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1. Introduction

An embedding f of a finite graph G into the 3-sphere S
3 is called a spatial em-

bedding of G or simply a spatial graph. We call the image of f restricted on a cycle

(resp. mutually disjoint cycles) in G a constituent knot (resp. constituent link) of f ,

where a cycle is a graph homeomorphic to a circle. A spatial embedding of a planar

graph is said to be trivial if it is ambient isotopic to an embedding of the graph into

a 2-sphere in S
3. A spatial embedding f of G is said to be split if there exists a

2-sphere S in S
3 such that S ∩ f(G) = ∅ and each connected component of S

3 − S

has intersection with f(G), and otherwise f is said to be non-splittable.

Two spatial embeddings of G are said to be edge-homotopic if they are transformed

into each other by self crossing changes and ambient isotopies, where a self crossing

change is a crossing change on the same spatial edge, and vertex-homotopic if they

are transformed into each other by crossing changes on two adjacent spatial edges

and ambient isotopies. These equivalence relations were introduced by Taniyama

[12] as generalizations of Milnor’s link-homotopy on oriented links [7], namely if G is

a mutually disjoint union of cycles then these are none other than link-homotopy. It

is known that edge (resp. vertex)-homotopy on spatial graphs behaves quite differ-

ently than link-homotopy on oriented links. Taniyama introduced the α-invariant

of spatial graphs by taking a weighted sum of the second coefficient of the Conway

polynomial of the constituent knots [11]. By applying the α-invariant, it is shown

that the spatial embedding of K4 as illustrated in Fig. 1.1 (1) is not trivial up to

edge-homotopy, and two spatial embeddings of K3,3 as illustrated in Fig. 1.1 (2) and

(3) are not vertex-homotopic. Note that each of these spatial graphs does not have

a constituent link. On the other hand, some invariants of spatial graphs defined by

taking a weighted sum of the third coefficient of the Conway polynomial of the con-

stituent 2-component links were introduced by Taniyama as Z2-valued invariants if

the linking numbers are even [13], and by Fleming and the author as integer-valued

invariants if the linking numbers vanish [3]. By applying these invariants, it is shown

that each of the spatial graphs as illustrated in Fig. 1.2 (1) and (2) is non-splittable
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up to edge-homotopy, and the spatial graph as illustrated in Fig. 1.2 (3) is non-

splittable up to vertex-homotopy. Note that each of these spatial graphs does not

contain a constituent link which is not trivial up to link-homotopy.
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In this report, we construct some new edge (resp. vertex)-homotopy invariants

of spatial graphs without any restriction of linking numbers of the constituent 2-

component links by applying a weighted sum of the generalized Sato-Levine invari-

ant. Here the generalized Sato-Levine invariant β̃(L) = β̃(K1, K2) is an ambient

isotopy invariant of an oriented 2-component link L = K1 ∪ K2 which appears in

various ways independently [1], [2], [5], [6], [4], [8] and can be calculated by

β̃(L) = a3(L) − lk(L) {a2(K1) + a2(K2)} ,

where ai denotes the i-th coefficient of the Conway polynomial and lk(L) = lk(K1, K2)

denotes the linking number of L. It is known that if lk(L) = 0 then β̃(L) coincides

with the original Sato-Levine invariant β(L) defined in [10]. As a consequence, our

invariants are generalizations of Fleming and the author’s homotopy invariants of

spatial graphs defined in [3].

In this report, we narrow our results down to edge-homotopy invariants and omit

to give a concrete proof for some propositions. Please see [9] for the details.
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2. Some formulas about the generalized Sato-Levine invari-

ant

We need the following two formulas, ‘self crossing change formula’ and ‘orientation-

inverting formula’, for the generalized Sato-Levine invariant of oriented 2-component

links.

Lemma 2.1 . Let L+ = J+∪K and L− = J−∪K be two oriented 2-component links

and L0 = J1 ∪J2 ∪K an oriented 3-component link which are identical except inside

the depicted regions as illustrated in Fig. 2.1. Suppose that lk(L+) = lk(L−) = m.

Then it holds that

β̃(L+) − β̃(L−) = lk(K, Ji) {m − lk(K, Ji)} (i = 1, 2).

K

J2J1

L+ L - L0

J+ J-

K K

Fig. 2.1.

