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Abstract

We discuss the relationship between local rewiring rules
and stationary out-degree distributions in adaptive random
Boolean network models that evolve toward criticality. We
derive a theoretical formula for the relationship via a master
equation approach. The theoretical result is shown to agree
well with numerical simulation in three representative cases.

Introduction

Coupling between structural change of a network and dy-
namics on it is important to understand functioning of com-
plex systems. Many models have been proposed to capture
various types of couplings so far. They are called adap-
tive networks (Gross and Blasius, 2008; Gross and Sayama,
2009). One interesting type of the adaptive network model
is the one in which network topology evolves toward dy-
namical criticality by a local rewiring rule. Several adap-
tive network models of this type have been studied numer-
ically so far, for example, extremal dynamics on random
networks (Christensen et al., 1998), random threshold net-
works (Bornholdt and Rohlf, 2000), neural networks (Born-
holdt and Rohl, 2003; Meisel and Gross, 2009) and random
Boolean networks (Liu and Bassler, 2006).

Random Boolean network (RBN) is a model of gene regu-
lation networks (Kauffman, 1969, 1993). It has been shown
that RBN exhibits a continuous phase transition from or-
dered to chaotic dynamics by a mean-field approximation
(Derrida and Pomeau, 1986; Luque and Solé, 1997). In re-
cent years, several approaches to map real-world networks
to RBN have been proposed and shown that real-world net-
works are working close to criticality (Ramo et al., 2006;
Balleza et al., 2008; Nykter et al., 2008). Biological signifi-
cance of criticality has been also discussed: balance between
robustness and evolvability (Aldana et al., 2007) and maxi-
mum information coordination (Ribeiro et al., 2008).

An RBN consists of a set of nodes connected via regu-
latory relationships represented as Boolean functions. Let
the number of nodes be N and the in-degree of node i k;.
Each node can take two values 0 and 1 corresponding to off
and on of a gene, respectively. For each node 7, a random

Boolean function f; : {0, 1}* — {0, 1} is chosen. For each
input x € {0, 1}*:, the output of f;(x) is determined to be
1 with probability p and 0 with probability 1 — p, where
0.5 < p < 1is a parameter. Here, we consider the standard
case p = 0.5. The value of each node is updated by a giv-
en random Boolean function. For the time evolution of the
whole system, we consider the classical synchronous updat-
ing scheme. Namely, we assume the existence of a global
clock ¢ and all nodes are updated synchronously. Let x;(t)
be the value of node ¢ at time step ¢. The state of the whole
system is defined as x(¢) = (z1(t),- - ,xn(t)). In the limit
1

of large IV, the dynamics of RBN is ordered if z < p=p)’
1

critical if z = 2p(1=p) and chaotic otherwise (Derrida and
Pomeau, 1986; Luque and Solé, 1997), where z is the aver-
age in-degree of the underlying network of the RBN. When

p = 0.5, the critical average in-degree is z, = 2.

In this paper, we focus on adaptive random Boolean net-
work models and discuss the relationship between local
rewiring rules and the stationary out-degree distributions
(Liu and Bassler, 2006). Real-world gene regulation net-
works have heavy-tailed out-degree distributions (Aldana
et al., 2007). It is interesting problem whether we can re-
produce this feature by an adaptive random Boolean net-
work model that evolves toward criticality. (Liu and Bassler,
2006) reported that the stationary out-degree distribution is
wider than the stationary Poisson-like in-degree distribution
in their numerical simulation. However, its actual form is
unknown. (MacArthur et al., 2010) studied a different type
of adaptive network model that evolves toward criticality
with a stationary heavy-tailed degree distribution. Howev-
er, its mechanism is unclear. Here, we extend the model
proposed by (Liu and Bassler, 2006) and obtain an theoreti-
cal expression for the relationship via a master equation ap-
proach. We also consider a new adaptive network model
whose local rewiring rule is governed by local information
transfer to examine whether our theoretical treatment is sen-
sitive to the detail of local rewiring rules or not. We show
that in both adaptive network models our theoretical result
agrees well with numerical simulation for three representa-
tive cases: Poisson, exponential and truncated power law



stationary out-degree distributions.

