Homotopy on Spatial Graphs and Generalized Sato-Levine Invariants

Ryo NIKKUNI

1. Introduction

An embedding f of a finite graph G into the 3 -sphere \mathbb{S}^{3} is called a spatial embedding of G or simply a spatial graph. We call the image of f restricted on a cycle (resp. mutually disjoint cycles) in G a constituent knot (resp. constituent link) of f, where a cycle is a graph homeomorphic to a circle. A spatial embedding of a planar graph is said to be trivial if it is ambient isotopic to an embedding of the graph into a 2 -sphere in \mathbb{S}^{3}. A spatial embedding f of G is said to be split if there exists a 2-sphere S in \mathbb{S}^{3} such that $S \cap f(G)=\emptyset$ and each connected component of $\mathbb{S}^{3}-S$ has intersection with $f(G)$, and otherwise f is said to be non-splittable.

Two spatial embeddings of G are said to be edge-homotopic if they are transformed into each other by self crossing changes and ambient isotopies, where a self crossing change is a crossing change on the same spatial edge, and vertex-homotopic if they are transformed into each other by crossing changes on two adjacent spatial edges and ambient isotopies. These equivalence relations were introduced by Taniyama [12] as generalizations of Milnor's link-homotopy on oriented links [7], namely if G is a mutually disjoint union of cycles then these are none other than link-homotopy. It is known that edge (resp. vertex)-homotopy on spatial graphs behaves quite differently than link-homotopy on oriented links. Taniyama introduced the α-invariant of spatial graphs by taking a weighted sum of the second coefficient of the Conway polynomial of the constituent knots [11]. By applying the α-invariant, it is shown that the spatial embedding of K_{4} as illustrated in Fig. 1.1 (1) is not trivial up to edge-homotopy, and two spatial embeddings of $K_{3,3}$ as illustrated in Fig. 1.1 (2) and (3) are not vertex-homotopic. Note that each of these spatial graphs does not have a constituent link. On the other hand, some invariants of spatial graphs defined by taking a weighted sum of the third coefficient of the Conway polynomial of the constituent 2 -component links were introduced by Taniyama as \mathbb{Z}_{2}-valued invariants if the linking numbers are even [13], and by Fleming and the author as integer-valued invariants if the linking numbers vanish [3]. By applying these invariants, it is shown that each of the spatial graphs as illustrated in Fig. 1.2 (1) and (2) is non-splittable
up to edge-homotopy, and the spatial graph as illustrated in Fig. 1.2 (3) is nonsplittable up to vertex-homotopy. Note that each of these spatial graphs does not contain a constituent link which is not trivial up to link-homotopy.

(1)

(2)

(3)

Fig. 1.1.

Fig. 1.2.
In this report, we construct some new edge (resp. vertex)-homotopy invariants of spatial graphs without any restriction of linking numbers of the constituent 2component links by applying a weighted sum of the generalized Sato-Levine invariant. Here the generalized Sato-Levine invariant $\tilde{\beta}(L)=\tilde{\beta}\left(K_{1}, K_{2}\right)$ is an ambient isotopy invariant of an oriented 2-component link $L=K_{1} \cup K_{2}$ which appears in various ways independently [1], [2], [5], [6], [4], [8] and can be calculated by

$$
\tilde{\beta}(L)=a_{3}(L)-\operatorname{lk}(L)\left\{a_{2}\left(K_{1}\right)+a_{2}\left(K_{2}\right)\right\},
$$

where a_{i} denotes the i-th coefficient of the Conway polynomial and $\operatorname{lk}(L)=\operatorname{lk}\left(K_{1}, K_{2}\right)$ denotes the linking number of L. It is known that if $\operatorname{lk}(L)=0$ then $\tilde{\beta}(L)$ coincides with the original Sato-Levine invariant $\beta(L)$ defined in [10]. As a consequence, our invariants are generalizations of Fleming and the author's homotopy invariants of spatial graphs defined in [3].

In this report, we narrow our results down to edge-homotopy invariants and omit to give a concrete proof for some propositions. Please see [9] for the details.

2. Some formulas about the generalized Sato-Levine invariant

We need the following two formulas, 'self crossing change formula' and 'orientationinverting formula', for the generalized Sato-Levine invariant of oriented 2-component links.

