

Question: State, with explanation, which diagram corresponds to $k_{a} \gg k_{b}$.
Assuming 1st order reactions for both of the two steps, it is possible to solve the rate equations analytically, ${ }^{*}$ which gives

$$
\left\{\begin{array}{l}
{[\mathrm{A}]_{t}=[\mathrm{A}]_{0} \mathrm{e}^{-k_{a} t}} \\
{[\mathrm{~B}]_{t}=\frac{k_{a}}{k_{a}-k_{b}}\left(-\mathrm{e}^{-k_{a} t}+\mathrm{e}^{-k_{b} t}\right)[\mathrm{A}]_{0}} \\
{[\mathrm{C}]_{t}=\left(1+\frac{1}{k_{a}-k_{b}}\left(k_{b} \mathrm{e}^{-k_{a} t}-k_{a} \mathrm{e}^{-k_{b} t}\right)\right)[\mathrm{A}]_{0}}
\end{array}\right.
$$

The mathematical derivation is far beyond the assumed level of this course. The reason for showing these equations is because the formula for $[\mathrm{C}]_{t}$ is useful to demonstrate the

* The rate equations for this scheme are:

$$
\frac{d A}{d t}=-k_{a} A, \quad \frac{d B}{d t}=k_{a} A-k_{b} B, \quad \frac{d C}{d t}=k_{b} B
$$

The first equation for $A(t)$ is the same as what we have seen previously in Sec 3.1.2. We put the solution $A(t)=A(0) e^{-k_{a} t}$ in the second equation. This yields an ordinary differential equation for $B(t)$, for which the solution method is well established (though we have no space to expand it here). $C(t)$ can be obtained from a relation $A(t)+B(t)+C(t)=$ constant $=A(0)$, which describes the conservation of gross materials.
concept of rate-determining step, as will be discussed next.

4.4 Rate-determining process

The above formula for $[\mathrm{C}]_{t}$ can be simplified in two limiting cases where one of the rate constants is much larger than the other. For example, when $k_{a} \gg k_{b}$, we find $\mathrm{e}^{-k_{a} t} \ll \mathrm{e}^{-k_{b} t}$ and $1 /\left(k_{a}-k_{b}\right) \simeq 1 / k_{a}$. Therefore, $[\mathrm{C}]_{t}$ can be simplified as

$$
[\mathrm{C}]_{t} \simeq\left(1-\mathrm{e}^{-k_{b} t}\right)[\mathrm{A}]_{0}
$$

This means that the behaviour of $[\mathrm{C}]_{t}$ is determined by the rate constant of the slower step k_{b}.

Question: Show that when $k_{a} \ll k_{b}$,

$$
[\mathrm{C}]_{t} \simeq\left(1-\mathrm{e}^{-k_{a} t}\right)[\mathrm{A}]_{0}
$$

In this way, the slower step determines the overall rate of the product formation. This is called the Rate-determining or Rate-limiting step. The idea is straightforwardly generalized for reactions involving more than two steps, i.e., more than one intermediates $\mathrm{I}_{1}, \mathrm{I}_{2}, \cdots$, involved between the reactant R and product P :

$$
\mathrm{R} \rightarrow \mathrm{I}_{1} \rightarrow \mathrm{I}_{2} \rightarrow \cdots \rightarrow \mathrm{P}
$$

5 Steady-state approximation

It is seen in the right panel of the previous diagram that the concentration of B does not change much but stays low and nearly constant, and therefore $d[\mathrm{~B}] / d t \simeq 0$, when $k_{b} \gg k_{a}$, i.e., when this intermediate specie is highly reactive. This suggests a very useful and powerful method called the steady-state approximation.

Recipe of the Steady-State Approximation

1. Identify reactive intermediates, $\mathrm{I}_{1}, \mathrm{I}_{2}, \cdots$, in the mechanism
2. Write down $\frac{d\left[\mathrm{I}_{i}\right]}{d t}$ from the assumed mechanism.
3. Set $\frac{d\left[\mathrm{I}_{i}\right]}{d t}=0$ and solve for $\left[\mathrm{I}_{i}\right]$. (The solution will be denoted by $\left[\mathrm{I}_{i}\right]_{\mathrm{ss}}$.)
4. Deduce, and simplify if possible, the rate law by using $\left[\mathrm{I}_{i}\right]_{\mathrm{ss}}$.

5.1 Application

Let us see how the steady-state approximation works for the following scheme

$$
\begin{equation*}
\mathrm{A} \stackrel{k_{f}, k_{b}}{\rightleftharpoons} \mathrm{~B} \xrightarrow{k_{r}} \mathrm{P} \tag{49}
\end{equation*}
$$

which has been examined previously by invoking the pre-equilibrium approximation. The critical assumption there was the reaction from B to P is very slow such that it does not disturb very much the equilibrium between A and B . We will now relax this assumption. To this end, let us follow the recipe of the steady-state approximation. As before, we will assume that all the steps k_{f}, k_{b} and k_{r} are 1 st order.

1. We identify B as the reactive intermediate.
2. Noting that B is gained by k_{f} and lost by k_{b} and k_{r} steps,

$$
\frac{d[\mathrm{~B}]}{d t}=k_{f}[\mathrm{~A}]-k_{b}[\mathrm{~B}]-k_{r}[\mathrm{~B}]
$$

3. Set the above to be equal to zero, and solve for [B].

$$
k_{f}[\mathrm{~A}]-k_{b}[\mathrm{~B}]-k_{r}[\mathrm{~B}] \simeq 0 \Rightarrow[\mathrm{~B}]_{\mathrm{ss}}=\frac{k_{f}}{k_{b}+k_{r}}[\mathrm{~A}]
$$

4. The overall reaction rate is that of the product formation described by the k_{r} step. We write down this equation and then replace $[B]$ by $[B]_{s s}$.

$$
\begin{equation*}
\text { Rate }=\frac{d[\mathrm{P}]}{d t}=k_{r}[\mathrm{~B}] \simeq k_{r}[\mathrm{~B}]_{s s}=\frac{k_{r} k_{f}}{k_{b}+k_{r}}[\mathrm{~A}] \tag{50}
\end{equation*}
$$

Compare this with the result from the pre-equilibrium assumption, Eq (45):

$$
\text { Rate }(\text { pre }-\mathrm{Eq}) \simeq k_{r} K[\mathrm{~A}]=\frac{k_{r} k_{f}}{k_{b}}[\mathrm{~A}]
$$

The difference is in the denominator of the rate factor. Remember that the fundamental assumption in the pre-equilibrium case was $k_{r} \ll k_{b}$. This means that the denominator in Eq (50) may be approximated as $k_{b}+k_{r} \simeq k_{b}$. We therefore find that the preequilibrium approximation $\mathrm{Eq}(45)$ is reproduced as a limiting case of the steady-state approximation Eq (50). In other words, the steady-state approximation generalizes, and therefore covers broader applicability than, the pre-equilibrium approximation.