This paper is organized as follows. In section 2, we review
two adaptive random Boolean network models considered in
this paper. In section 3, we present the formula relating lo-
cal rewiring rules and stationary out-degree distributions and
compare it with numerical simulation. We derive it in Ap-
pendix. In section 4, we discuss meaning of the result and
connection with real-world gene regulation network topolo-
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Adaptive network models

In this section, we introduce two adaptive random Boolean
network models. The first one is an extension of the model
proposed and numerically investigated by (Liu and Bassler,
2006). The second one is our own new model.

A model based on activity

The basic idea of the evolutionary rule in this model is active
nodes tend to lose links, static nodes tend to get links (Born-
holdt and Rohlf, 2000). After the dynamics of an RBN falls
onto an attractor, a node is defined to be active if it changes
its value on the attractor at least once. Otherwise, the node
is static (Bornholdt and Rohlf, 2000; Liu and Bassler, 2006).
The full algorithm can be described as follows:

(i) The initial RBN with uniform in-degree k; = k for all
nodei =1,2,--- , N is generated.

(ii) A random initial state x(0) is chosen. Iterate RBN dy-
namics until a dynamical attractor is reached. In the chaotic
phase, it is hard to find an attractor in a realistic number of
time steps. To cope with this problem, we follow the proce-
dure adopted in (Liu and Bassler, 2006). We set the maxi-
mum attractor period T}, ,x Which we try to find. If no attrac-
tor is found in the first 27}, + 7" time steps, we regard the
last T},ax Steps as an attractor. Here, we take Ty,,x = 1000
and 7" = 100 for efficient numerical simulation. It seems
that the value of T,,,« does not affect the result of numeri-
cal simulation as long as it is sufficiently large. Indeed, we
checked that T;,,,x = 500 also reproduces the essentially the
same results.

Let I" be the period of the attractor.

(iii) A node ¢ is randomly chosen. Calculate its average
activity A(7) over the attractor:

T+I'—1
> xi(t), (1

t=T

A(i) =

| =

where we assume that the attractor is reached at least after T’
time steps. If 0 < A(¢) < 1, then the node is called active.
Otherwise, it is called static.

(iv) If chosen node ¢ is active, then one of its incoming
links is removed randomly. If it is static, then it gains a new
incoming link. The source node of a new link is chosen by
following a probability distribution depending on the out-
degree of nodes.

(v) Boolean functions are randomly regenerated. Here,
we use the method called annealed model in (Liu and
Bassler, 2006): a new Boolean function is generated ran-
domly for every node.

(vi) Go back to step (ii).

The time scale of network topology change (one cycle of
step (ii) to step (v)) is called epoch. (Liu and Bassler, 2006)
numerically shows that this evolutionary algorithm with the
uniform probability distribution in step (iv) drives RBN to-
ward criticality.

A model based on local information transfer

The local rewiring rule of this model depends on information
transfer associated with links. To quantify information trans-
fer, we use local transfer entropy (Lizier et al., 2008). Trans-
fer entropy is a measure of the direction and magnitude of
information transfer between two stationary stochastic pro-
cesses (Schreiber, 2000). Let X, Y be stationary stochastic
processes. The transfer entropy from Y to X is

Ty . x = Z

o(t) R 2 (t+1),y(t)

pla(t+ D™, y(H))
ple(t+Dle@)®)

pl(t+1),2()®,y(0)"V)

% log,
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where x(t) and y(¢) are values of X and Y at time ¢, re-
spectively, z(t)®) = (z(t),z(t —1),--- ,z(t —k+1)) and
y(t) D = (y(t),y(t — 1), - ,y(t — 1 4+ 1)). Namely, the
amount of information transfer from Y to X is quantified as
the reduction of uncertainty to predict the future value of X
from the present and past values of itself when one knows
the present and past values of Y. In the following, we only
consider the case k = = 1.

