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Abstract. In the past decade, it has been shown through both theoretical and practical studies of permuta-

tion entropies that complexity of time series can be captured by order relations between numerical values.

In this paper, we investigate a generalisation of permutation entropies in terms of the order structure for

further understanding of their nature. To calculate conventional permutation entropies of time series, one

needs to assume a total order on the alphabet. We generalise this to an arbitrary partial order; that is,

the alphabet is assumed to be a partially ordered set, and we introduce partially ordered permutation

entropies. The relationship between entropies and their partial-order analogues for discrete-time finite-

alphabet stationary stochastic processes is theoretically studied. We will show that the entropy rate and

its partial-order analogues are equal without restriction, whereas equalities between excess entropy and

partial-order analogues depend on asymmetry of the order structure of the alphabet. As all finite totally

ordered sets are asymmetric, our results explain one reason why conventional permutation entropies are

so effective.

PACS. XX.XX.XX No PACS code given

1 Introduction

Permutation entropies quantify complexity of time series

by using order relations between numerical values [1].

They have been shown to be easy-to-implement, robust

measures of complexity of time series [2,3] and have been

harnessed in various scientific fields [4–6].

One way to deepen our understanding of a mathemat-

ical concept is to study it in an ideal situation. Discrete-

time finite-alphabet stationary stochastic processes (SSPs)

are a simple mathematical model of stationary time series

and are an appropriate starting point for theoretical in-

vestigation of the properties of permutation entropies. The
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first result on permutation entropies for SSP was given in

Ref. 7 which showed that the entropy rate of any SSP

is equal to its permutation analogue (but see also Ref. 8).

This result was extended to other entropies such as the ex-

cess entropy [9] and the transfer entropy rate [10,11] under

appropriate conditions in our previous work [12–16].

This paper is devoted to a theoretical investigation to

generalise permutation entropies for further understand-

ing of their nature. Permutations are related to two dif-

ferent mathematical structures. One is groups and the

other is ordered sets. The group-theoretic aspect of per-

mutations has been utilised to analyse coupled time se-

ries [17–19] under the name transcript. In Ref. 20, tran-

scripts are applied to dimensional reduction of conditional

multi-information. To complement the existing approach,

which extends permutation entropies by focusing on the

group structure, here we attempt to shed new light on

them in terms of partially ordered sets. When calculating

conventional permutation entropies, a total order is as-

sumed on the alphabet. We generalise this to partial orders

and study the relationship between entropies and their

partial-order analogues called partially ordered permuta-

tion entropies. We consider two kinds of partially ordered

permutation entropies. One is called square partially or-

dered permutation entropies, which distinguish ties (equal-

ity between occurrences of symbols) between numerical

values as in the modified permutation entropies [21]. The

other is called triangular partially ordered permutation en-

tropies, which do not concern ties as in the original per-

mutation entropies.

Partial orders naturally arise when one tries to extend

the idea of permutation entropy to multivariate time se-

ries. Let us consider a multivariate time series consist-

ing of N ≥ 2 time series and suppose that each time

series takes its numerical values in a totally ordered set

A, for example, the set of real numbers as one typically

encounters in real-world data. Then, we can introduce the

pointwise order on the product set AN , which is in gen-

eral a partial order. The multivariate time series can be

treated as if it is a univariate time series by consider-

ing that it takes values in the partially ordered set AN .

Partially ordered permutation entropies provide ways to

calculate information-theoretic quantities of a given mul-

tivariate time series from this viewpoint. This idea can

be utilised to define a complexity measure for coupling

among multiple time series [22]. In this paper, we reveal

a limitation of this approach under certain assumptions.

This paper is organised as follows. In Sect. 2, basic no-

tions of partially ordered sets are reviewed and partially

ordered permutation entropies are defined. The main re-

sults are also presented. In Sect. 3 and Sect. 4, results on

square partially ordered permutation entropies and trian-

gular partially ordered permutation entropies are proved,

respectively. In Sect. 4, concluding remarks are given.
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2 Definitions and Main Results

2.1 Stationary Stochastic Processes, Entropy Rate and

Excess Entropy

We consider discrete-time finite-alphabet stationary stochas-

tic processes with a partial order on the alphabet. Let

X = {X1, X2, . . . } be a discrete-time stationary stochastic

process over a finite alphabet A (in short, SSP X over A),

where Xi is an A-valued stochastic variable Xi : Ω → A

on a common probability space Ω for all i = 1, 2, . . . . For

any word x1:L := x1x2 . . . xL := (x1, x2, . . . , xL) ∈ AL

of length L, the following equality holds for any k ≥ 1,

because of the assumed stationarity:

Prob{X1 = x1, X2 = x2, . . . , XL = xL}

= Prob{Xk = x1, Xk+1 = x2, . . . , XL+k−1 = xL}. (1)

Consequently, we can write

p(x1:L) = Pr{X1 = x1, X2 = x2, . . . , XL = xL} (2)

for the probability of occurrence of a word x1:L of length

L.

