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Abstract We address the excess entropy, which is a measure of complexity for
stationary time series, from the ordinal point of view. We show that the permutation
excess entropy is equal to the mutual information between two adjacent semi-infinite
blocks in the space of orderings for finite-state stationary ergodic Markov processes.
This result may spread a new light on the relationship between complexity and
anticipation.
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1 Introduction

Recently, it was found that much of the information contained in stationary time
series can be captured by orderings of values, not the values themselves [1]. The
permutation entropy rate which was first introduced in [5, 6] quantifies the average
uncertainty of orderings of values per time unit. This is in contrast to the usual
entropy rate which quantifies the average uncertainty of values per time unit. How-
ever, surprisingly, it is known that the permutation entropy rate is equal to the
entropy rate for finite-state stationary stochastic processes [1, 2]. Similar results for
dynamical systems are also known [2, 3, 6, 15, 18].

In our previous work [14], we found a new proof of the equality between the
permutation entropy rate and the entropy rate based on the duality between values
and orderings, which can be seen as a Galois connection [11] (categorical adjunction
[17] for partially ordered sets, however, we do not refer to the Galois connection
explicitly in this paper). By making use of the duality, we also proved that the
permutation excess entropy is equal to the excess entropy for finite-state stationary
ergodic Markov processes.

The excess entropy has attracted interest from the complex systems community
for decades [4, 7, 9, 10, 12, 13, 16, 19]. By definition, the excess entropy is the
sum of entropy over-estimates over finite length of words [10]. However, it can
be expressed as the mutual information between the past and future, namely, the



mutual information between two adjacent semi-infinite blocks of stochastic variables.
Thus, the excess entropy can be interpreted as a measure of global correlation present
in a system.

In this paper, based on the duality between values and orderings, we show that
the permutation excess entropy also admit the mutual information expression in
the space of orderings when the process is finite-state stationary ergodic Markov
one. This result partially justifies the claim that the permutation excess entropy
measures global correlation at the level of orderings of values present in stationary
time series.

This paper is organized as follows. In Section 2, we review the duality between
values and orderings. In Section 3, we explain the permutation excess entropy. In
Section 4, we present a proof of the claim that the permutation excess entropy
has the mutual information expression for finite-state stationary ergodic Markov
processes. In Section 5, we give conclusions.

2 Duality between Values and Orderings Explained

Let An = {1, 2, · · · , n} be a finite alphabet consisting of natural numbers from 1 to
n. We consider An as a totally ordered set ordered by the usual ‘less-than-or-equal-
to’ relationship.

We denote the set of all permutations of length L ≥ 1 by SL. Namely, each
element π ∈ SL is a bijection on the set of indexes {1, 2, · · · , L}. For convenience,
we denote each permutation π ∈ SL by the string π(1) · · · π(L).

For each word sL
1 := s1 · · · sL := (s1, · · · , sL) ∈ AL

n = An × · · · × An︸ ︷︷ ︸
L

of length

L ≥ 1, we define its permutation type π ∈ SL by re-ordering symbols s1, · · · , sL in
increasing order: sL

1 is of type π if we have sπ(i) ≤ sπ(i+1) and π(i) < π(i + 1) when
sπ(i) = sπ(i+1) for i = 1, 2, · · · , L − 1. For example, π(1)π(2)π(3)π(4) = 3142 for
s4
1 = 2312 because s3s1s4s2 = 1223.

We introduce the map φ : AL
n → SL that sends each word sL

1 to its unique
permutation type π = φ(sL

1 ). This map φ classifies or coarse-grains words of length
L by the criterion whether they have the same permutation type. In general, φ
is many-to-one map. For example, all of 111, 112, 122, 222 ∈ A3

2 have the same
permutation type π ∈ S3 defined by π(1)π(2)π(3) = 123 (identity on {1, 2, 3}).

Now, we list the properties of the map φ which will be used later.

Lemma 1 For sL
1 , tL1 ∈ AL

n , φ(sL
1 ) = φ(tL1 ) if and only if sk ≤ sj ⇔ tk ≤ tj for all

1 ≤ j ≤ k ≤ L.