Lemma 2.1. Let $L_{+}=J_{+} \cup K$ and $L_{-}=J_{-} \cup K$ be two oriented 2-component links and $L_{0}=J_{1} \cup J_{2} \cup K$ an oriented 3-component link which are identical except inside the depicted regions as illustrated in Fig. 2.1. Suppose that $\operatorname{lk}\left(L_{+}\right)=1 \mathrm{k}\left(L_{-}\right)=m$. Then it holds that

$$
\tilde{\beta}\left(L_{+}\right)-\tilde{\beta}\left(L_{-}\right)=\operatorname{lk}\left(K, J_{i}\right)\left\{m-\operatorname{lk}\left(K, J_{i}\right)\right\} \quad(i=1,2) .
$$

L_{+}

L.

Lo

Fig. 2.1.

Theorem 2.2. Let $L=J_{1} \cup J_{2}$ be an oriented 2-component link with $\operatorname{lk}(L)=m$. Let $L^{\prime}=\left(-J_{1}\right) \cup J_{2}$ be the oriented 2-component link obtained from L by inverting the orientation of J_{1}. Then it holds that

$$
\tilde{\beta}(L)-\tilde{\beta}\left(L^{\prime}\right)=\frac{1}{6}\left(m^{3}-m\right) .
$$

Remark 2.3. Let f be a spatial embedding of a graph G and γ, γ^{\prime} two disjoint cycles of G. By Theorem 2.2, if $\operatorname{lk}\left(f(\gamma), f\left(\gamma^{\prime}\right)\right)=0, \pm 1$ then the value of $\tilde{\beta}\left(f(\gamma), f\left(\gamma^{\prime}\right)\right)$ does not depend on the orientation of $f(\gamma)$ and $f\left(\gamma^{\prime}\right)$, namely it is well-defined. But if $\operatorname{lk}\left(f(\gamma), f\left(\gamma^{\prime}\right)\right) \neq 0$, then Theorem 2.2 implies that the value of $\tilde{\beta}\left(f(\gamma), f\left(\gamma^{\prime}\right)\right)$ have the indeterminacy arisen from a choice of the orientations of $f(\gamma)$ and $f\left(\gamma^{\prime}\right)$.

3. Definitions of invariants

From now onward, we assume that a graph G is oriented, namely an orientation is given for each edge of G. For a subgraph H of G, we denote the set of all cycles
of H by $\Gamma(H)$. For an edge e of H, we denote the set of all oriented cycles of H which contain the edge e and have the orientation induced by the orientation of e by $\Gamma_{e}(H)$. We set $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$ for a positive integer n and $\mathbb{Z}_{0}=\mathbb{Z}$. We call a map $\omega: \Gamma(H) \rightarrow \mathbb{Z}_{n}$ a weight on $\Gamma(H)$ over \mathbb{Z}_{n}. Then we say that a weight ω on $\Gamma(H)$ over \mathbb{Z}_{n} is weakly balanced on an edge e if

$$
\sum_{\gamma \in \Gamma_{e}(H)} \omega(\gamma) \equiv 0 \quad(\bmod n) .
$$

Let $G=G_{1} \cup G_{2}$ be a disjoint union of two graphs, ω_{i} a weight on $\Gamma\left(G_{i}\right)$ over $\mathbb{Z}_{n}(i=1,2)$ and f a spatial embedding of G. Then we say that a weight ω_{i} is null-homologous on an edge e of G_{i} with respect to f and $\omega_{j}(i \neq j)$ if

$$
\mathrm{lk}\left(\sum_{\gamma \in \Gamma_{e}\left(G_{i}\right)} \omega_{i}(\gamma) f(\gamma), f\left(\gamma^{\prime}\right)\right) \equiv 0 \quad(\bmod n)
$$

for any $\gamma^{\prime} \in \Gamma\left(G_{j}\right)$ with $\omega_{j}\left(\gamma^{\prime}\right) \neq 0$.
Example 3.1. Let $G=G_{1} \cup G_{2}$ is the graph as illustrated in Fig. 3.1. We denote the cycle $e_{i} \cup e_{j}$ of G_{1} by $\gamma_{i j}$. Let ω_{1} be the weight on $\Gamma\left(G_{1}\right)$ over \mathbb{Z} defined by