In this paper, we consider two information-theoretic

quantities for SSPs. One is entropy rate and the other is

excess entropy. Recall that the entropy rate of an SSP X

over A is defined as the average uncertainty of X per unit

time:

h(X) = lim
L→∞

H(X1:L)/L, (3)

where

H(X1:L) = −
∑

x1:L∈AL

p(x1:L) log2 p(x1:L) (4)

is the joint Shannon entropy of (X1, . . . , XL). It is well-

known that the limit on the right-hand-side of Eq. (3)

always exists [23].

The excess entropy E(X) of X quantifies the subex-

tensive part of its entropy [9]:

E(X) = lim
L→∞

(H(X1:L)− h(X)L)

=

∞∑
L=1

(H(XL|X1:L−1)− h(X)) . (5)

Since the conditional entropy H(XL|X1:L−1) monotoni-

cally approaches h(X) from above, E(X) exists or oth-

erwise diverges. It is known that E(X) can be written

as mutual information between the left and right semi-

infinite sequences of the stochastic variables [9]. Thus,

E(X) measures the degree of global correlation in X. In

the literature, excess entropy is also called effective mea-

sure of complexity [24], stored information [25], predictive

information [26], or simply complexity [27, 28].

2.2 Partially Ordered Sets

In this paper, we assume that the finite alphabet A is

equipped with a partial order ≤ and call it the partially

ordered finite alphabet. Here, we recall basic definitions

and terminologies of partially ordered sets that are used

in this paper. A partial order on a set A is a binary relation

≤ on A satisfying the following three conditions [29]: (i)

a ≤ a (reflexivity); (ii) if a ≤ b and b ≤ a then a =

b (antisymmetry); (iii) a ≤ b and b ≤ c imply a ≤ c

(transitivity) for all a, b, c ∈ A. A set A equipped with a

partial order ≤ is called a partially ordered set (poset) and

is denoted by (A,≤). In the following, a poset is denoted
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by its underlying set unless otherwise required. For every

set, the equality relation = is a partial order on it called

the discrete order. If a partial order ≤ on A satisfies either

a ≤ b or b ≤ a for all a, b ∈ A, then it is called a total

order. Clearly, the number of all total orders on a given

set A with n members is n!.

Let (A,≤) be a poset. A self-map f : A → A is called

an automorphism of A if it is order-preserving (a ≤ b

implies f(a) ≤ f(b) for all a, b ∈ A) and has an order-

preserving inverse; that is, there exists an order-preserving

map g : A → A such that f ◦ g = g ◦ f = idA holds,

where idA is the identity map of A (idA(a) = a for all

a ∈ A). When A is a finite poset, an order-preserving self-

map f : A → A is an automorphism if and only if it is

injective (f(a) = f(b) implies a = b for all a, b ∈ A) [29].

Obviously, idA is an automorphism ofA. We denote the set

of all automorphisms of A by Aut(A). The size of Aut(A)

measures the degree of symmetry of A, which is said to

be asymmetric when Aut(A) = {idA}. For example, every

finite totally ordered set is asymmetric. A direct union of

a finite number of finite totally ordered sets with different

lengths is also asymmetric.

2.3 Permutation Entropies

In this subsection, we assume that (A,≤) is a finite totally

ordered set with n elements. For example,A = {1, 2, . . . , n},

with ≤ indicating the usual ‘less-than-or-equal-to’ rela-

tion between natural numbers. Let SL be the set of per-

mutations of length L. Each π ∈ SL is a bijective map

from the set {1, 2, . . . , L} to itself. For each x1:L ∈ AL,

its permutation type is defined as a permutation π ∈ SL

satisfying xπ(i) ≤ xπ(i+1) for i = 1, 2, . . . , L − 1. When

xπ(i) = xπ(i+1), we require that π satisfies π(i) < π(i+1).

