CHM2C1-B Physical Spectroscopy

Electronic spectra of atoms (and diatomies)

- Essential readings:
- Atkins, Elements of Physical Chemistry, Chapter 13 Exercises 13.1-11, 13.22-25, 13.28-31 (page 322-323)
- Housecroft \& Sharpe, Inorganic Chemistry, Chapters 1.4-1.9, 20.6

Exercises (pages 9,14,21,22), Problem 20.12 (page 486)
with particular emphasis on Atomic Term Symbols (energy levels) and Electronic Transitions in atoms (isolated, under ligand-fields).

- Materials that overlap with other modules will be treated only briefly.
- Electronic excitations in diatomic molecules will not be treated.
- The lecture slides can be downloaded from
http://www.chem.bham.ac.uk/labs/ando/chm2c1Slide.pdf

$$
\frac{1}{\lambda}=R_{\mathrm{H}}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)
$$

$R_{\mathrm{H}}=$ Rydberg constant $=109677 \mathrm{~cm}^{-1}$
Lyman ($n_{1}=1$), Balmer ($n_{1}=2$), Paschen $\left(n_{1}=3\right)$, Brackett $\left(n_{1}=4\right)$,

Fig 13.1/P: The Spectrum of Atomic Hydrogen Emitted light from Hydrogen discharge lamp

Fig 13.2/P:
The Energy Levels of Hydrogen Atom
For Hydrogenic Atoms $\mathrm{H}, \mathrm{He}^{+}, \mathrm{Li}^{2+}, \ldots$ (i.e., one-electron atoms)

$$
E_{n}=-h c R \frac{Z^{2}}{n^{2}} \propto-\frac{Z^{2}}{n^{2}}
$$

The constant R depends on the atomic mass m_{N} via the reduced mass μ :

$$
R \propto \mu, \quad \mu=\frac{m_{e} m_{N}}{m_{e}+m_{N}}
$$

However, because $m_{e} \ll m_{N}$,

$$
\mu \simeq m_{e} \text { and } R \simeq R_{\mathrm{H}}
$$

Self-test 13.1/P: The shortest wavelength transition in the Paschen series in hydrogen occurs at 821 nm ; at what wavelength does in occur in Li^{2+} ?

s, p, d Atomic Orbitals (Cartesian representation)

Shells (n), Subshells ($\left(\right.$), Orbitals $\left(m_{l}\right)$
Fig 13.3/P Shells Subshells Orbitals

Self-test 13.3/P: How many orbitals are there in a shell with $n=5$? Try: Self-study exercises/Inorg Chem, p.9,14

Self-study exercises/l

p.9, left col.

1. If m_{l} has values of $-1,0,+1$, write down the corresponding value of l.
2. If l has values $0,1,2$ and 3 , deduce the corresponding value of n.
3. For $n=1$, what are the allowed values of l and m_{l} ?

p9, right col.

1. Write down the possible types of atomic orbital for $n=4$.
2. Which atomic orbital has values of $n=4$ and $l=2$?
3. Give the three quantum numbers that describe a $2 s$ atomic orbital.
p. 14
4. Write down two possible sets of quantum numbers to describe an electron in a 3 s atomic orbital.
5. If an electron has the quantum numbers $n=2, l=1, m_{l}=1$ and $m_{s}=+\frac{1}{2}$ which type of atomic orbital is it occupying?

Fig 13.11/P: Appearance of the Spec-
 trum of Atomic Hydrogen.
(Note: Hydrogenic atoms \Rightarrow Orbital energies depend only on n.)

Selection Rules for Hydrogenic Atoms

$$
\begin{gathered}
\Delta l= \pm 1, \quad\left(\Delta m_{l}=0, \pm 1\right) \\
s \leftrightarrow p \leftrightarrow d \leftrightarrow f \cdots
\end{gathered}
$$

The principal quantum number n can change by any amount.
Example 13.1/P: To what orbitals may a 4d electron make spectroscopic transitions?
Self-test 13.5/P: To what orbitals may a 4s electron make spectroscopic transitions?