Theorem 2.2 . Let L = J1 ∪ J2 be an oriented 2-component link with lk(L) = m.

Let L′ = (−J1) ∪ J2 be the oriented 2-component link obtained from L by inverting

the orientation of J1. Then it holds that

β̃(L) − β̃(L′) =
1

6
(m3 − m).

Remark 2.3 . Let f be a spatial embedding of a graph G and γ, γ′ two disjoint cy-

cles of G. By Theorem 2.2, if lk(f(γ), f(γ′)) = 0, ±1 then the value of β̃(f(γ), f(γ′))

does not depend on the orientation of f(γ) and f(γ′), namely it is well-defined. But

if lk(f(γ), f(γ′)) 6= 0, then Theorem 2.2 implies that the value of β̃(f(γ), f(γ′)) have

the indeterminacy arisen from a choice of the orientations of f(γ) and f(γ′).

3. Definitions of invariants

From now onward, we assume that a graph G is oriented, namely an orientation

is given for each edge of G. For a subgraph H of G, we denote the set of all cycles
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of H by Γ(H). For an edge e of H, we denote the set of all oriented cycles of H

which contain the edge e and have the orientation induced by the orientation of e

by Γe(H). We set Zn = {0, 1, . . . , n − 1} for a positive integer n and Z0 = Z. We

call a map ω : Γ(H) → Zn a weight on Γ(H) over Zn. Then we say that a weight ω

on Γ(H) over Zn is weakly balanced on an edge e if
∑

γ∈Γe(H)

ω(γ) ≡ 0 (mod n).

Let G = G1 ∪ G2 be a disjoint union of two graphs, ωi a weight on Γ(Gi) over

Zn (i = 1, 2) and f a spatial embedding of G. Then we say that a weight ωi is

null-homologous on an edge e of Gi with respect to f and ωj (i 6= j) if

lk





∑

γ∈Γe(Gi)

ωi(γ)f(γ), f(γ′)



 ≡ 0 (mod n)

for any γ′ ∈ Γ(Gj) with ωj(γ
′) 6= 0.

Example 3.1 . Let G = G1 ∪G2 is the graph as illustrated in Fig. 3.1. We denote

the cycle ei ∪ ej of G1 by γij . Let ω1 be the weight on Γ(G1) over Z defined by

ω1(γ) =











1 (γ = γ12, γ34)

−1 (γ = γ23, γ14)

0 (otherwise),

and ω2 the weight on Γ(G2) over Z defined by ω2(γ
′) = 1. Let f be the spatial

embedding of G as illustrated in Fig. 3.1. Note that

Γe1(G1) = {γ12, γ13, γ14} = {e1 + e2, e1 − e3, e1 + e4}

and
∑

γ∈Γe1(G1)

ω1(γ)γ = (e1 + e2) − (e1 + e4) = e2 − e4.

Then we have that

lk





∑

γ∈Γe1(G1)

ω1(γ)f(γ), f(γ′)



 = lk (f(e2 − e4), f(γ′)) = 0.

Therefore ω1 is null-homologous on e1 with respect to f and ω2.

Now let G = G1 ∪G2 be a disjoint union of graphs, ωi a weight on Γ(Gi) over Zn

(i = 1, 2) and f a spatial embedding of G. For γ ∈ Γ(G1) and γ′ ∈ Γ(G2), we put

η(f(γ), f(γ′)) =
1

6
(m3 − m)
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where m = lk(f(γ), f(γ′)) under arbitrary orientations of γ and γ′. Then we put

η̃ω1,ω2(f) = gcd {η(f(γ), f(γ′)) | γ ∈ Γ(G1), γ′ ∈ Γ(G2), ω1(γ)ω2(γ
′) 6≡ 0 (mod n)} ,

where gcd means the greatest common divisor. Note that η̃ω1,ω2(f) is a well-defined

non-negative integer which does not depends on the choice of orientations of each

pair of disjoint cycles. Then we define β̃ω1,ω2(f) ∈ Zn by

β̃ω1,ω2(f) ≡
∑

γ∈Γ(G1)

γ′∈Γ(G2)

ω1(γ)ω2(γ
′)β̃(f(γ), f(γ′)) (mod gcd {n, η̃ω1,ω2(f)}).

