CHM2C1-B Physical Spectroscopy

Electronic spectra of atoms (and diatomics)

- Essential readings:
 - Atkins, Elements of Physical Chemistry, Chapter 13
 Exercises 13.1-11, 13.22-25, 13.28-31 (page 322-323)
 - Housecroft & Sharpe, Inorganic Chemistry, Chapters 1.4-1.9, 20.6
 Exercises (pages 9,14,21,22), Problem 20.12 (page 486)

with particular emphasis on Atomic Term Symbols (energy levels) and Electronic Transitions in atoms (isolated, under ligand-fields).

- Materials that overlap with other modules will be treated only briefly.
- Electronic excitations in diatomic molecules will not be treated.
- The lecture slides can be downloaded from http://www.chem.bham.ac.uk/labs/ando/chm2c1Slide.pdf

$$\frac{1}{\lambda} = R_{\rm H} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

 $R_{\rm H}$ =Rydberg constant=109677cm⁻¹

Lyman $(n_1=1)$,	Balmer (n ₁ =2),
Paschen $(n_1=3)$), Brack	ett (n_1 =4),

Fig 13.2/P: The Energy Levels of Hydrogen Atom For Hydrogenic Atoms H, He⁺, Li²⁺, ... (i.e., one-electron atoms)

 $E_n = -hcR\frac{Z^2}{n^2} \propto -\frac{Z^2}{n^2}$

The constant R depends on the atomic mass m_N via the reduced mass μ :

$$R \propto \mu, \qquad \mu = rac{m_e m_N}{m_e + m_N}$$

However, because $m_e \ll m_N$, $\mu \simeq m_e$ and $R \simeq R_{
m H}$

Self-test 13.1/P: The shortest wavelength transition in the Paschen series in hydrogen occurs at 821 nm; at what wavelength does in occur in Li^{2+} ?

s, p, d Atomic Orbitals (Cartesian representation)

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quin

Shells (n), Subshells (l), Orbitals (m_l)

Self-test 13.3/P: How many orbitals are there in a shell with n = 5 ? Try: Self-study exercises/Inorg Chem, p.9,14 Self-study exercises/I

p.9, left col.

- 1. If m_l has values of -1, 0, +1, write down the corresponding value of l.
- 2. If l has values 0, 1, 2 and 3, deduce the corresponding value of n.
- 3. For n=1, what are the allowed values of l and m_l ?

p9, right col.

- 1. Write down the possible types of atomic orbital for n=4.
- 2. Which atomic orbital has values of n=4 and l=2?
- 3. Give the three quantum numbers that describe a 2s atomic orbital. p.14
 - 1. Write down two possible sets of quantum numbers to describe an electron in a 3s atomic orbital.
 - 2. If an electron has the quantum numbers n=2, l=1, $m_l=1$ and $m_s=+\frac{1}{2}$ which type of atomic orbital is it occupying?

Fig 13.11/P: Appearance of the Spectrum of Atomic Hydrogen. (Note: Hydrogenic atoms \Rightarrow Orbital energies depend only on n.)

Selection Rules for Hydrogenic Atoms

$$\Delta l = \pm 1, \quad (\Delta m_l = 0, \pm 1)$$

$$s \leftrightarrow p \leftrightarrow d \leftrightarrow f \cdots$$

The principal quantum number n can change by any amount.

Example 13.1/P: To what orbitals may a 4d electron make spectroscopic transitions?

Self-test 13.5/P: To what orbitals may a 4s electron make spectroscopic transitions?

The building-up (Aufbau) principle (Sec 13.11/P)

- 1. The order of occupation of orbitals is 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, ...
- 2. Each orbital may accommodate up to two electrons (Pauli principle)
- 3. Electrons occupy different orbitals of a given subshell before doubly occupying any one of them.
- 4. In its ground state, an atom adopts a configuration with the greatest number of unpaird electrons (Hund's rule)

Self-test 13.6/P:

Predict the ground-state electron configuration of sulfur.

Self-test 13.7/P:

Predict the electron configuration of a Cu^{2+} ion and an S^{2-} ion.

Exercise 13.25/P:

Give the electron configuration of the ground states of the first 18 elements in the periodic table.

 $\mathsf{Self}\text{-}\mathsf{study}\ \mathsf{exercises}/\mathsf{I}$

p.21, left col.

- 1. Where, in the above argument, is the Pauli exclusion principle applied?
- 2. Will the three electrons in the P 3p atomic orbitals possess the same or different values of the spin quantum number?

p.21, right col.

- 1. Values of Z for Li, Na, K and Rb are 3, 11, 19 and 37 respectively. Write down their ground state configuration and comment on the result.
- 2. How are the ground state electronic configurations of O, S and Se (Z=8, 16, 34 respectively) alike? Give another element related in the same way.

p.22

- 1. Show that the electronic configuration $1s^22s^22p^1$ for B corresponds to each electron having a unique set of four quantum numbers.
- 2. The ground state of N is $1s^22s^22p^3$. Show that each electron in the 2p level possesses a unique set of four quantum numbers.