The building-up (Aufbau) principle (Sec 13.11/P)

1. The order of occupation of orbitals is

$$
1 s, 2 s, 2 p, 3 s, 3 p, 4 s, 3 d, 4 p, 5 s, 4 d, 5 p, \ldots
$$

2. Each orbital may accommodate up to two electrons (Pauli principle)
3. Electrons occupy different orbitals of a given subshell before doubly occupying any one of them.
4. In its ground state, an atom adopts a configuration with the greatest number of unpaird electrons (Hund's rule)

Self-test 13.6/P:
Predict the ground-state electron configuration of sulfur.
Self-test 13.7/P:
Predict the electron configuration of a Cu^{2+} ion and an S^{2-} ion.
Exercise 13.25/P:
Give the electron configuration of the ground states of the first 18 elements in the periodic table.

Self-study exercises/I
p.21, left col.

1. Where, in the above argument, is the Pauli exclusion principle applied?
2. Will the three electrons in the $\mathrm{P} 3 p$ atomic orbitals possess the same or different values of the spin quantum number?
p.21, right col.
3. Values of Z for $\mathrm{Li}, \mathrm{Na}, \mathrm{K}$ and Rb are $3,11,19$ and 37 respectively. Write down their ground state configuration and comment on the result.
4. How are the ground state electronic configurations of O, S and $\mathrm{Se}(Z=8$, 16,34 respectively) alike? Give another element related in the same way.
p. 22
5. Show that the electronic configuration $1 s^{2} 2 s^{2} 2 p^{1}$ for B corresponds to each electron having a unique set of four quantum numbers.
6. The ground state of N is $1 s^{2} 2 s^{2} 2 p^{3}$. Show that each electron in the $2 p$ level possesses a unique set of four quantum numbers.

Term symbols (Sec 13.16/P, Box 20.5/I)

$$
(2 S+1)_{J}
$$

- $L=$ total orbital angular momentum quantum number

$$
\begin{array}{llllll}
L & 0 & 1 & 2 & 3 & \ldots \\
& \mathrm{~S} & \mathrm{P} & \mathrm{D} & \mathrm{~F} & \ldots
\end{array}
$$

Two electrons with l_{1}, l_{2} give

$$
L=l_{1}+l_{2}, l_{1}+l_{2}-1, \cdots,\left|l_{1}-l_{2}\right|
$$

- $S=$ total spin angular momentum quantum number

$$
S=s_{1}+s_{2}, s_{1}+s_{2}-1, \cdots,\left|s_{1}-s_{2}\right|
$$

(But it's easier to count the number of up and down spins) $2 S+1=$ spin multiplicity (singlet, double, triplet, ...)

- $J=\underline{\text { total angular momentum quantum number }}$

$$
J=L+S, L+S-1, \cdots,|L-S|
$$

Self-test 13.8/P
What terms and levels can arise from the configuration $4 p^{1} 3 d^{1}$?

Spin-orbit Coupling

Fig 13.17/P: The magnetic interaction responsible for spin-orbit coupling.

Hund's Rule for the Lowest Energy Term of a given configuration

1. Highest Multiplicity $2 S+1$
2. Highest value of L
3. $\left\{\begin{array}{l}\text { Lowest value of } J \text { when less than half-filled } \\ \text { or } \\ \text { Highest value of } J \text { when more than half-filled }\end{array}\right.$

Example: ... $4 p^{1} 3 d^{1}$ configuration (Self-test 13.8/P)
$\Rightarrow{ }^{1} \mathrm{~F}_{3},{ }^{1} \mathrm{D}_{2},{ }^{1} \mathrm{P}_{1},{ }^{3} \mathrm{~F}_{4,3,2},{ }^{3} \mathrm{D}_{3,2,1},{ }^{3} \mathrm{P}_{2,1,0}$

1. $\Rightarrow{ }^{3} \mathrm{~F}_{4,3,2},{ }^{3} \mathrm{D}_{3,2,1},{ }^{3} \mathrm{P}_{2,1,0}$
2. $\Rightarrow{ }^{3} \mathrm{~F}_{4,3,2}$
3. $\Rightarrow{ }^{3} \mathrm{~F}_{2}$

In fact, it's much easier to find the lowest term only:

1. two unpaired electrons \Rightarrow highest $S=1 \Rightarrow 2 S+1=3$
2. one in p and one in $d \Rightarrow$ highest $L=1+2=3 \Rightarrow{ }^{3} \mathrm{~F}$
3. $L=3, S=1 \Rightarrow J=4,3,2$; less than half-filled $\Rightarrow{ }^{3} \mathrm{~F}_{2}$

Exercise 13.31/P

The ground configuration of a Ti^{2+} ion is $[\mathrm{Ar}] 3 d^{2}$.
What is the term of lowest energy and which level of that term lies lowest?