$$
\omega_{1}(\gamma)= \begin{cases}1 & \left(\gamma=\gamma_{12}, \gamma_{34}\right) \\ -1 & \left(\gamma=\gamma_{23}, \gamma_{14}\right) \\ 0 & (\text { otherwise })\end{cases}
$$

and ω_{2} the weight on $\Gamma\left(G_{2}\right)$ over \mathbb{Z} defined by $\omega_{2}\left(\gamma^{\prime}\right)=1$. Let f be the spatial embedding of G as illustrated in Fig. 3.1. Note that

$$
\Gamma_{e_{1}}\left(G_{1}\right)=\left\{\gamma_{12}, \gamma_{13}, \gamma_{14}\right\}=\left\{e_{1}+e_{2}, e_{1}-e_{3}, e_{1}+e_{4}\right\}
$$

and

$$
\sum_{\gamma \in \Gamma_{e_{1}}\left(G_{1}\right)} \omega_{1}(\gamma) \gamma=\left(e_{1}+e_{2}\right)-\left(e_{1}+e_{4}\right)=e_{2}-e_{4} .
$$

Then we have that

$$
\operatorname{lk}\left(\sum_{\gamma \in \Gamma_{e_{1}}\left(G_{1}\right)} \omega_{1}(\gamma) f(\gamma), f\left(\gamma^{\prime}\right)\right)=\operatorname{lk}\left(f\left(e_{2}-e_{4}\right), f\left(\gamma^{\prime}\right)\right)=0 .
$$

Therefore ω_{1} is null-homologous on e_{1} with respect to f and ω_{2}.
Now let $G=G_{1} \cup G_{2}$ be a disjoint union of graphs, ω_{i} a weight on $\Gamma\left(G_{i}\right)$ over \mathbb{Z}_{n} $(i=1,2)$ and f a spatial embedding of G. For $\gamma \in \Gamma\left(G_{1}\right)$ and $\gamma^{\prime} \in \Gamma\left(G_{2}\right)$, we put

$$
\eta\left(f(\gamma), f\left(\gamma^{\prime}\right)\right)=\frac{1}{6}\left(m^{3}-m\right)
$$

Fig. 3.1.
where $m=\operatorname{lk}\left(f(\gamma), f\left(\gamma^{\prime}\right)\right)$ under arbitrary orientations of γ and γ^{\prime}. Then we put $\tilde{\eta}_{\omega_{1}, \omega_{2}}(f)=\operatorname{gcd}\left\{\eta\left(f(\gamma), f\left(\gamma^{\prime}\right)\right) \mid \gamma \in \Gamma\left(G_{1}\right), \gamma^{\prime} \in \Gamma\left(G_{2}\right), \omega_{1}(\gamma) \omega_{2}\left(\gamma^{\prime}\right) \not \equiv 0(\bmod n)\right\}$, where gcd means the greatest common divisor. Note that $\tilde{\eta}_{\omega_{1}, \omega_{2}}(f)$ is a well-defined non-negative integer which does not depends on the choice of orientations of each pair of disjoint cycles. Then we define $\tilde{\beta}_{\omega_{1}, \omega_{2}}(f) \in \mathbb{Z}_{n}$ by

$$
\tilde{\beta}_{\omega_{1}, \omega_{2}}(f) \equiv \sum_{\substack{\gamma \in\left(G_{1}\right) \\ \gamma^{\prime} \in \Gamma\left(G_{2}\right)}} \omega_{1}(\gamma) \omega_{2}\left(\gamma^{\prime}\right) \tilde{\beta}\left(f(\gamma), f\left(\gamma^{\prime}\right)\right) \quad\left(\bmod \operatorname{gcd}\left\{n, \tilde{\eta}_{\omega_{1}, \omega_{2}}(f)\right\}\right)
$$

Here we may calculate $\tilde{\beta}\left(f(\gamma), f\left(\gamma^{\prime}\right)\right)$ under arbitrary orientations of γ and γ^{\prime}.
Remark 3.2. (1) For an oriented 2-component link $L, \tilde{\beta}(L)$ is not a link-homotopy invariant of L. Thus $\tilde{\beta}_{\omega_{1}, \omega_{2}}(f)$ may be not an edge (resp. vertex)-homotopy invariant of f as it is. See also Remark 4.4.
(2) By Theorem 2.2, the value of $\tilde{\beta}\left(f(\gamma), f\left(\gamma^{\prime}\right)\right)$ is well-defined modulo $\eta\left(f(\gamma), f\left(\gamma^{\prime}\right)\right)$. This is the reason why we consider the modulo $\tilde{\eta}_{\omega_{1}, \omega_{2}}(f)$ reduction.