Here we may calculate β̃(f(γ), f(γ′)) under arbitrary orientations of γ and γ′.

Remark 3.2 . (1) For an oriented 2-component link L, β̃(L) is not a link-homotopy

invariant of L. Thus β̃ω1,ω2(f) may be not an edge (resp. vertex)-homotopy invariant

of f as it is. See also Remark 4.4.

(2) By Theorem 2.2, the value of β̃(f(γ), f(γ′)) is well-defined modulo η(f(γ), f(γ′)).

This is the reason why we consider the modulo η̃ω1,ω2(f) reduction.

Then, let us state the invariance of β̃ω1,ω2 up to edge-homotopy under some con-

ditions on graphs and its spatial embeddings.

Theorem 3.3 . If ωi is weakly balanced on any edge of Gi and null-homologous

on any edge of Gi with respect to f and ωj (i = 1, 2, i 6= j), then β̃ω1,ω2(f) is an

edge-homotopy invariant of f .

Proof. Let f and g be two spatial embeddings of G such that g is edge-homotopic

to f . Then it holds that

η̃ω1,ω2(f) = η̃ω1,ω2(g) (3.1)

because the linking number of a constituent 2-component link of a spatial graph is

an edge-homotopy invariant. First we show that if f is transformed into g by self
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crossing changes on f(G1) and ambient isotopies then β̃ω1,ω2(f) = β̃ω1,ω2(g). It is

clear that any link invariant of a constituent link of a spatial graph is also an ambient

isotopy invariant of the spatial graph. Thus we may assume that g is obtained from

f by a single crossing change on f(e) for an edge e of G1 as illustrated in Fig. 3.2.

Moreover, by smoothing on this crossing point we can obtain the spatial embedding

h of G and the knot Jh as illustrated in Fig. 3.2. Then by (3.1), Lemma 2.1 and

the assumptions for ω1, we have that

β̃ω1,ω2(f) − β̃ω1,ω2(g) ≡
∑

γ∈Γe(G1)

γ′∈Γ(G2)

ω1(γ)ω2(γ
′)

{

β̃(f(γ), f(γ′)) − β̃(g(γ), g(γ′))
}

=
∑

γ∈Γe(G1)

γ′∈Γ(G2)

ω1(γ)ω2(γ
′)lk(h(γ ′), Jh) {lk(f(γ), f(γ′)) − lk(h(γ ′), Jh)}

=
∑

γ′∈Γ(G2)

ω2(γ
′)

{

lk(h(γ ′), Jh)
∑

γ∈Γe(G1)

ω1(γ)lk(f (γ), f(γ′))

−
∑

γ∈Γe(G1)

ω1(γ)lk(h(γ ′), Jh)
2

}

=
∑

γ′∈Γ(G2)

ω2(γ
′)

{

lk(h(γ ′), Jh)lk





∑

γ∈Γe(G1)

ω1(γ)f(γ), f(γ′)





−lk(h(γ ′), Jh)
2





∑

γ∈Γe(G1)

ω1(γ)





}

≡ 0 (mod gcd {n, η̃ω1,ω2(f)}).

Therefore we have that β̃ω1,ω2(f) = β̃ω1,ω2(g). In the same way we can show that

if f is transformed into g by self crossing changes on f(G2) and ambient isotopies

then β̃ω1,ω2(f) = β̃ω1,ω2(g). Thus β̃ω1,ω2(f) is an edge-homotopy invariant of f . �

Remark 3.4 . In particular, if it holds that

ω1(γ)ω2(γ
′)lk(f (γ), f(γ′)) = 0

for any γ ∈ Γ(G1) and γ′ ∈ Γ(G2), then β̃ω1,ω2(f) coincides with Fleming and the

author’s invariant βω1,ω2(f) defined in [3].

4. Examples

Let G be a planar graph which is not a cycle. An embedding p : G → S
2 is said

to be cellular if the closure of each of the connected components of S
2 − p(G) on S

2
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Fig. 3.2.

is homeomorphic to the disk. Then we regard the set of the boundaries of all of the

connected components of S
2 −p(G) as a subset of Γ(G) and denote it by Γp(G). We

say that G admits a checkerboard coloring on S
2 if there exists a cellular embedding

p : G → S
2 such that we can color all of the connected components of S

2 − p(G) by

two colors (black and white) so that any of the two components which are adjacent

by an edge have distinct colors. We denote the subset of Γp(G) which corresponds

to the black (resp. white) colored components by Γb
p(G) (resp. Γw

p (G)).