Proof. See Corollary 4 in [14]. ¤



Lemma 2 Let n ≥ i ≥ 1. Fix π ∈ SL. Assume that there is no sL
1 ∈ AL

i−1 such
that φ(sL

1 ) = π, but there exists sL
1 ∈ AL

i such that φ(sL
1 ) = π (When i = 1 we define

Ai−1 = A0 = ∅). Then,

(i) there exists a unique sL
1 ∈ AL

i such that φ(sL
1 ) = π. Moreover, if φ(tL1 ) = π for

tL1 ∈ AL
n , then there exist c1, · · · , cL such that sk + ck = tk for k = 1, · · · , L

and 0 ≤ cπ(1) ≤ · · · ≤ cπ(L) ≤ n − i.

(ii) |φ−1(π)| =
(

L+n−i
n−i

)
, where |X| denotes the cardinality of a set X.

Proof. See Lemma 5 in [14]. (ii) follows from the fact that the number of sequences
a1 · · · aL satisfying 0 ≤ a1 ≤ a2 ≤ · · · ≤ aL ≤ n−i is given by the binomial coefficient(

L+n−i
n−i

)
. ¤

For example, let φ ∈ S5 be given by π(1)π(2)π(3)π(4)π(5) = 24315. We have
φ(s5

1) = π for s5
1 = s1s2s3s4s5 = 31213 ∈ A5

3. Consider t51 = t1t2t3t4t5 = 41325 ∈ A5
5

and c1c2c3c4c5 = 10112. We have φ(t51) = π and t2t4t3t1t5 = 12345 = 11233 +
01112 = s2s4s3s1s5 + c2c4c3c1c5.

As a more thorough illustration of Lemma 2, let us write down how φ sends each
word to its permutation type for L = 3 and n = 1, 2.

When n = 1, the unique element 111 ∈ A3
1 is mapped to 123 ∈ S3.

When n = 2, we have

A3
2

φ // S3
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For example, there is no s3
1 ∈ A3

1 such that φ(s3
1) = 132 ∈ S3. On the other

hand, φ−1(132) = {121} for φ : A3
2 → S3. We have φ−1(123) = {111, 112, 122, 222}

for φ : A3
2 → S3. Note that |φ−1(123)| = 4 =

(
3+2−1
2−1

)
.

Let us introduce the map µ : SL → NL, where N = {1, 2, · · · } is the set of all
natural numbers, by the following procedure:

(i) given a permutation π ∈ SL, we decompose the sequence π(1) · · · π(L) into
maximal ascending subsequences. A subsequence ij · · · ij+k of a sequence i1 · · · iL
is called a maximal ascending subsequence if it is ascending, namely, ij ≤
ij+1 ≤ · · · ≤ ij+k, and neither ij−1ij · · · ij+k nor ijij+1 · · · ij+k+1 is ascending.



(ii) If π(1) · · · π(i1), π(i1+1) · · · π(i2), · · · , π(ik−1+1) · · · π(L) is the decomposition
of π(1) · · · π(L) into maximal ascending subsequences, then we define the word
sL
1 ∈ NL by

sπ(1) = · · · = sπ(i1) = 1, sπ(i1+1) = · · · = sπ(i2) = 2, · · · ,

sπ(ik−1)+1 = · · · = sπ(L) = k.

(iii) We define µ(π) = sL
1 .

By construction, we have φ ◦ µ(π) = π when µ(π) ∈ AL
n for all π ∈ SL.

For example, the decomposition of 15423 ∈ S5 into maximal ascending subse-
quences is 15, 4, 23. We obtain µ(π) = s1s2s3s4s5 = 13321 by putting s1s5s4s2s3 =
11233.