By this condition, the permutation type of x1:L is uniquely

determined.

We define a map ϕn,L : AL → SL by sending each

x1:L ∈ AL to its permutation type. ϕn,L induces a parti-

tion of AL in the following way: Two words x1:L, y1:L ∈

AL are contained in the same block of the partition if

ϕn,L(x1:L) = ϕn,L(y1:L). Let X be an SSP over a totally

ordered finite alphabet A. The probability of occurrence

of π ∈ SL is given by

p∗(π) =
∑

x1:L∈ϕ−1
n,L(π)

p(x1:L). (6)

The permutation entropy rate of X [1, 2] is defined by

h∗(X) = lim
L→∞

H∗(X1:L)/L, (7)

where

H∗(X1:L) = −
∑
π∈SL

p∗(π) log2 p∗(π). (8)

It is known that h(X) = h∗(X) for any SSP X over a

totally ordered finite alphabet A [7, 8, 12].

The permutation excess entropy of X [12,15] is defined

by

E∗(X) = lim sup
L→∞

(H∗(X1:L)− h∗(X)L) . (9)

Unlike entropy rates, the excess entropy and the permuta-

tion excess entropy for an arbitrary SSP do not generally

coincide [12]. However, when X is the output process of a

hidden Markov model with an ergodic internal process, it

is known that the equality E(X) = E∗(X) holds [14].

If we associate information on the equality between

occurrences of symbols to the map ϕn,L, then we obtain a
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finer partition of the set of words of length L. We can de-

fine the modified permutation entropy rate and the mod-

ified permutation excess entropy by making use of this

partition [15]. We have shown that the modified permuta-

tion entropy rate is equal to the entropy rate for any SSP

X over A, and the modified permutation excess entropy

is equal to the excess entropy if X is ergodic [15].

These previous works indicate that permutations can

be used to calculate the entropy rate of SSPs over A with-

out any restrictions. However, we need certain conditions

to capture more detailed information of SSPs, such as the

excess entropy.

2.4 Partially Ordered Permutation Entropies

For a partially ordered finite alphabet A and L ≥ 1, we

define a map

ϕs
A,L : AL → ML({0, 1}) (10)

by sending each word x1:L of length L to a square matrix

M whose (i, j)-entrymij ismij = 1 if xi ≤ xj andmij = 0

otherwise, where ML({0, 1}) is the set of all {0, 1}-valued

square matrices of order L. Note that ϕs
A,L(x1:L), regarded

as a binary relation on the set {1, 2, . . . , L}, defines a pre-

order (a binary relation satisfying reflexivity and transi-

tivity) for each x1:L ∈ AL.

We also define another map

ϕt
A,L : AL → TL({0, 1}) (11)

by sending each word x1:L of length L to an upper-triangular

matrix T whose (i, j)-entry tij is tij = 1 if xi ≤ xj and

tij = 0 otherwise for i ≤ j, and tij = 0 for i > j, where

TL({0, 1}) is the set of all {0, 1}-valued upper-triangular

matrices of order L. ϕt
A,L(x1:L) defines a partial order on

the set {1, 2, . . . , L}. Our motivation for introducing ϕt
A,L

is to drop information on the ties (equality xi = xj for

i ̸= j) from ϕs
A,L. However, ϕt

A,L disregards information

beyond ties since tij = 0 for i > j regardless of whether

xi = xj . We could define a map from AL to ML({0, 1})

that exactly disregards ties. For such a map, our main

theorems (Theorems 1 and 3) hold because the claims we

will prove in the following are stronger results.

Maps ϕs
A,L and ϕt

A,L both induce a partition of AL as

follows: x1:L and y1:L are contained in the same block of

the partition if ϕu
A,L(x1:L) = ϕu

A,L(y1:L) where u = t or

u = s. When A is a finite totally ordered set, the par-

tition of AL by ϕt
A,L is identical to that induced by the

permutation type of words [12], whereas the partition of

AL by ϕs
A,L is that induced by the permutation type and

arrangement of equalities [15]. Hence, when A is a totally

ordered finite alphabet, the square partially ordered per-

mutation entropies and the triangular partially ordered

permutation entropies introduced below are reduced to

the modified permutation entropies and the permutation

entropies, respectively.

