C). We define that the type of

C is (i, j, k) if ε(C) = {Ji, Jj, Jk}, (i, j) if ε(C) = {Ji, Jj} and (i) if ε(C) = {Ji}.

Ji

Jj

Jk

Fig. 1.5. Borromean chord
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Now we construct a simple graph FL as follows. The vertices of FL are labeled

v1, v2, . . . , vn, and vi and vj are connected by an edge eij if lij is odd. We call FL a

modulo 2 linking graph of L. Note that FL is unique up to delta equivalence. We can

define a first Z2-cocycle ϕL ∈ C1(FL;Z2) by ϕL(eij) = 0 if the number of Borromean

chords of type (i, j) is even and 1 if the number of Borromean chords of type (i, j) is odd.

Then we can state our main results.

Theorem 1.3. Let L = J1 ∪ J2 ∪ · · · ∪ Jn and M = K1 ∪ K2 ∪ · · · ∪ Kn be delta

equivalent n-component links and F = FL = FM a modulo 2 linking graph of them. If

am+1(Ji1 ∪ Ji2 ∪ · · · ∪ Jim) ≡ am+1(Ki1 ∪Ki2 ∪ · · · ∪Kim) (mod 2) for 1 ≤ i1 < i2 < . . . <

im ≤ n and 3 ≤ m ≤ n, then [ϕL] = [ϕM ] in H1(F ;Z2).

We note that each of am+1(Ji1 ∪ Ji2 ∪ · · · ∪ Jim) (mod 2) for 1 ≤ i1 < i2 < . . . < im ≤ n

and 3 ≤ m ≤ n for an n-component link L = J1 ∪ J2 ∪ · · · ∪ Jn is an invariant under a

clasp-pass equivalence [10, Lemmas 2.6 and 2.7]. Thus as a corollary of Theorem 1.3, we

have the following.

Corollary 1.4. Let L = J1 ∪ J2 ∪ · · · ∪ Jn and M = K1 ∪K2 ∪ · · · ∪Kn be n-component

links. If L and M are clasp-pass equivalent, then [ϕL] = [ϕM ] in H1(F ;Z2), where

F = FL = FM is a modulo 2 linking graph of them. 2

This invariant play an important role for classification of links up to clasp-pass equiv-

alence.

2. Idea of the proof

Lemma 2.1. ([10, Lemma 2.5]) Each pair of the embeddings illustrated in Fig. 2.1 and

2.2 are clasp-pass equivalent. 2

Specially, the pair of the embeddings illustrated in Fig. 2.3 are clasp-pass equivalent

[10]. By using deformations above, we can deform L up to clasp-pass equivalence so

that

(1) each Borromean chord of type (i) is contained in a 3-ball as illustrated in Fig. 2.4

(a) or (b), and for each i, not both of (a) and (b) occur,

(2) each Borromean chord of type (i, j) is contained in a 3-ball as illustrated in Fig. 2.4

(c), and for 1 ≤ i < j ≤ n there is at most one Borromean chord of type (i, j) and

(3) each Borromean chord of type (i, j, k) is contained in a 3-ball as illustrated in Fig.

2.4 (d) or (e), and for each i, j, k, not both of (d) and (e) occur.

For Borromean chords of type (i), we can see easily that each Borromean chord as

illustrated in Fig. 2.4 (a) and (b) is regarded as a connected sum of a trefoil knot

and a connected sum of a figure eight knot, respectively. Then the (signed) number of

Borromean chords of type (i) coincides with a2(Ji). For Borromean chords of type (i, j),

in fact the number of Borromean chord of type (i, j) coincides with a3(Ji ∪ Jj) (mod

2) if lij is even. For Borromean chords of type (i, j, k), it is known that the number of

Borromean chords can be estimated by µ(Ji ∪ Jj ∪ Jk) for specific cases.
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(1) (2)

(5)

(4)

(3)

Fig. 2.1.
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(6)

(7)

Fig. 2.2.

(8)

Fig. 2.3.
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(a) (b)

(c)

Ji

Jj

Ji Ji

Ji

Jj

Jk

(d)

Ji

Jj

Jk

(e)

Fig. 2.4.
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In fact our invariant [ϕL] ∈ H1(FL;Z) can get control the Borromean chords of type

(i, j) with odd lij . For Xl12l13···ln−1,n
, we can create the Borromean chords of type (i, j) if

lij 6= 0 as in Fig. 2.5. Since we can create a full-twist on each of Hopf bands around Ji

ambient
isotopic

Fig. 2.5.

up to clasp-pass equivalence by turning Ji twice (see Fig. 2.6), for any i we can create lij

Borromean chords of type (i, j) (1 ≤ j ≤ n, i 6= j) up to clasp-pass equivalence. Note that

the above deformations have an influence on ϕL but have no influences on [ϕL] because

this change is absorbed by the coboundary relations. Let F (q) be a connected component

of FL (1 ≤ q ≤ ω). Let Tq be a spanning tree of F (q). For a graph G, we denote the

edge set of G by E(G). We note that each of edges in Bq = E(F (q))−E(Tq) (1 ≤ q ≤ ω)

represents a basis of H1(FL;Z2). Then by succesive applications of Fig. 2.6 along Tq, we

can replace all Borromean chords of type (i, j) with odd lij by Borromean chords of type