1. two unpaired electrons \Rightarrow highest $S=1 \Rightarrow 2 S+1=3$
2. two in d in parallel spin \Rightarrow highest $L=1+2=3 \Rightarrow{ }^{3} \mathrm{~F}$
3. $L=3, S=1 \Rightarrow J=4,3,2$; less than half-filled $\Rightarrow{ }^{3} \mathrm{~F}_{2}$

Now, try:

$$
\begin{array}{ll}
\mathrm{C} & {[\mathrm{He}] 2 s^{2} 2 p^{2}} \\
\mathrm{~N} & {[\mathrm{He}] 2 s^{2} 2 p^{3}} \\
\mathrm{O} & {[\mathrm{He}] 2 s^{2} 2 p^{4}} \\
\mathrm{Cr}^{3+} & {[\mathrm{Ar}] 3 d^{3}} \\
\mathrm{Mn}^{3+} & {[\mathrm{Ar}] 3 d^{4}} \\
\mathrm{Fe}^{3+} & {[\mathrm{Ar}] 3 d^{5}}
\end{array}
$$

$$
\begin{aligned}
& { }^{3} \mathrm{P}_{0} \\
& { }^{4} \mathrm{~S}_{3 / 2} \\
& { }^{3} \mathrm{P}_{2} \\
& { }^{4} \mathrm{~F}_{3 / 2} \\
& { }^{5} \mathrm{D}_{0} \\
& { }^{6} \mathrm{~S}_{5 / 2}
\end{aligned}
$$

Selection Rules for Many-electron Atoms

- $\Delta S=0$
- $\Delta L=0, \pm 1$,
- $\Delta l= \pm 1$ for the electron excited in the transition
- $\Delta J=0, \pm 1$ but $J=0 \rightarrow J=0$ is forbidden

The rules on J are exact. Those on l, L, S presume that these quantum numbers are well-defined.

Example: Na atom
$\mathrm{Na}[\mathrm{Ne}] n s^{1} \Rightarrow{ }^{2} \mathrm{~S}_{1 / 2}$
$\mathrm{Na}[\mathrm{Ne}] n p^{1} \Rightarrow{ }^{2} \mathrm{P}_{3 / 2},{ }^{2} \mathrm{P}_{1 / 2}$
$\mathrm{Na}[\mathrm{Ne}] n d^{1} \Rightarrow{ }^{2} \mathrm{D}_{5 / 2},{ }^{2} \mathrm{D}_{3 / 2}$
Observed lines include:
$5 S \rightarrow 3 P 616.07,615.42 \mathrm{~nm}$
$3 P \rightarrow 3 S 589.00,589.59 \mathrm{~nm}$
$4 D \rightarrow 3 P 568.82,568.26 \mathrm{~nm}$

Ligand-field Splitting

Atom	$2 L+1$	\longrightarrow	Octahedral
S	1	$\mathrm{~A}_{1 g}$	degeneracies
P	3	$\mathrm{~T}_{1 g}$	1
D	5	$\mathrm{E}_{g}+\mathrm{T}_{2 g}$	3
F	7	$\mathrm{~A}_{2 g}+\mathrm{T}_{2 g}+\mathrm{T}_{1 g}$	$2+3$

Fig 20.16/I: d^{1} ion in an Octahedral field

Try: Problem 20.12/I (p.486)

Fig 20.18/I: Orgel diagram for d^{2}, d^{3}, d^{7}, d^{8} ions.

Colours from d-electrons

KMnF_{3}

$\mathrm{Al}_{2} \mathrm{O}_{3}: \mathrm{Cr}$

$\mathrm{Y}_{3} \mathrm{Al}_{5} \mathrm{O}_{12}: \mathrm{Cr}$

RbNiF_{3}

$\mathrm{Dy}_{3} \mathrm{Al}_{5} \mathrm{O}_{12}$

$\mathrm{BaAl}_{12} \mathrm{O}_{19}: \mathrm{Fe}$