The map µ can be seen as the dual to the map φ in the following sense:

Theorem 3 Let us put

X = {sL
1 ∈ AL

n |φ−1(π) = {sL
1 } for some π ∈ SL}, (1)

Y = {π ∈ SL||φ−1(π)| = 1}. (2)

Then, φ restricted on X is a map into Y , µ restricted on Y is a map into X, and
they form a pair of mutually inverse maps. Furthermore, we have

X = {sL
1 ∈ AL

n |for any 1 ≤ i ≤ n − 1 there exist 1 ≤ j < k ≤ L

such that sj = i + 1, sk = i} (3)

Proof. See Theorem 9 in [14]. ¤

For the map φ : A3
2 → S3, the duality

X
φ //

Y
µ

oo (4)

is given by
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3 Permutation Excess Entropy

Let S = {S1, S2, · · · } be a finite-state stationary stochastic process, where each
stochastic variable Si takes its value in An. By stationarity, we mean

Pr{S1 = s1, · · · , SL = sL} = Pr{Sk+1 = s1, · · · , Sk+L = sL}

for any k, L ≥ 1 and s1, · · · , sL ∈ An. Hence, we can define the probability of the
occurrence of each word sL

1 ∈ AL
n by p(sL

1 ) := p(s1 · · · sL) := Pr{S1 = s1, · · · , SL =
sL}.

The entropy rate h(S) of a finite-state stationary stochastic process S, which
quantifies the average uncertainty of values per time unit, is defined by

h(S) = lim
L→∞

1

L
H(SL

1 ), (5)

where H(SL
1 ) = H(S1, · · · , SL) = −

∑
sL
1 ∈AL

n
p(sL

1 ) log2 p(sL
1 ). The limit exists for

any finite-state stationary stochastic process [8].
The permutation entropy rate quantifies the average uncertainty of orderings of

values per time unit. It is defined by

h∗(S) = lim
L→∞

1

L
H∗(SL

1 ) (6)

if the limit exists, where H∗(SL
1 ) = H∗(S1, · · · , SL) = −

∑
π∈SL

p(π) log2 p(π) and

p(π) is the probability that π is realized in S, namely, p(π) =
∑

sL
1 ∈φ−1(π) p(sL

1 ) for
π ∈ SL.

Theorem 4 For any finite-state stationary stochastic process S, the permutation
entropy rate h∗(S) exists and

h∗(S) = h(S). (7)

Proof. The proof appealing to ergodic theory is found in [1, 2]. For an alternative
proof based on the duality between values and orderings, see [14]. ¤

The entropy rate can be seen as a measure of randomness of a finite-state sta-
tionary stochastic process. Meanwhile the excess entropy can be interpreted as a
measure of complexity [12]. More precisely, it measures global correlation present
in a system. The excess entropy E(S) of a finite-state stationary stochastic process
S is defined by [10]

E(S) = lim
L→∞

(
H(SL

1 ) − h(S)L
)

(8)



if the limit exists. If E(S) exists, then we have [10]

E(S) =
∞∑

L=1

(
H(SL|SL−1

1 ) − h(S)
)

= lim
L→∞

I(SL
1 ; S2L

L+1), (9)

where H(Y |X) is the conditional entropy of Y given X and I(X; Y ) is the mutual
information between X and Y for stochastic variables X and Y .

The permutation excess entropy was introduced in [14] by imitating the defini-
tion of the excess entropy. The permutation excess entropy E∗(S) of a finite-state
stationary stochastic process S is defined by

E∗(S) = lim
L→∞

(
H∗(SL

1 ) − h∗(S)L
)
, (10)

if the limit exists. However, it is unclear what form of correlation the permuta-
tion excess entropy quantifies from this expression. In the following discussion, we
partially resolve this problem. We will show that the equality

E∗(S) = lim
L→∞

I(φ(SL
1 ); φ(S2L

L+1)) (11)

holds for any finite-state stationary ergodic Markov process S. Recall that the en-
tropy rate and the excess entropy of a finite-state stationary Markov process S are
given by

h(S) = −
n∑

i,j=1

pipij log2 pij

and

E(S) = −
n∑

i=1

pi log2 pi +
n∑

i,j=1

pipij log2 pij,

respectively, where P = (pij) is the transition matrix and p = (p1, · · · , pn) is the
stationary distribution. P and p satisfy the following properties:

(i) pij ≥ 0 for all 1 ≤ i, j ≤ n.