Then, let us state the invariance of $\tilde{\beta}_{\omega_{1}, \omega_{2}}$ up to edge-homotopy under some conditions on graphs and its spatial embeddings.

Theorem 3.3. If ω_{i} is weakly balanced on any edge of G_{i} and null-homologous on any edge of G_{i} with respect to f and $\omega_{j}(i=1,2, i \neq j)$, then $\tilde{\beta}_{\omega_{1}, \omega_{2}}(f)$ is an edge-homotopy invariant of f.

Proof. Let f and g be two spatial embeddings of G such that g is edge-homotopic to f. Then it holds that

$$
\begin{equation*}
\tilde{\eta}_{\omega_{1}, \omega_{2}}(f)=\tilde{\eta}_{\omega_{1}, \omega_{2}}(g) \tag{3.1}
\end{equation*}
$$

because the linking number of a constituent 2-component link of a spatial graph is an edge-homotopy invariant. First we show that if f is transformed into g by self
crossing changes on $f\left(G_{1}\right)$ and ambient isotopies then $\tilde{\beta}_{\omega_{1}, \omega_{2}}(f)=\tilde{\beta}_{\omega_{1}, \omega_{2}}(g)$. It is clear that any link invariant of a constituent link of a spatial graph is also an ambient isotopy invariant of the spatial graph. Thus we may assume that g is obtained from f by a single crossing change on $f(e)$ for an edge e of G_{1} as illustrated in Fig. 3.2. Moreover, by smoothing on this crossing point we can obtain the spatial embedding h of G and the knot J_{h} as illustrated in Fig. 3.2. Then by (3.1), Lemma 2.1 and the assumptions for ω_{1}, we have that

$$
\begin{aligned}
\tilde{\beta}_{\omega_{1}, \omega_{2}}(f)-\tilde{\beta}_{\omega_{1}, \omega_{2}}(g) \equiv & \sum_{\substack{\gamma \in \Gamma_{e}\left(G_{1}\right) \\
\gamma^{\prime} \in \Gamma\left(G_{2}\right)}} \omega_{1}(\gamma) \omega_{2}\left(\gamma^{\prime}\right)\left\{\tilde{\beta}\left(f(\gamma), f\left(\gamma^{\prime}\right)\right)-\tilde{\beta}\left(g(\gamma), g\left(\gamma^{\prime}\right)\right)\right\} \\
= & \sum_{\substack{\gamma \in \Gamma_{e}\left(G_{1}\right) \\
\gamma^{\prime} \in \Gamma\left(G_{2}\right)}} \omega_{1}(\gamma) \omega_{2}\left(\gamma^{\prime}\right) \operatorname{lk}\left(h\left(\gamma^{\prime}\right), J_{h}\right)\left\{\operatorname{lk}\left(f(\gamma), f\left(\gamma^{\prime}\right)\right)-\operatorname{lk}\left(h\left(\gamma^{\prime}\right), J_{h}\right)\right\} \\
= & \sum_{\gamma^{\prime} \in \Gamma\left(G_{2}\right)} \omega_{2}\left(\gamma^{\prime}\right)\left\{\operatorname{lk}\left(h\left(\gamma^{\prime}\right), J_{h}\right) \sum_{\gamma \in \Gamma_{e}\left(G_{1}\right)} \omega_{1}(\gamma) \operatorname{lk}\left(f(\gamma), f\left(\gamma^{\prime}\right)\right)\right. \\
& \left.-\sum_{\gamma \in \Gamma_{e}\left(G_{1}\right)} \omega_{1}(\gamma) \operatorname{lk}\left(h\left(\gamma^{\prime}\right), J_{h}\right)^{2}\right\} \\
= & \sum_{\gamma^{\prime} \in \Gamma\left(G_{2}\right)} \omega_{2}\left(\gamma^{\prime}\right)\left\{\operatorname{lk}\left(h\left(\gamma^{\prime}\right), J_{h}\right) \operatorname{lk}\left(\sum_{\gamma \in \Gamma_{e}\left(G_{1}\right)} \omega_{1}(\gamma) f(\gamma), f\left(\gamma^{\prime}\right)\right)\right. \\
& \left.-\operatorname{lk}\left(h\left(\gamma^{\prime}\right), J_{h}\right)^{2}\left(\sum_{\gamma \in \Gamma_{e}\left(G_{1}\right)} \omega_{1}(\gamma)\right)\right\} \\
\equiv & 0\left(\bmod \operatorname{gcd}\left\{n, \tilde{\eta}_{\omega_{1}, \omega_{2}}(f)\right\}\right) .
\end{aligned}
$$