Let X be an SSP over a partially ordered finite alpha-

bet A. For any M ∈ ML({0, 1}) and T ∈ TL({0, 1}), their

probabilities of occurrence in X are given by

ps(M) =
∑

x1:L∈(ϕs
A,L)

−1
(M)

p(x1:L) (12)
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and

pt(T ) =
∑

x1:L∈(ϕt
A,L)

−1
(T )

p(x1:L), (13)

respectively. The square partially ordered permutation en-

tropy rate of X is defined by

hs(X) = lim
L→∞

Hs(X1:L)/L, (14)

where

Hs(X1:L) = −
∑

M∈ML({0,1})

ps(M) log2 ps(M). (15)

Similarly, we define the triangular partially ordered per-

mutation entropy rate of X as

ht(X) = lim
L→∞

Ht(X1:L)/L, (16)

where

Ht(X1:L) = −
∑

T∈TL({0,1})

pt(T ) log2 pt(T ). (17)

In the following, we will show that both limits for the

right-hand-sides of Eqs. (14) and (16) exist and are equal

to the entropy rate of X. That is,

Theorem 1

h(X) = hs(X) = ht(X) (18)

holds for every SSP X over a partially ordered finite al-

phabet.

The partially ordered permutation excess entropies are

also defined by replacing H and h in Eq. (5) by Hs and

hs or by Ht and ht: We define the square partially ordered

permutation excess entropy by

Es(X) = lim sup
L→∞

(Hs(X1:L)− hs(X)L) (19)

and the triangular partially ordered permutation excess en-

tropy by

Et(X) = lim sup
L→∞

(Ht(X1:L)− ht(X)L) . (20)

Unlike entropy rates, partially ordered permutation excess

entropies are not necessarily equal to the excess entropy

for every SSP over a partially ordered finite alphabet. The

order structure of the alphabet is relevant.

Theorem 2 Let A be a partially ordered finite alphabet.

E(X) = Es(X) (21)

for every ergodic SSP X over A if and only if A is asym-

metric.

Theorem 3 Let A be a partially ordered finite alphabet.

E(X) = Et(X) (22)

for every SSP X over A, which is the output process of a

hidden Markov model with an ergodic internal process if

and only if A is asymmetric.

Since every finite totally ordered set is asymmetric,

Theorems 2 and 3 are extensions of our previous results

in Refs. 12,14,15.

3 Square Partially Ordered Permutation

Entropies

In this section, we prove the results on the square partially

ordered permutation entropies. The following Lemma is

straightforward.
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Lemma 1 Let (A,≤) be a finite poset. For any pair of

words x1:L and y1:L of length L ≥ 1, if ϕs
(A,≤),L(x1:L) =

ϕs
(A,≤),L(y1:L), then ϕs

(A,=),L(x1:L) = ϕs
(A,=),L(y1:L).

Lemma 1 says that the partition of AL by ϕs
(A,≤),L is

a refinement of the one by ϕs
(A,=),L. For the partition of

AL induced by ϕs
(A,=),L, we have S(n, k) blocks with size

(n)k = n(n−1) . . . (n−k+1) for each k = 1, 2, . . . , n, where

n = |A| is the cardinality of A and S(n, k) is a Stirling

number of the second kind. Thus, |
(
ϕs
(A,≤),L

)−1

(M)| ≤

n! for any M ∈ ML({0, 1}). This implies the following up-

per bound on the difference betweenH(X1:L) andHs(X1:L).

Lemma 2 Let X be an SSP over a partially ordered finite

alphabet A. It holds that

0 ≤ H(X1:L)−Hs(X1:L) ≤ αs
X,A,L log2(|A|!), (23)

where

αs
X,A,L =

∑
M∈ML({0,1}),

|(ϕs
A,L)

−1
(M)|>1

ps(M). (24)

It is straightforward to obtain the equality of entropy

rates h(X) = hs(X) in Theorem 1 from Lemma 2.

An SSP X over a finite alphabet A is called ergodic

if the relative frequency of each word x1:L converges to

p(x1:L) in probability [30]. That is, for any word x1:k of

length k ≥ 1, any ϵ > 0 and any δ > 0, there exists a

natural number L0 such that if L > L0, then

Prob{|Fx1:k,L − p(x1:k)| < δ} > 1− ϵ, (25)

where Fx1:k,L is the number of occurrences of x1:k in the

sequence X1, X2, . . . , XL divided by L− k + 1.