(ii)
∑n

j=1 pij = 1 for all 1 ≤ i ≤ n.

(iii) pi ≥ 0 for all 1 ≤ i ≤ n.

(iv)
∑n

i=1 pi = 1.

(v)
∑n

i=1 pipij = pj for all 1 ≤ j ≤ n.



pij is the probability of transition from state i to state j. pi is the probability of
observing state i. Thus, the probability of the occurrence of each word sL

1 ∈ AL
n

is given by p(sL
1 ) = ps1ps1s2 · · · psL−1sL

. A finite-state stationary Markov process S
is ergodic if and only if its transition matrix P is irreducible [20]: a matrix P is

irreducible if for all 1 ≤ i, j ≤ n there exists l > 0 such that p
(l)
ij > 0, where p

(l)
ij

is the (i, j)-th element of P l. For an irreducible non-negative matrix P , stationary
distribution p = (p1, · · · , pn) exists uniquely and satisfies pi > 0 for all 1 ≤ i ≤ n.

In our previous work [14], we showed that the equality

E∗(S) = E(S) (12)

holds for any finite-state stationary ergodic Markov process. The key point of the
proof is that the probability

qL =
∑

π∈SL,
|φ−1(π)|>1

p(π) =
∑
π 6∈Y

p(π) (13)

diminishes exponentially fast as L → ∞ for any finite-state stationary ergodic
Markov process, where the set Y is given by (2) in Theorem 3. For the proof
of the equality (11), we also appeal to this fact. Hence, we shortly review the reason
why this fact follows.

Let L be a positive integer. We introduce the following probability βs for each
symbol s ∈ An:

βs = Pr{sN
1 |sj 6= s for any 1 ≤ j ≤ N}, (14)

where N = bL/2c and bxc is the largest integer not greater than x.

Lemma 5 (Lemma 12 in [14]) Let S be a finite-state stationary stochastic pro-
cess and ε be a positive real number. If βs ≤ ε for any s ∈ An, then qL ≤ 2nε.

Proof. We shall prove
∑

π∈Y p(π) ≥ 1 − 2nε, where the set Y is given by (2) in
Theorem 3. Let us consider words sL

1 ∈ AL
n satisfying the following two conditions:

(i) Each symbol s ∈ An appears in sN
1 at least once.

(ii) Each symbol s ∈ An appears in sL
N+1 at least once.

By the assumption of the lemma, we have

Pr{sN
1 |(i) holds} ≥ 1 − nε,

because

Pr{sN
1 |(i) holds} +

n∑
s=1

Pr{sN
1 |sj 6= s for any 1 ≤ j ≤ N} ≥ 1.



Similarly,

Pr{sL
N+1|(ii) holds} ≥ 1 − nε

holds because of the stationarity. Hence, we obtain

Pr{sL
1 |both (i) and (ii) hold} ≥ 1 − 2nε.

Since any word sL
1 ∈ AL

n satisfying both (i) and (ii) is a member of the set X given
by (1) in Theorem 3, we obtain∑

π∈Y

p(π) =
∑

sL
1 ∈X

p(sL
1 ) ≥ Pr{sL

1 |both (i) and (ii) hold} ≥ 1 − 2nε.

¤

Let S be a finite-state stationary ergodic Markov process whose transition matrix
is P and stationary distribution is p. We can write βs in the following form by using
Markov property:

βs =
∑
sj 6=s,

1≤j≤N

p(s1 · · · pN) =
∑
sj 6=s,

1≤j≤N

ps1ps1s2 · · · psN−1sN
= 〈(Ps)

N−1 us,p〉, (15)

where the matrix Ps is defined by

(Ps)ij =

{
0 if i = s

pij otherwise,

the vector us = (u1, · · · , un) is defined by ui = 0 if i = s otherwise ui = 1 and
〈· · · , · · · 〉 is the usual inner product in the n-dimensional Euclidean space.