Therefore we have that $\tilde{\beta}_{\omega_{1}, \omega_{2}}(f)=\tilde{\beta}_{\omega_{1}, \omega_{2}}(g)$. In the same way we can show that if f is transformed into g by self crossing changes on $f\left(G_{2}\right)$ and ambient isotopies then $\tilde{\beta}_{\omega_{1}, \omega_{2}}(f)=\tilde{\beta}_{\omega_{1}, \omega_{2}}(g)$. Thus $\tilde{\beta}_{\omega_{1}, \omega_{2}}(f)$ is an edge-homotopy invariant of f.

Remark 3.4. In particular, if it holds that

$$
\omega_{1}(\gamma) \omega_{2}\left(\gamma^{\prime}\right) \operatorname{lk}\left(f(\gamma), f\left(\gamma^{\prime}\right)\right)=0
$$

for any $\gamma \in \Gamma\left(G_{1}\right)$ and $\gamma^{\prime} \in \Gamma\left(G_{2}\right)$, then $\tilde{\beta}_{\omega_{1}, \omega_{2}}(f)$ coincides with Fleming and the author's invariant $\beta_{\omega_{1}, \omega_{2}}(f)$ defined in [3].

4. Examples

Let G be a planar graph which is not a cycle. An embedding $p: G \rightarrow \mathbb{S}^{2}$ is said to be cellular if the closure of each of the connected components of $\mathbb{S}^{2}-p(G)$ on \mathbb{S}^{2}

Fig. 3.2.
is homeomorphic to the disk. Then we regard the set of the boundaries of all of the connected components of $\mathbb{S}^{2}-p(G)$ as a subset of $\Gamma(G)$ and denote it by $\Gamma_{p}(G)$. We say that G admits a checkerboard coloring on \mathbb{S}^{2} if there exists a cellular embedding $p: G \rightarrow \mathbb{S}^{2}$ such that we can color all of the connected components of $\mathbb{S}^{2}-p(G)$ by two colors (black and white) so that any of the two components which are adjacent by an edge have distinct colors. We denote the subset of $\Gamma_{p}(G)$ which corresponds to the black (resp. white) colored components by $\Gamma_{p}^{b}(G)\left(\right.$ resp. $\left.\Gamma_{p}^{w}(G)\right)$.

Proposition 4.1. Let G be a planar graph which is not a cycle and admits a checkerboard coloring on \mathbb{S}^{2} with respect to a cellular embedding $p: G \rightarrow \mathbb{S}^{2}$. Let ω_{p} be the weight on $\Gamma(G)$ over \mathbb{Z}_{n} defined by

$$
\omega_{p}(\gamma)= \begin{cases}1 & \left(\gamma \in \Gamma_{p}^{b}(G)\right) \\ n-1 & \left(\gamma \in \Gamma_{p}^{w}(G)\right) \\ 0 & \left(\gamma \in \Gamma(G)-\Gamma_{p}(G)\right)\end{cases}
$$

Then ω_{p} is weakly balanced on any edge of G.
We call the weight ω_{p} in Proposition 4.1 a checkerboard weight. Moreover, by giving the counter clockwise orientation to each $p(\gamma)$ for $\gamma \in \Gamma_{p}^{b}(G)$ and the clockwise orientation to each $p(\gamma)$ for $\gamma \in \Gamma_{p}^{w}(G)$ with respect to the orientation of \mathbb{S}^{2}, an orientation is given for each edge of G naturally. We call this orientation of G a checkerboard orientation over the checkerboard coloring. Since the orientation of each edge e is coherent with the orientation of each cycle $\gamma \in \Gamma_{p}(G)$ which contains e, by Theorem 3.3 we have the following.