Proposition 4.1. Let G be a planar graph which is not a cycle and admits a

checkerboard coloring on S
2 with respect to a cellular embedding p : G → S

2. Let ωp

be the weight on Γ(G) over Zn defined by

ωp(γ) =











1 (γ ∈ Γb
p(G))

n − 1 (γ ∈ Γw
p (G))

0 (γ ∈ Γ(G) − Γp(G)).

Then ωp is weakly balanced on any edge of G.

We call the weight ωp in Proposition 4.1 a checkerboard weight. Moreover, by giving

the counter clockwise orientation to each p(γ) for γ ∈ Γb
p(G) and the clockwise

orientation to each p(γ) for γ ∈ Γw
p (G) with respect to the orientation of S

2, an

orientation is given for each edge of G naturally. We call this orientation of G a

checkerboard orientation over the checkerboard coloring. Since the orientation of

each edge e is coherent with the orientation of each cycle γ ∈ Γp(G) which contains

e, by Theorem 3.3 we have the following.

Theorem 4.2 . Let G = G1 ∪ G2 be a disjoint union of two planar graphs such

that Gi is not a cycle and admits a checkerboard coloring on S
2 with respect to a
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cellular embedding pi : G → S
2 (i = 1, 2). Let ωpi

be the checkerboard weight on

Γ(Gi) over Zn (i = 1, 2). We orient G by the checkerboard orientation of Gi over

the checkerboard coloring (i = 1, 2). Then, for a spatial embedding f of G, if ωi is

null-homologous on any edge of Gi with respect to f and ωj (i = 1, 2, i 6= j), then

β̃ω1,ω2(f) (mod n) is an edge-homotopy invariant of f .

Example 4.3 . Let G = G1 ∪ G2 be a disjoint union of two planar graphs as

in Theorem 4.2 and f a spatial embedding of G. Let ωpi
: Γ(Gi) → Zn be the

checkerboard weight (i = 1, 2), where

n = gcd {lk(f (γ), f(γ′)) | γ ∈ Γp1(G1), γ′ ∈ Γp2(G2)} .

Then, for any edge e of Gi and any γ′ ∈ Γpj
(Gj) (i 6= j), we have that

lk





∑

γ∈Γe(Gi)

ωi(γ)f(γ), f(γ′)



 =
∑

γ∈Γe(Gi)

ωi(γ)lk (f(γ), f(γ′)) ≡ 0 (mod n).

Thus we have that ωi is null-homologous on any edge of Gi with respect to f and ωj

(i = 1, 2, i 6= j). Therefore we have that β̃ωp1 ,ωp2
(f) (mod n) is an edge-homotopy

invariant of f .

For example, let Θ4 be the graph with two vertices u and v and 4 edges e1, e2, e3, e4

each of which joins u and v. We denote the cycle of Θ4 consists of two edges ei and

ej by γij. Let p : Θ4 → S
2 be the cellular embedding as illustrated in the left-hand

side of Fig. 4.1. It is clear that Θ4 admits the checkerboard coloring on S
2 with

respect to p as illustrated in the center of Fig. 4.1. The right-hand side of Fig. 4.1

shows the checkerboard orientation of Θ4 over the checkerboard coloring.

e1

e2

e3

e4

u v

p(e )1

p(e )2

p(e )3

p(e )4

p(u) p(v)

p(e )1

p(e )2

p(e )3

p(e )4

p(u) p(v)

p checkerboard
 orientation

checkerboard
 coloring

Fig. 4.1.

Let G = Θ1
4 ∪ Θ2

4 be a disjoint union of two copies of Θ4. For a non-negative

integer m, let fm and gm be two spatial embeddings of G as illustrated in Fig. 4.2.