We can prove that the non-negative largest eigenvalue λ of Ps is strictly less
than 1 and absolute value of any other eigenvalue of Ps is not greater than λ by
using Perron-Frobenius Theorem for non-negative matrices and the irreducibility of
P (Lemma 13 in [14]). Hence, by decomposing Ps into a sum of a diagonalizable
matrix and a nilpotent matrix, we obtain the following lemma:

Lemma 6 Let S be a finite-state stationary ergodic Markov process. There exists
0 ≤ α < 1, C > 0 and a positive integer k such that βs ≤ CαLLk for any s ∈ An

and sufficiently large L.

4 Mutual Information Expression of Permutation Excess
Entropy

In this section, we give a proof of the equality (11) for finite-state stationary ergodic
Markov processes. We make use of the notions of rank sequences and rank variables
which are introduced in [2].



Rank sequences of length L are words rL
1 ∈ NL satisfying 1 ≤ ri ≤ i for i =

1, · · · , L. We denote the set of all rank sequences of length L by RL. Clearly,
|RL| = L! = |SL|.

We can transform each word sL
1 ∈ AL

n into a rank sequence rL
1 ∈ RL by defining

ri =
i∑

j=1

δ(sj ≤ si), i = 1, · · · , L, (16)

where δ(X) = 1 if the proposition X is true, otherwise δ(X) = 0. Namely, ri is
the number of indexes j (1 ≤ j ≤ i) such that sj ≤ si. Thus, we obtain the map
ϕ : AL

n → RL such that ϕ(sL
1 ) = rL

1 .
We can show that the map ϕ : AL

n → RL is compatible with the map φ : AL
n →

SL. Namely, there exists a bijection ι : RL → SL satisfying ι ◦ ϕ = φ [14].
Given a stationary stochastic process S = {S1, S2, · · · }, its associated rank vari-

ables are defined by Ri =
∑n

j=1 δ (Sj ≤ Si) for i = 1, 2, · · · . Note that rank variables
Ri (i = 1, 2, · · · ) are not stationary stochastic variables in general. By the compat-
ibility between φ and ϕ, we have

H(RL
1 ) = H∗(SL

1 ) = H(φ(SL
1 )) (17)

for L ≥ 1.
Now, let S be a finite-state stationary ergodic Markov process. By (12), we know

that the permutation excess entropy E∗(S) exists. By (17) and the chain rule, we
have

E∗(S) = lim
L→∞

(
H∗(SL

1 ) − h∗(S)L
)

= lim
L→∞

(
H(RL

1 ) − h∗(S)L
)

=
∞∑

L=1

(
H(RL|RL−1

1 ) − h∗(S)
)
. (18)

Since the infinite sum in (18) converges, we obtain

∣∣H(R2L
L+1|RL

1 ) − h∗(S)L
∣∣ =

∣∣∣∣∣
L∑

i=1

(
H(RL+i|RL+i−1

1 ) − h∗(S)
)∣∣∣∣∣ →

L→∞
0. (19)

By the definition of mutual information, we have

I(φ(SL
1 ); φ(S2L

L+1)) = H(φ(S2L
L+1)) − H(φ(S2L

L+1)|φ(SL
1 )).

In addition, we have H(φ(S2L
L+1)) = H(φ(SL

1 )) = H∗(SL
1 ) by the stationarity of S.

Hence, it is sufficient to show that∣∣H(φ(S2L
L+1)|φ(SL

1 )) − h∗(S)L
∣∣ →

L→∞
0 (20)

to prove the equality (11). However, by (19), this reduces to showing that∣∣H(φ(S2L
L+1)|φ(SL

1 )) − H(R2L
L+1|RL

1 )
∣∣ →

L→∞
0, (21)



which is equivalent to showing that∣∣H(φ(SL
1 ), φ(S2L

L+1)) − H(φ(S2L
1 ))

∣∣ →
L→∞

0 (22)

by (17).

Lemma 7 For s2L
1 , t2L

1 ∈ A2L
n , if φ(s2L

1 ) = φ(t2L
1 ), then φ(sL

1 ) = φ(tL1 ) and φ(s2L
L+1) =

φ(t2L
L+1). Namely, the partition of A2L

n by the map φ : A2L
n → S2L is a refinement of

the partition of AL
n × AL

n = A2L
n by the map φ × φ : AL

n × AL
n → SL × SL.