Theorem 4.2. Let $G=G_{1} \cup G_{2}$ be a disjoint union of two planar graphs such that G_{i} is not a cycle and admits a checkerboard coloring on \mathbb{S}^{2} with respect to a
cellular embedding $p_{i}: G \rightarrow \mathbb{S}^{2}(i=1,2)$. Let $\omega_{p_{i}}$ be the checkerboard weight on $\Gamma\left(G_{i}\right)$ over $\mathbb{Z}_{n}(i=1,2)$. We orient G by the checkerboard orientation of G_{i} over the checkerboard coloring $(i=1,2)$. Then, for a spatial embedding f of G, if ω_{i} is null-homologous on any edge of G_{i} with respect to f and $\omega_{j}(i=1,2, i \neq j)$, then $\tilde{\beta}_{\omega_{1}, \omega_{2}}(f)(\bmod n)$ is an edge-homotopy invariant of f.

Example 4.3. Let $G=G_{1} \cup G_{2}$ be a disjoint union of two planar graphs as in Theorem 4.2 and f a spatial embedding of G. Let $\omega_{p_{i}}: \Gamma\left(G_{i}\right) \rightarrow \mathbb{Z}_{n}$ be the checkerboard weight $(i=1,2)$, where

$$
n=\operatorname{gcd}\left\{\operatorname{lk}\left(f(\gamma), f\left(\gamma^{\prime}\right)\right) \mid \gamma \in \Gamma_{p_{1}}\left(G_{1}\right), \gamma^{\prime} \in \Gamma_{p_{2}}\left(G_{2}\right)\right\} .
$$

Then, for any edge e of G_{i} and any $\gamma^{\prime} \in \Gamma_{p_{j}}\left(G_{j}\right)(i \neq j)$, we have that

$$
\mathrm{lk}\left(\sum_{\gamma \in \Gamma_{e}\left(G_{i}\right)} \omega_{i}(\gamma) f(\gamma), f\left(\gamma^{\prime}\right)\right)=\sum_{\gamma \in \Gamma_{e}\left(G_{i}\right)} \omega_{i}(\gamma) \operatorname{lk}\left(f(\gamma), f\left(\gamma^{\prime}\right)\right) \equiv 0 \quad(\bmod n)
$$

Thus we have that ω_{i} is null-homologous on any edge of G_{i} with respect to f and ω_{j} $(i=1,2, i \neq j)$. Therefore we have that $\tilde{\beta}_{\omega_{p_{1}}, \omega_{p_{2}}}(f)(\bmod n)$ is an edge-homotopy invariant of f.

For example, let Θ_{4} be the graph with two vertices u and v and 4 edges $e_{1}, e_{2}, e_{3}, e_{4}$ each of which joins u and v. We denote the cycle of Θ_{4} consists of two edges e_{i} and e_{j} by $\gamma_{i j}$. Let $p: \Theta_{4} \rightarrow \mathbb{S}^{2}$ be the cellular embedding as illustrated in the left-hand side of Fig. 4.1. It is clear that Θ_{4} admits the checkerboard coloring on \mathbb{S}^{2} with respect to p as illustrated in the center of Fig. 4.1. The right-hand side of Fig. 4.1 shows the checkerboard orientation of Θ_{4} over the checkerboard coloring.