The local transfer entropy considers the log-ratio at the
right hand side of (2). (Lizier et al., 2008) shows that the
local transfer entropy works as a filter detecting coherent
structures in complex spatiotemporal dynamics. Since the
log-ratio can take a negative value, we can define misleading
information transfer by adopting the local transfer entropy
for information transfer quantification (Lizier et al., 2008).

Consider a node ¢ in an RBN and neighboring nodes
Ji,J2,° -, Jk, that have a link to ¢. The local transfer en-
tropy from node j,, to ¢ at time ¢ is defined by

pzi(t + 1)zi(t), 2, (1)

teljm = i) =logy = N d).

3)

where the conditional probabilities at the right hand side are
calculated from the frequency of each tuple of values from
the all pairs (4,j,),n = 1,2,--- ,k; over the attractor to
which the RBN dynamics reaches.

The idea for the evolutionary algorithm based on local
information transfer is links with misleading information
transfer should be deleted. Here, we implement this idea by
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Figure 1: Time evolution of the average in-degree from d-
ifferent ky values in the adaptive network model based on
local information transfer averaged over 100 trials. The sys-
tem size is N = 30.

replacing steps (iii) and (iv) in the model based on activity
by the following (iii’) and (iv’).

(iii”) Choose anode ¢ and atime T" < ¢ < T+ randomly.
Calculate the local transfer entropy Ite(j,, — i,t) for all
m=1,2,--- k;.

(iv*) If there is at least one link such that lte(j,, — i,t) <
0, then the link with the smallest value of the local transfer
entropy is deleted. If there are multiple such links, then one
of them is chosen randomly and is deleted. If lte(j,, —
i,t) > 0 forall m = 1,2,--- ,k;, then node i gets a new
incoming link. The source node of a new link is chosen by
following a probability distribution depending on the out-
degree of nodes.

We numerically check that the model based on the local
transfer entropy evolves toward criticality. Fig. 1 shows that
time evolution of average in-degree from different %( val-
ues converges to a common value slightly above 3. Here,
we adopt the uniform random choice of the source node of
anewly added link at step (iv’). The deviation from the crit-
ical value 2 is rather large because of the finite size effect
(N = 30). Fig. 2 shows that the converged value of average
in-degree approaches to the critical value 2 as N becomes
larger. Indeed, it approaches algebraically to the criticality
as we will see in next section (See Fig. 5).

Average in-degree evolves toward criticality in both adap-
tive RBN models. However, they have different stationary
in-degree distributions as one can see in Fig. 3. On one hand,
the stationary in-degree distribution for the model based on
activity can be fitted by the Poisson distribution for all three
link addition rules considered in next section. On the other
hand, the width of that for the model based on local infor-
mation transfer is strictly narrower than the Poisson distribu-
tion with the same average in-degree due to different local
rewiring rules from those in the activity-based model.
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Figure 2: Time evolution of average in-degree for different
system sizes IV from the same k( value in the adaptive net-
work model based on local information transfer. For each
system size N, trajectories are averaged over 100 trials.

Main result

In this section, we present the formula relating local rewiring
rules and stationary out-degree distributions. The theoretical
result is tested against numerical simulation. The formula is
derived in Appendix.

In the link addition part of the evolutionary algorithms de-
scribed in section 2, the source node of a newly added link is
chosen by following a probability distribution depending on
the out-degree of nodes. Let o ;(e) be the probability that
a particular node with out-degree [ is chosen as the source
of a new link given that the number of link increases at e-
poch e. In Appendix, we derive the following equation by
analyzing the master equation describing time evolution of
the out-degree distribution under the assumption that we can
ignore the structure of networks except their degree distribu-
tions in the limit of large N:

I+ 1PR5(1+1)

= 4
o Nzs Py (l) ’ @

where 0% | = limee0 oy (e), zs is the stationary aver-
age in-degree and P2, (1) is the stationary out-degree distri-
bution. By (4), we can predict the link addition algorithm
which produces the stationary out-degree distribution satis-
fying P2, (l) = P(l) for any given probability distribution

P(1) with ;% IP(l) = z,. Here, we study three represen-
tative cases.