Lemma 3 Let A be a finite poset. If A is not asymmet-

ric, then there exists an ergodic SSP X over A such that

E(X) > Es(X).

Proof. Let A be a non-asymmetric finite poset. There

exists an automorphism f of A such that f ̸= idA. Choose

x ∈ A such that x ̸= f(x). Suppose that x appears in

a word x1:L and set y1:L = f(x1)f(x2) . . . f(xL). Since

f is an isomorphism, we have ϕs
A,L(x1:L) = ϕs

A,L(y1:L).

On the other hand, x1:L ̸= y1:L because x ̸= f(x). Thus,(
ϕs
A,L

)−1
(M) ≥ 2 for M = ϕs

A,L(x1:L).

Consider an i.i.d. process X over A such that every

symbol occurs with the same probability. We have

H(X1:L)−Hs(X1:L)

=
∑

M∈ML({0,1}),
|(ϕs

A,L)
−1

(M)|>1

ps(M) log2 |
(
ϕs
A,L

)−1
(M)|

≥
∑

x1:L∈AL,
∃j s.t. xj=x

p(x1:L)

=1−
∑

x1:L∈AL,
∀j xj ̸=x

p(x1:L)

=1− (1− p(x))L → 1 as L → ∞.

Since h(X) = hs(X) by Theorem 1, we obtain the strict

inequality E(X) > Es(X). □

Lemma 4 Let A be a finite poset. If A is asymmetric,

then αs
X,A,L → 0 as L → ∞ for every ergodic SSP X over

A.

Proof. Assume that A is an asymmetric finite poset. Let

X be an ergodic SSP over A. To prove that αs
X,A,L → 0 as
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L → ∞, it is sufficient to show that |
(
ϕs
A,L

)−1
(M)| = 1

for all M = ϕs
A,L(x1:L), where x1:L satisfies the following

condition: for all x ∈ A there exists 1 ≤ j ≤ L such that

x = xj . Indeed, if this is true, then

αs
X,A,L =

∑
M∈ML({0,1}),

|(ϕs
A,L)

−1
(M)|>1

ps(M)

=1−
∑

M∈ML({0,1}),
|(ϕs

A,L)
−1

(M)|=1

ps(M)

≤1−
∑

x1:L satisfying (∗)

p(x1:L),

where (∗) is the following condition: for all x ∈ A with

p(x) > 0 there exists j such that xj = x. However, the

sum over x1:L satisfying (∗) approaches 1 as L → ∞,

since X is ergodic.

For any word x1:L ∈ AL, let us assume that for all

x ∈ A there exists 1 ≤ j ≤ L such that x = xj . Let M =

ϕs
A,L(x1:L). Suppose there exists y1:L ∈

(
ϕs
A,L

)−1
(M) such

that y1:L ̸= x1:L. Since ϕs
A,L(x1:L) = ϕs

A,L(y1:L), we have

xi ≤ xj ⇔ yi ≤ yj for all 1 ≤ i, j ≤ L. (26)

This implies

xi = xj ⇔ yi = yj for all 1 ≤ i, j ≤ L. (27)

Since every x ∈ A appears in x1:L, we can define a map

f : A → A by f(xi) = yi for i = 1, 2, . . . , L. Note that

f is well-defined due to (27), which also implies that f

is injective. Finally, x ≤ y ⇔ f(x) ≤ f(y) for all x, y ∈

A by (26). Thus, f is an injective order-preserving self-

map on the finite poset A, which implies that f is an

automorphism of A. Now, f cannot be an identity map,

because x1:L ̸= y1:L. This contradicts the assumption that

A is asymmetric. Hence, it holds that |
(
ϕs
A,L

)−1
(M)| = 1

for M = ϕs
A,L(x1:L), where x1:L is such that every x ∈ A

appears at least once in it. □

It is clear that Theorem 2 follows immediately from

Theorem 1 and Lemmas 2, 3, and 4.

4 Triangular Partially Ordered Permutation

Entropies

There is no analogue of Lemma 1 for ϕt
A,L. However, we

have the following size estimate for the inverse images of

upper-triangular matrices by ϕt
A,L.

Lemma 5 Let A be a finite poset and L ≥ 1. It holds that

|
(
ϕt
A,L

)−1
(T )| ≤ O(L|A|−1) (28)

for every T ∈ TL({0, 1}).