Note that

lk(fm(γ), fm(γ′)) = lk(gm(γ), gm(γ′)) = 0 or m
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for any γ ∈ Γ(Θ1
4) and γ′ ∈ Γ(Θ2

4). So we have that n = m. Let ωi : Γ(Θi
4) → Zm be

the checkerboard weight (i = 1, 2). Then, by a direct calculation we can see that the

constituent 2-component link of fm which has a non-zero generalized Sato-Levine

invariant is only L = fm(γ14 ∪ γ′

14) and β̃(L) = 2. Thus we have that β̃ω1,ω2(fm) ≡ 2

(mod m). On the other hand, we can see that each constituent 2-component link

gm(γ∪γ′) for γ ∈ Γp(Θ
1
4) and γ′ ∈ Γp(Θ

2
4) is a trivial 2-component link or T ′

m. Thus

we have that β̃ω1,ω2(gm) ≡ 0 (mod m). Therefore we have that fm and gm are not

edge-homotopic if m 6= 1, 2. We remark here that the case of m = 0 has already

shown by Fleming and the author in [3, Example 4.3].

f  (e  )m 4

f  (e  )m 1

f  (e  )m 2

f  (e  )m 3

f  (e'  )m 2

f  (e'  )m 3

f  (e'  )m 1

f  (e'  )m 4

full twistsm

full twistsm

g  (e  )m 3

g  (e  )m 4

g  (e  )m 2

g  (e  )m 1

g  (e'  )m 4

g  (e'  )m 3

g  (e'  )m 1

g  (e'  )m 2

fm

gm

Fig. 4.2.

Example 4.4 . Let G = Θ1
4 ∪Θ2

4 be a disjoint union of two copies of Θ4 oriented in

the same way as Example 4.3 and ωi : Γ(Θi
4) → Z the checkerboard weight (i = 1, 2).

For Θ1
4, we have that

∑

γ∈Γe1(Θ1
4)

ω1(γ)γ = e2 − e4,
∑

γ∈Γe2(Θ1
4)

ω1(γ)γ = e1 − e3,

∑

γ∈Γe3(Θ1
4)

ω1(γ)γ = e4 − e2,
∑

γ∈Γe4(Θ1
4)

ω1(γ)γ = e3 − e1.

This implies that ω1 is null-homologous on any edge of G1 with respect to a spatial

embedding f of G and ω2 if and only if

lk (f(γ13), f(γ′))) = lk (f(γ24), f(γ′))) = 0 (4.1)

for any γ′ ∈ Γp(Θ
2
4). The same condition can be said of ω2. For an integer m, let

fm be the spatial embedding of G as illustrated in Fig. 4.3. Note that

lk(fk(γ), fk(γ
′)) = lk(fl(γ), fl(γ

′)) = 0 or 1 (k 6= l)

9



for any γ ∈ Γ(Θ1
4) and γ′ ∈ Γ(Θ2

4). Since we can see that ωi satisfies (4.1), we

have that ωi is null-homologous on any edge of Gi with respect to fm and ωj (i =

1, 2, i 6= j). Namely β̃ω1,ω2(fm) is an integer-valued edge-homotopy invariant of fm.

Then, by a direct calculation we can see that the constituent 2-component link of

fm which has a non-zero generalized Sato-Levine invariant is only L = fm(γ14 ∪ γ′

14)

and β̃(L) = 2m. Thus we have that β̃ω1,ω2(fm) = 2m. Therefore we have that fk

and fl are not edge-homotopic for k 6= l.

full twistsm

f  (e' )m 1

full twistsm

f  (e' )m 2

f  (e' )m 3

f  (e' )m 4

f  (e )m 1

f  (e  )m 2

f  (e  )m 3

f  (e  )m 4

Fig. 4.3.

Remark 4.5 . In Theorems 3.3 and 4.2, the condition “ωi is null-homologous on any

edge of Gi with respect to f and ωj (i = 1, 2, i 6= j)” is essential. Let G = Θ1
4 ∪ Θ2

4

be a disjoint union of two copies of Θ4 oriented in the same way as Example 4.4

and ωi : Γ(Θi
4) → Z the checkerboard weight (i = 1, 2). Let f and g be two spatial

embeddings of G as illustrated in Fig. 4.4. Note that f and g are edge-homotopic.

But by a direct calculation we have that β̃ω1,ω2(f) = −1 and β̃ω1,ω2(g) = 0, namely

β̃ω1,ω2(f) is not an edge-homotopy invariant of f . Actually ω1 is not null-homologous

on e4 with respect to f and ω2.
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