Term symbols (Sec 13.16/P, Box 20.5/I)

$$^{(2S+1)}L_J$$

• $L = \underline{\text{total}}$ orbital angular momentum quantum number L 0 1 2 3 ... S P D F ...

Two electrons with l_1, l_2 give

$$L = l_1 + l_2, \ l_1 + l_2 - 1, \ \cdots, |l_1 - l_2|$$

• $S = \underline{\text{total}}$ spin angular momentum quantum number

$$S = s_1 + s_2, \ s_1 + s_2 - 1, \ \cdots, |s_1 - s_2|$$

(But it's easier to count the number of up and down spins)

2S + 1 = spin multiplicity (singlet, double, triplet, ...)

• $J = \underline{\text{total}}$ angular momentum quantum number $J = L + S, \ L + S - 1, \ \cdots, |L - S|$

Self-test 13.8/P

What terms and levels can arise from the configuration $4p^{1}3d^{1}$?

Spin-orbit Coupling

Fig 13.17/P: The magnetic interaction responsible for spin-orbit coupling.

Hund's Rule for the Lowest Energy Term of a given configuration

- 1. Highest Multiplicity 2S + 1
- 2. Highest value of L

3. $\begin{cases} \text{Lowest value of } J \text{ when less than half-filled} \\ \text{or} \\ \text{Highest value of } J \text{ when more than half-filled} \\ \text{Example: } ...4p^1 \ 3d^1 \text{ configuration} \quad (\text{Self-test 13.8/P}) \\ \Rightarrow \ ^1\text{F}_3, \ ^1\text{D}_2, \ ^1\text{P}_1, \ ^3\text{F}_{4,3,2}, \ ^3\text{D}_{3,2,1}, \ ^3\text{P}_{2,1,0} \\ 1. \Rightarrow \ ^3\text{F}_{4,3,2}, \ ^3\text{D}_{3,2,1}, \ ^3\text{P}_{2,1,0} \\ 2. \Rightarrow \ ^3\text{F}_{4,3,2} \\ 3. \Rightarrow \ ^3\text{F}_2 \end{cases}$

In fact, it's much easier to find the lowest term only:

- 1. two unpaired electrons \Rightarrow highest $S = 1 \Rightarrow 2S + 1 = 3$
- 2. one in p and one in $d \Rightarrow$ highest $L = 1 + 2 = 3 \Rightarrow {}^{3}\mathsf{F}$
- 3. L = 3, $S = 1 \Rightarrow J = 4, 3, 2$; less than half-filled $\Rightarrow {}^{3}F_{2}$

Exercise 13.31/P

The ground configuration of a Ti^{2+} ion is $[Ar]3d^2$.

What is the term of lowest energy and which level of that term lies lowest?

- 1. two unpaired electrons \Rightarrow highest $S = 1 \Rightarrow 2S + 1 = 3$
- 2. two in d in parallel spin \Rightarrow highest $L = 1 + 2 = 3 \Rightarrow {}^{3}F$

3.
$$L = 3$$
, $S = 1 \Rightarrow J = 4, 3, 2$; less than half-filled $\Rightarrow {}^{3}F_{2}$

Now, try:

С	$[He]2s^2 2p^2$	${}^{3}P_{0}$
Ν	$[He]2s^2 2p^3$	${}^4S_{3/2}$
0	$[He]2s^2 2p^4$	${}^{3}P_{2}$
Cr^{3+}	$[Ar]3d^3$	${}^4F_{3/2}$
${\sf Mn}^{3+}$	$[Ar]3d^4$	5D_0
Fe^{3+}	$[Ar]3d^5$	${}^6S_{5/2}$

Selection Rules for Many-electron Atoms

- $\Delta S = 0$
- $\Delta L = 0, \pm 1$,
- $\Delta l = \pm 1$ for the electron excited in the transition
- $\Delta J = 0, \ \pm 1 \ \text{but} \ J = 0 \rightarrow J = 0$ is forbidden

The rules on J are exact. Those on $l,\ L,\ S$ presume that these quantum numbers are well-defined.

Example: Na atom

 $\begin{array}{rcl} \mathsf{Na} \ [\mathsf{Ne}]ns^1 & \Rightarrow \ ^2\mathsf{S}_{1/2} \\ \mathsf{Na} \ [\mathsf{Ne}]np^1 & \Rightarrow \ ^2\mathsf{P}_{3/2}, \ ^2\mathsf{P}_{1/2} \\ \mathsf{Na} \ [\mathsf{Ne}]nd^1 & \Rightarrow \ ^2\mathsf{D}_{5/2}, \ ^2\mathsf{D}_{3/2} \end{array}$

Observed lines include:

5S	\rightarrow	3P	616.07,	615.42 nm
3P	\rightarrow	3S	589.00,	589.59 nm
4D	\rightarrow	3P	568.82,	568.26 nm

Ligand-field Splitting

Try: Problem 20.12/I (p.486)

Colours from d-electrons

 AI_2O_3 : Cr

RbNiF₃

 $\mathsf{Dy}_3\mathsf{AI}_5\mathsf{O}_{12}$

 $\mathsf{BaAI}_{12}\mathsf{O}_{19}:\mathsf{Fe}$