p

checkerboard
coloring

checkerboard orientation

Fig. 4.1.
Let $G=\Theta_{4}^{1} \cup \Theta_{4}^{2}$ be a disjoint union of two copies of Θ_{4}. For a non-negative integer m, let f_{m} and g_{m} be two spatial embeddings of G as illustrated in Fig. 4.2. Note that

$$
\operatorname{lk}\left(f_{m}(\gamma), f_{m}\left(\gamma^{\prime}\right)\right)=\operatorname{lk}\left(g_{m}(\gamma), g_{m}\left(\gamma^{\prime}\right)\right)=0 \text { or } m
$$

for any $\gamma \in \Gamma\left(\Theta_{4}^{1}\right)$ and $\gamma^{\prime} \in \Gamma\left(\Theta_{4}^{2}\right)$. So we have that $n=m$. Let $\omega_{i}: \Gamma\left(\Theta_{4}^{i}\right) \rightarrow \mathbb{Z}_{m}$ be the checkerboard weight $(i=1,2)$. Then, by a direct calculation we can see that the constituent 2-component link of f_{m} which has a non-zero generalized Sato-Levine invariant is only $L=f_{m}\left(\gamma_{14} \cup \gamma_{14}^{\prime}\right)$ and $\tilde{\beta}(L)=2$. Thus we have that $\tilde{\beta}_{\omega_{1}, \omega_{2}}\left(f_{m}\right) \equiv 2$ $(\bmod m)$. On the other hand, we can see that each constituent 2-component link $g_{m}\left(\gamma \cup \gamma^{\prime}\right)$ for $\gamma \in \Gamma_{p}\left(\Theta_{4}^{1}\right)$ and $\gamma^{\prime} \in \Gamma_{p}\left(\Theta_{4}^{2}\right)$ is a trivial 2-component link or T_{m}^{\prime}. Thus we have that $\tilde{\beta}_{\omega_{1}, \omega_{2}}\left(g_{m}\right) \equiv 0(\bmod m)$. Therefore we have that f_{m} and g_{m} are not edge-homotopic if $m \neq 1,2$. We remark here that the case of $m=0$ has already shown by Fleming and the author in [3, Example 4.3].

Fig. 4.2.

Example 4.4. Let $G=\Theta_{4}^{1} \cup \Theta_{4}^{2}$ be a disjoint union of two copies of Θ_{4} oriented in the same way as Example 4.3 and $\omega_{i}: \Gamma\left(\Theta_{4}^{i}\right) \rightarrow \mathbb{Z}$ the checkerboard weight $(i=1,2)$. For Θ_{4}^{1}, we have that

$$
\begin{aligned}
& \sum_{\gamma \in \Gamma_{e_{1}}\left(\Theta_{4}^{1}\right)} \omega_{1}(\gamma) \gamma=e_{2}-e_{4}, \quad \sum_{\gamma \in \Gamma_{e_{2}}\left(\Theta_{4}^{1}\right)} \omega_{1}(\gamma) \gamma=e_{1}-e_{3}, \\
& \sum_{\gamma \in \Gamma_{e_{3}}\left(\Theta_{4}^{1}\right)} \omega_{1}(\gamma) \gamma=e_{4}-e_{2}, \quad \sum_{\gamma \in \Gamma_{e_{4}}\left(\Theta_{4}^{1}\right)} \omega_{1}(\gamma) \gamma=e_{3}-e_{1} .
\end{aligned}
$$

This implies that ω_{1} is null-homologous on any edge of G_{1} with respect to a spatial embedding f of G and ω_{2} if and only if

$$
\begin{equation*}
\left.\left.\operatorname{lk}\left(f\left(\gamma_{13}\right), f\left(\gamma^{\prime}\right)\right)\right)=\operatorname{lk}\left(f\left(\gamma_{24}\right), f\left(\gamma^{\prime}\right)\right)\right)=0 \tag{4.1}
\end{equation*}
$$

for any $\gamma^{\prime} \in \Gamma_{p}\left(\Theta_{4}^{2}\right)$. The same condition can be said of ω_{2}. For an integer m, let f_{m} be the spatial embedding of G as illustrated in Fig. 4.3. Note that

$$
\operatorname{lk}\left(f_{k}(\gamma), f_{k}\left(\gamma^{\prime}\right)\right)=\operatorname{lk}\left(f_{l}(\gamma), f_{l}\left(\gamma^{\prime}\right)\right)=0 \text { or } 1(k \neq l)
$$