Proof. The claim follows immediately from Lemma 1.
¤

Lemma 8

0 ≤ H(φ(S2L
1 )) − H(φ(SL

1 ), φ(S2L
L+1)) (23)

≤

 ∑
π′,π′′∈SL,

|φ−1(π′)|>1 or |φ−1(π′′)|>1

p(π′, π′′)

 2n log2(L + n)

holds for any finite-state stationary stochastic process S, where

p(π′, π′′) =
∑

sL
1 ∈φ−1(π′),

s2L
L+1∈φ−1(π′′)

p(s2L
1 )

for π′, π′′ ∈ SL.

Proof. By Lemma 7, we can write

H(φ(S2L
1 )) − H(φ(SL

1 ), φ(S2L
L+1))

= −
∑

π∈S2L

p(π) log2 p(π) +
∑

π′,π′′∈SL

p(π′, π′′) log2 p(π′, π′′)

=
∑

π′,π′′∈SL

−
∑

φ−1(π)⊆
(φ×φ)−1(π′,π′′)

p(π) log2 p(π) + p(π′, π′′) log2 p(π′, π′′)



=
∑

π′,π′′∈SL

−
∑

φ−1(π)⊆
(φ×φ)−1(π′,π′′)

p(π) log2 p(π) +
∑

φ−1(π)⊆
(φ×φ)−1(π′,π′′)

p(π) log2 p(π′, π′′)



=
∑

π′,π′′∈SL,
p(π′,π′′)>0

p(π′, π′′)

−
∑

φ−1(π)⊆
(φ×φ)−1(π′,π′′)

p(π)

p(π′, π′′)
log2

p(π)

p(π′, π′′)

 .



By Lemma 2 (ii), we have

0 ≤ −
∑

φ−1(π)⊆
(φ×φ)−1(π′,π′′)

p(π)

p(π′, π′′)
log2

p(π)

p(π′, π′′)
≤ 2n log2(L + n).

If |φ−1(π′)| = 1 and |φ−1(π′′)| = 1 hold for (π′, π′′) ∈ SL × SL, then |(φ ×
φ)−1(π′, π′′)| = 1. In this case, if p(π′, π′′) > 0, then we have

−
∑

φ−1(π)⊆
(φ×φ)−1(π′,π′′)

p(π)

p(π′, π′′)
log2

p(π)

p(π′, π′′)
= 0.

¤

Lemma 9 (22) holds for any finite-state stationary ergodic Markov process S.

Proof. We have∑
π′,π′′∈SL,

|φ−1(π′)|>1 or |φ−1(π′′)|>1

p(π′, π′′) ≤
∑

|φ−1(π′)|>1,
π′′∈SL

p(π′, π′′) +
∑

|φ−1(π′′)|>1,
π′∈SL

p(π′, π′′)

= 2
∑

|φ−1(π′)|>1

p(π′) = 2qL.

By Lemma 5 and Lemma 6, there exist 0 ≤ α < 1, C > 0 and k > 0 such that
qL ≤ CαLLk for sufficiently large L if S is a finite-state stationary ergodic Markov
process. The claim follows from Lemma 8.

¤

Thus, we get our main theorem in this paper:

Theorem 10 The equality (11)

E∗(S) = lim
L→∞

I(φ(SL
1 ); φ(S2L

L+1))

holds for any finite-state stationary ergodic Markov process S.



5 Conclusions

In this paper, we showed that the permutation excess entropy is equal to the mutual
information between the past and future in the space of orderings for finite-state
stationary ergodic Markov processes.

Combining this result with the equality between the excess entropy and the per-
mutation excess entropy for finite-state stationary ergodic Markov processes proved
in our previous work [14], we can see that the global correlation measured by the
mutual information between the past and future in a given finite-state stationary
ergodic Markov process is fully captured by a different coding of the process, namely,
coding by the orderings of values.

We hope that our result gives rise to a new insight into the relationship between
complexity and anticipation.
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