Example 1 (Poisson distribution) If P(l) = Z—ie*%, then

i
Pg(’;)l) = £ It follows that 0% ; = % by (4). Thus,

we expect the stationary Poisson out-degree distribution
when we choose the source node of a newly added link
uniformly at random.

Example 2 (Exponential distribution) If  P(l) =
(1—e /") eV, where k = 1/In(1 + 1/z,), then
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Figure 3: Stationary in-degree distributions for the two
adaptive network models with different link addition rules
introduced in section 2. (a) Results for the model based on
activity. (b) Results for the model based on local information
transfer. For every case, N = 200, ky = 4 and the numeri-
cal stationary in-degree distribution is obtained by averaging
in-degree distributions over 10000 epochs after 10000 ini-
tial transient epochs for a single trial. For reference, Poisson
distribution with the same average degree is plotted for each
case. Legends indicate different link addition algorithms de-
scribed in section 3.

—1/k s e /"
% = e~ '/*. By (4), we have 0% ; = (I + 1)
The stationary exponential out-degree distribution is
predicted when the source node of a newly added link is
chosen in proportional to ({4 1), where [ is the out-degree

of the node.

Example 3 (Truncated power law distribution) If
P(l) = C( + 1)"te ™, where C is a normaliza-
tion constant and A is determined by the equation

5= S IP(l), then ZEE) = L By ),
2
O'i’l = (llt_l?) les . If the source node 2of a newly added
(+1)

link is chosen in proportional to 77—, where [ is the
out-degree of the node, then the theory predicts that
we have the stationary truncated power law out-degree
distribution.
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Figure 4: Stationary out-degree distributions for the two
adaptive network models with different link addition rules.
Theoretical lines are compared with the numerical distribu-
tions. (a) Results for the model based on activity. (b) Re-
sults for the model based on local information transfer. The
parameters and the averaging procedure are the same as in
Fig. 3.

We compare the numerical stationary out-degree distribu-
tions with the theoretical ones for both models of adaptive
RBN in Fig. 4. In every case, the theoretical line agrees
well with the numerical result. Fig. 5 shows that the station-
ary average in-degree approaches algebraically to the critical
value 2 as the system size N increases irrespective of mod-
els and link addition rules though the speed of convergence
is case-by-case. These results suggests that we can control
the stationary out-degree distribution by (4) while keeping
evolution toward criticality.

Discussion

In this paper, we have shown that we can control the sta-
tionary out-degree distribution of two adaptive RBN models
that evolve toward criticality by modifying the link addition
part of of the local rewiring rule. Only the information of
neighboring nodes that have a link to a node to be removed
is used for the link deletion part of the rule. In this sense,
the link deletion part is informationally local. On the oth-



Poisson

@[ 3
Exponential o
N Truncated power law 2
A
3 1 T
10 100 1000
The number of nodes
(b) [~ —
Poisson o
Exponential o
e Truncated power law 2
3 1 T

10 100 1000
The number of nodes

Figure 5: System size dependence of deviation from critical-
ity Az = z;, — 2. (a) Results for the model based on activity.
The slopes of the lines are —0.230 (real, Poisson), —0.236
(dashed, Exponential) and —0.269 (dotted, Truncated power
law). (b) Results for the model based on local information
transfer. The slopes of the lines are —0.253 (real, Poisson),
—0.257 (dashed, Exponential) and —0.281 (dotted, Truncat-
ed power law). For every case, the stationary average in-
degree z; is calculated by averaging average in-degrees over
10000 epochs after 10000 transient initial epochs in a single
run from k¢ = 4.

er hand, the link addition part is informationally global: it
inevitably needs global information because the source n-
ode of a newly added link is chosen from the set of all n-
odes in the whole system although the resulting structural
change of network topology is local. Thus, there is asym-
metry between the link deletion part and the link addition
part in terms of information used. Our result indicates that
evolution toward criticality can be achieved irrespective of
the form of informationally global link addition part.