Proof. We appeal to an induction on |A|. The first step

|A| = 1 is trivial. Assume that the claim holds when

|A| ≤ n, and consider the case |A| = n + 1. Since A

is a finite poset, we can take a maximal element z of

A. Let T ∈ TL({0, 1}). The total number of x1:L such

that ϕt
A,L(x1:L) = T and xi ̸= z for all 1 ≤ i ≤ L

is bounded by O(Ln−1) by the induction hypothesis. To

bound the total number of those containing at least one

z, let us divide them by the smallest subscript i such that

xi = z, which is denoted by ix1:L . If ix1:L = iy1:L and

ϕt
A,L(x1:L) = ϕt

A,L(y1:L) = T for x1:L, y1:L ∈ AL, then

every occurrence of z in x1:L has the same subscript as

that in y1:L due to the maximality of z. Thus, the total
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number of x1:L such that ϕt
A,L(x1:L) = T and ix1:L

= j

for a given j is the number of words of length L− k that

are mapped to the upper-triangular matrix T ′, which is

obtained by removing all rows and columns correspond-

ing to subscripts i such that xi = z, which, in turn, is

at most O(Ln−1) by the induction hypothesis, where k is

the number of occurrences of z in x1:L. Hence, the total

number of words x1:L containing at least one z is at most

L×O(Ln−1) = O(Ln). This completes the inductive step

and the claim follows by mathematical induction. □

Thus, we obtain an analogue of Lemma 2.

Lemma 6 Let X be an SSP over a partially ordered finite

alphabet A. It holds that

0 ≤ H(X1:L)−Ht(X1:L) ≤ αt
X,A,L log2 O(L|A|−1), (29)

where

αt
X,A,L =

∑
T∈TL({0,1}),

|(ϕt
A,L)

−1
(M)|>1

pt(T ). (30)

The second equality of entropy rates h(X) = ht(X) in

Theorem 1 immediately follows from Lemma 6.

A quadruple (Σ,A, {U (x)}x∈A, µ) satisfying the fol-

lowing three conditions is called a hidden Markov model

(HMM) [31], where Σ and A are finite sets, U (x) is a

|Σ| × |Σ| matrix for each x ∈ A, and µ is a probability

distribution on Σ.

(i) U
(x)
ss′ ≥ 0 for any s, s′ ∈ Σ and any x ∈ A;

(ii)
∑

s′,x U
(x)
ss′ = 1 for any s ∈ Σ;

(iii) and µ(s′) =
∑

s,x µ(s)U
(x)
ss′ for any s′ ∈ Σ.

If we introduce a |Σ| × |Σ| matrix U by U =
∑

a∈A U (a),

then the triple (Σ,U, µ) defines the underlying Markov

chain, with Σ a state set, U a state transition matrix,

and µ a stationary probability distribution. The stationary

process arising from the underlying Markov chain is called

an internal process. The internal process is ergodic if and

only if U is irreducible [32]: for any s, s′ ∈ Σ, there exists

k > 0, such that (Uk)ss′ > 0. An output process of an

HMM is the SSP X = {X1, X2, . . . } over A with the joint

probability distributions:

Prob{X1 = x1, X2 = x2, . . . , XL = xL}

=
∑
s,s′

µ(s)
(
U (x1) . . . U (xL)

)
ss′

(31)

for all x1, . . . , xL ∈ A and L ≥ 1.

Lemma 7 Let A be a finite poset. If A is not asymmetric,

then there exists an SSP X over A, which is the output

process of an HMM with an ergodic internal process such

that E(X) > Et(X).

Proof. Let A be a non-asymmetric finite poset. The in-

equality E(X) > Et(X) holds for the same i.i.d. process X

over A given in the proof of Lemma 3. This can be shown

in the same way as in Lemma 3. □

Lemma 8 Let A be a finite poset. If A is asymmetric,

then αt
X,A,L → 0 exponentially fast as L → ∞ for every

SSP X over A, which is the output process of an HMM

with an ergodic internal process.