for any $\gamma \in \Gamma\left(\Theta_{4}^{1}\right)$ and $\gamma^{\prime} \in \Gamma\left(\Theta_{4}^{2}\right)$. Since we can see that ω_{i} satisfies (4.1), we have that ω_{i} is null-homologous on any edge of G_{i} with respect to f_{m} and $\omega_{j}(i=$ $1,2, i \neq j)$. Namely $\tilde{\beta}_{\omega_{1}, \omega_{2}}\left(f_{m}\right)$ is an integer-valued edge-homotopy invariant of f_{m}. Then, by a direct calculation we can see that the constituent 2-component link of f_{m} which has a non-zero generalized Sato-Levine invariant is only $L=f_{m}\left(\gamma_{14} \cup \gamma_{14}^{\prime}\right)$ and $\tilde{\beta}(L)=2 m$. Thus we have that $\tilde{\beta}_{\omega_{1}, \omega_{2}}\left(f_{m}\right)=2 m$. Therefore we have that f_{k} and f_{l} are not edge-homotopic for $k \neq l$.

Fig. 4.3.

Remark 4.5. In Theorems 3.3 and 4.2, the condition " ω_{i} is null-homologous on any edge of G_{i} with respect to f and $\omega_{j}(i=1,2, i \neq j)$ " is essential. Let $G=\Theta_{4}^{1} \cup \Theta_{4}^{2}$ be a disjoint union of two copies of Θ_{4} oriented in the same way as Example 4.4 and $\omega_{i}: \Gamma\left(\Theta_{4}^{i}\right) \rightarrow \mathbb{Z}$ the checkerboard weight $(i=1,2)$. Let f and g be two spatial embeddings of G as illustrated in Fig. 4.4. Note that f and g are edge-homotopic. But by a direct calculation we have that $\tilde{\beta}_{\omega_{1}, \omega_{2}}(f)=-1$ and $\tilde{\beta}_{\omega_{1}, \omega_{2}}(g)=0$, namely $\tilde{\beta}_{\omega_{1}, \omega_{2}}(f)$ is not an edge-homotopy invariant of f. Actually ω_{1} is not null-homologous on e_{4} with respect to f and ω_{2}.

References

[1] P. M. Akhmet'iev, On a higher analog of the linking number of two curves, Topics in quantum groups and finite-type invariants, 113-127, Amer. Math. Soc. Transl. Ser. 2, 185, Amer. Math. Soc., Providence, RI, 1998.
[2] P. M. Akhmet'iev and D. Repovš, A generalization of the Sato-Levine invariant (Russian), Tr. Mat. Inst. Steklova 221 (1998), 69-80; translation in Proc. Steklov Inst. Math. 221 (1998), 60-70.

Fig. 4.4.
[3] T. Fleming and R. Nikkuni, Homotopy on spatial graphs and the Sato-Levine invariant, to appear in Transactions of the American Mathematical Society. arXiv:math.GT/0509003
[4] T. Kanenobu, Y. Miyazawa and A. Tani, Vassiliev link invariants of order three, J. Knot Theory Ramifications 7 (1998), 433-462.
[5] P. Kirk and C. Livingston, Vassiliev invariants of two component links and the CassonWalker invariant, Topology 36 (1997), 1333-1353.
[6] C. Livingston, Enhanced linking numbers, Amer. Math. Monthly 110 (2003), 361385.
[7] J. Milnor, Link groups, Ann. of Math. (2) 59 (1954), 177-195.
[8] Y. Nakanishi, Delta link homotopy for two component links, Proceedings of the First Joint Japan-Mexico Meeting in Topology (Morelia, 1999), Topology Appl. 121 (2002), 169-182.
[9] R. Nikkuni, Homotopy on spatial graphs and generalized Sato-Levine invariants, preprint. arXiv:math.GT/0710.3627
[10] N. Sato, Cobordisms of semiboundary links, Topology Appl. 18 (1984), 225-234.
[11] K. Taniyama, Link homotopy invariants of graphs in R^{3}, Rev. Mat. Univ. Complut. Madrid 7 (1994), 129-144.
[12] K. Taniyama, Cobordism, homotopy and homology of graphs in R^{3}, Topology 33 (1994), 509-523.
[13] K. Taniyama, Graph-homotopy invariants, unpublished note.
Department of Mathematics, Faculty of Education, Kanazawa University
Kakuma-machi, Kanazawa, 920-1192, Japan
nick@ed.kanazawa-u.ac.jp