(i′, j′) for ei′j′ ∈ B1 ∪B2 ∪ · · ·∪Bω. Note that by further applications of clasp-pass moves

we have that each Borromean chord of type (i′, j′) for ei′j′ ∈ B1∪B2∪· · ·∪Bω is contained

in a 3-ball as illustrated in Fig. 2.4 (c), and there is at most one Borromean chord of type

(i′, j′). The above deformations do not have an influence on ϕL. We denote this ’canonical

type’ got from L by L′ = J ′

1 ∪J ′

2 ∪· · ·∪J ′

n (ordering of components has been preserved

from L). As we noted above, we have that [ϕL] = [ϕL′]. Let γi′j′ = vi′vk1
vk2

· · · vkl
vj′vi′

be the basis of H1(F ;Z2) represented by ei′j′. We denote the corresponding sublink of

L′ to γi′j′ by L′(γi′j′) and the number of components by m (3 ≤ m ≤ n) (see Fig. 2.7,

where Borromean chords are not illustrated). We may assume that L′(γi′j′) is one of L1

or L2 as illustrated in Fig. 2.8. By using the skein relation at the marked crossing point

in Fig. 2.8 and J. Hoste’s result [4], we have that

am+1(L2) − am+1(L1) = am(L3) = am(L4) + am−1(L5) = am−1(L5)
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clasp-pass moves

Ji

Jj Jk

Jl

Ji

Jj Jk

Jl

Fig. 2.6.

J’i’

J’ j’

vi’

vj’

e i’ j’

Tq

γ i’ j’

γ i’ j’L’ ( )

vk1

vk2

J’k1

J’k2

Fig. 2.7.
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≡ li′k1
lik1k2

· · · lkm−2j′ ≡ 1 (mod 2).

This shows that we can check that the modulo 2 parity of am+1(L
′(γi′j′)) changes under

Ji’

Jj’

crossing
change

ambient
isotopic

smoothing

smoothing

ambient
isotopic

crossing
change

(split link)

L1 L2

L3

L4L5

Fig. 2.8.

a band sum of a Borromean chord of type (i′, j′). This implies the proof of Theorem 1.3.

Let L = J1∪J2∪· · ·∪Jn and M = K1∪K2∪· · ·∪Kn be n-component delta equivalent

links and F a modulo 2 linking graph of them. Then we can prove that if [ϕL] = [ϕM ]

in H1(F ;Z2) then we can deform the Borromean chords of type (i, j) with odd lij for L

and M identically up to clasp-pass equivalence. So we can control Borromean chords of

type (i, j) with odd lij completely.

3. Some classifications

For an n-component link L = J1 ∪ J2 ∪ · · · ∪ Jn, we construct a simple graph GL as

follows. Let {v1, v2, . . . , vn} be the set of vertices of GL, and vi and vj are connected by

an edge eij = vivj if lk(Ji ∪Jj) 6= 0. We call this graph GL a linking graph of L. A link L

is said to be acyclic if GL is a forest, and cyclic if GL is a n-cycle, namely which contains

exactly n vertices. We note that an algebraically split link is acyclic. Then we have the

following classification theorems for links up to clasp-pass equivalence.

Theorem 3.1. Let L = J1 ∪ J2 ∪ · · · ∪ Jn and M = K1 ∪ K2 ∪ · · · ∪ Kn be acyclic

n-component links. Then L and M are clasp-pass equivalent if and only if the following
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conditions hold;

(1) lk(Ji ∪ Jj) = lk(Ki ∪ Kj) for 1 ≤ i < j ≤ n,

(2) a2(Ji) = a2(Ki) for 1 ≤ i ≤ n,

(3) a3(Ji ∪ Jj) ≡ a3(Ki ∪ Kj) (mod 2) for 1 ≤ i < j ≤ n and

(4) µ(Ji ∪ Jj ∪ Jk) ≡ µ(Ki ∪Kj ∪Kk) modulo the greatest common divisor of lk(Ji ∪ Jj),

lk(Jj ∪ Jk) and lk(Ji ∪ Jk) for 1 ≤ i < j < k ≤ n.

Theorem 3.2. Let L = J1 ∪ J2 ∪ · · · ∪ Jn and M = K1 ∪ K2 ∪ · · · ∪ Kn be cyclic

n-component links. Then L and M are clasp-pass equivalent if and only if the following

conditions hold;

(1) lk(Ji ∪ Jj) = lk(Ki ∪ Kj) for 1 ≤ i < j ≤ n,

(2) a2(Ji) = a2(Ki) for 1 ≤ i ≤ n,

(3) a3(Ji ∪ Jj) ≡ a3(Ki ∪ Kj) (mod 2) for 1 ≤ i < j ≤ n,

(4) µ(Ji ∪ Jj ∪ Jk) ≡ µ(Ki ∪Kj ∪Kk) modulo the greatest common divisor of lk(Ji ∪ Jj),

lk(Jj ∪ Jk) and lk(Ji ∪ Jk) for 1 ≤ i < j < k ≤ n and

(5) an+1(L) ≡ an+1(M) (mod 2).

Since any 2-component links and algebraically split links are acyclic, and any 3-component

links are acyclic or cyclic, we have the classifications of 2, 3-component links and alge-

braically split links as corollaries of Theorems 3.1 and 3.2.
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