Proof. Let A be an asymmetric finite poset andX the out-

put process of an HMM (Σ,A, {U (x)}x∈A, µ) with an er-

godic internal process. We shall show that |
(
ϕt
A,L

)−1
(T )| =
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1 for any T = ϕt
A,L(x1:L) where x1:L is such that every

x ∈ A occurs at least once both in x1:⌊L/2⌋ and x⌊L/2⌋+1:L

(⌊r⌋ is the largest integer less than or equal to a real

number r). This implies αt
X,A,L → 0 exponentially fast

as L → ∞. Indeed, we have

αt
X,A,L =

∑
T∈TL({0,1}),

|(ϕt
A,L)

−1
(T )|>1

pt(T )

=1−
∑

T∈TL({0,1}),
|(ϕt

A,L)
−1

(T )|=1

pt(T )

≤1−
∑

x1:L satisfying (∗∗)

p(x1:L),

where (∗∗) is the following condition: for all x ∈ A with

p(x) > 0 there exist 1 ≤ j ≤ ⌊L/2⌋ < k ≤ L such that

xj = xk = x. However, the sum over x1:L satisfying (∗∗)

approaches 1 exponentially fast as L → ∞ by the ergod-

icity of the internal process of HMM (Σ,A, {U (x)}x∈A, µ)

(See Lemma 3 in Ref. 14 and the proof of Lemma 12 in

Ref. 12).

Let x1:L satisfy the following condition: for any x ∈

A there exist j, k such that 1 ≤ j ≤ ⌊L/2⌋ < k ≤

L and xj = xk = x. Suppose that there exists y1:L ∈(
ϕt
A,L

)−1
(T ) such that y1:L ̸= x1:L for T = ϕt

A,L(x1:L).

Since ϕt
A,L(x1:L) = ϕt

A,L(y1:L), we have

xi ≤ xj ⇔ yi ≤ yj for all 1 ≤ i ≤ j ≤ L. (32)

Let us define a map f from A to itself by sending each

x ∈ A to yix , where ix is the minimum subscript i such

that xi = x. We have ix ≤ ⌊L/2⌋ by the choice of x1:L. Let

x ≤ x′ in A. If ix ≤ ix′ , then f(x) = yix ≤ yix′ = f(x′)

by (32). When ix′ < ix, take a subscript k > ⌊L/2⌋ such

that yk = yix′ . By (32), we have xk ≥ xix′ = x′ ≥ x = xi.

Again by (32), we have f(x) = yi ≤ yk = f(x′). Thus, f

is order-preserving. Let f(x) = f(x′) for x, x′ ∈ A. Take

subscripts k, l > ⌊L/2⌋ such that xk = x and xl = x′. By

(32), we have yk ≥ yix = yix′ . Again by (32), x = xk ≥

xix′ = x′. Similarly, we obtain x′ ≥ x from yl ≥ yix′ = yix .

This implies that f is injective. Thus, f is shown to be an

injective order-preserving self-map on the finite poset A;

that is, it is an automorphism of A.

Next, we define another self-map g on A by g(x) = yjx

where jx > ⌊L/2⌋ is the maximum subscript i such that

xi = x. We can show that g is also an automorphism of A

in the same way as in the case of f .

Now, suppose that both f and g are the identity map

of A. For a given x ∈ A, consider any subscript k such

that xk = x. Since ix ≤ k ≤ jx and xix = xk = xjx , we

have x = f(x) = yix ≤ yk ≤ yjx ≤ g(x) = x by (32),

implying that yk = x = xk. However, this contradicts

x1:L ̸= y1:L. Therefore, at least one of f and g must be a

non-identity automorphism of A. This in turn contradicts

the assumption that A is asymmetric. Thus, it must hold

that |
(
ϕt
A,L

)−1
(T )| = 1 for T = ϕt

A,L(x1:L) where x1:L is

such that every x ∈ A occurs at least once in both x1:⌊L/2⌋

and x⌊L/2⌋+1:L. This completes the proof of the claim. □

One can see that Theorem 3 follows immediately from

Theorem 1 and Lemmas 6, 7, and 8.

5 Concluding Remarks

One main message of this paper is that asymmetry of the

alphabet is key to obtaining equalities between entropies
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and their partial-order analogues. Since every finite to-

tally ordered set is asymmetric, the results in this paper

demonstrate one reason why the original permutation en-

tropies can capture various aspects of complexity of time

series so well.

Let us go back to the motivating example mentioned

in Sect. 1 to discuss implications of the results obtained in

this paper. Let (A1,≤1), . . . , (AN ,≤N ) be finite totally or-

dered sets, and letX be an SSP over A1×. . . AN with N ≥

2. On one hand, X can be considered as an N -variate pro-

cess where the i-th component takes its value in the totally

ordered alphabet Ai. On the other hand, if we introduce

the pointwise order ≤ into A1 × · · · ×AN ((x1, . . . , xN ) ≤

(y1, . . . , yN ) for (x1, . . . , xN ), (y1, . . . , yN ) ∈ A1×· · ·×AN

if xi ≤i yi for all 1 ≤ i ≤ N), then X can be regarded as a

univariate process over the partially ordered finite alpha-

bet A1×· · ·×AN . In Ref. 14, we took the former viewpoint

to show that the entropy rate of X can be calculated as

the multivariate permutation entropy rate by introducing

the joint probability of N -tuples of permutations. We took

the latter viewpoint in this paper, and Theorem 1 shows

that the entropy rate of X can be also calculated as the

triangular and square partially ordered permutation en-

tropy rates. The partition of the set of words of length L

over A1 × · · · ×AN used in the latter approach is coarser

than that used in the former approach. This means that

we need less information than that assumed in previous

work in order to obtain the entropy rate of X. However,

Theorems 2 and 3 indicate that the latter approach is

limited in calculating information-theoretic quantities for

X beyond the entropy rate, even under the ergodicity as-

sumptions, because the pointwise order ≤ on A1×· · ·×AN

is not asymmetric in general.

The equalities between the excess entropy and the par-

tially ordered excess entropies requires convergence of the

difference between the Shannon entropy of the words of

length L and the Shannon entropy of the {0, 1}-valued

matrices of order L. The proofs of Theorems 2 and 3 re-

veal that asymmetry of the alphabet is a necessary and

sufficient condition for convergence under the ergodicity

assumptions. On the other hand, equalities between the

entropy rate and the partially ordered permutation en-

tropy rates require a weaker condition, namely, that the

difference of the Shannon entropies grow slower than the

length of the words. The proof of Theorem 1 shows that

this condition holds, regardless of the degree of symmetry

of the alphabet.

We can obtain equalities between several other en-

tropies and their partial-order analogues under the same

assumption as in Theorem 2 and Theorem 3. For example,

the transfer entropy rate is equal to the square partially

ordered symbolic transfer entropy rate (which can be de-

fined in the obvious manner by extending the definition

of the rate of symbolic transfer entropy in Ref. 14) for

every ergodic SSP over a finite partially ordered alpha-

bet A if A is asymmetric. A similar statement holds for

the triangular partially ordered symbolic transfer entropy

rate. The same can also be done for the rate of transfer

entropy on rank vectors [33] and momentary information

transfer [34]. The proofs of these claims can be straight-
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forwardly given by extending Lemmas 2, 4, 6 and 8 to

multivariate versions.
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8. J. M. Amigó. The equality of Kolmogorov-Sinai entropy

and metric permutation entropy generalized. Physica D,

241:789–793, 2012.

9. J. P. Crutchfield and D. P. Feldman. Regularities un-

seen, randomness observed: Levels of entropy convergence.

Chaos, 15:25–54, 2003.

10. T. Schreiber. Measuring information transfer. Phys. Rev.

Lett., 85:461–464, 2000.

11. M. Staniek and K. Lehnertz. Symbolic transfer entropy.

Phys. Rev. Lett., 100:158101, 2008.

12. T. Haruna and K. Nakajima. Permutation complexity

via duality between values and orderings. Physica D,

240:1370–1377, 2011.

13. T. Haruna and K. Nakajima. Symbolic transfer entropy

rate is equal to transfer entropy rate for bivariate finite-

alphabet stationary ergodic markov processes. Eur. Phys.

J. B, 86:230, 2013.

14. T. Haruna and K. Nakajima. Permutation complexity and

coupling measures in hidden markov models. Entropy,

15:3910–3930, 2013.

15. T. Haruna and K. Nakajima. Permutation approach to

finite-alphabet stationary stochastic processes based on

the duality between values and orderings. Eur. Phys. J.

Special Topics, 222:383–399, 2013.

16. T. Haruna and K. Nakajima. Permutation excess entropy

and mutual information between the past and future. Int.

J. Comput. Ant. Sys., 26:197–209, 2014.

17. R. Monetti, W. Bunk, T. Aschenbernner, and F. Jamitzky.

Characterizing synchronization in time series using infor-

mation measures extracted from symbolic representations.

Phys. Rev. E, 79:046207, 2009.
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