It has been suggested that real-world gene regulation net-
works have heavy-tailed out-degree distributions (Aldana
et al., 2007). Assuming that the local rewiring rule stud-
ied in this paper is a good approximation to realistic net-
work evolutionary process, the emergence of heavy-tailed
out-degree distributions in real-world gene regulation net-
works cannot be directly associated with evolution toward

dynamical criticality. Rather, it could be a consequence of an
unknown macroscopic constraint. Some models that evolve
toward criticality and also generate a heavy-tailed degree
distribution have been proposed so far (MacArthur et al.,
2010; Torres-Sosa et al., 2012). In these models, mecha-
nism to generate a heavy-tailed degree distribution would be
involved implicitly in a whole evolutionary rule that takes
into account global properties of the system. In contrast, the
mechanism related to evolution toward criticality and that
generates a given out-degree distribution can be separated
explicitly in the adaptive network models studied in this pa-
per.

If a macroscopic constraint forces a specific form of s-
tationary out-degree distribution, then the underlying local
rewiring rule is uniquely selected via (4). What macroscop-
ic constraints can give rise to heavy-tailed out-degree distri-
butions found in real-world gene regulation networks? An-
swering this question is out of the scope of the present paper
and we leave it for future work.
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Appendix

In this Appendix, we derive equation (4).

Let p; be the probability that a chosen node with in-
degree k gets a new incoming link. The time evolu-
tion of in-degree distribution Py, (k,e) is described by the
master equation Py (k,e + 1) = (1— ) Pu(k,e) +
% (pk—lljin(k - ]-7 6) + (1 - pk+1)IDin(k + 17 6)) for k >
1 and Py(0,e + 1) = (1—%)Pu(0,e) + &(1 —
pl)Pin(L e).

By equating Py, (k, e+ 1) to Py, (k, €), we obtain the con-
dition for the stationary in-degree distribution P; (k):

(1 = prr1) P (k + 1) = pp P (k) (5)

for all k£ > 0. Here, we only assume that the existence of py
and we leave the problem how to calculate py for a future
work. It could be obtained under a certain mean-field ap-
proximation of the models. In the following, we concentrate
on the analysis of the stationary out-degree distribution.
The time evolution of out-degree distribution Py (1, €)
follows the following master equation: Pyu:(l,e +
]-) = (]— - q+,l(e) - Q—,l(e)) Pout(lv 6) +q+,l71(e)Pout(l -
1,e)+q_+1(e)Pout(I4+1,¢e) forl > 1and Pyy(0,e+1) =
(1 —g4,0(€)) Pout(0,€) + g 1(e) Pout (1, €), where g1 ;(e)
is the probability that a node with out-degree [ gets a new
outgoing link at epoch e and ¢_ ;(e) is the probability that a
node with out-degree [ loses an outgoing link at epoch e.
Put pi(e) = Yoo oPun(k,e)p, and p_(e) :=
> oo Pn(k,€)(1 — pi). Let o4 i (e) be the probability that
a particular node with out-degree [ is chosen as the source of



anew link given that the number of link increases at epoch e
and o_ ;(e) the probability that an outgoing link of a partic-
ular node with out-degree [ is deleted given that the number
of link decreases at epoch e. By definitions of p and o, we
have

+.1(e) = p+(e)at(e) (6)

and
a_i(e) = p_(e)o_u(e). )

We now introduce the configuration model (random net-
works with a specified degree distribution (Newman et al.,
2001)) approximation: links are randomly shuffled while
keeping the degree of each node at the end of each epoch.
Then, we have

1
~ Nz(e)

o_,(e) (®)
in the limit of large IV, where z(e) is the average in-degree at
epoch e (which is equal to the average out-degree). Indeed,
suppose that the chosen node at epoch e has in-degree k and
it loses one of its incoming link. Noting that Nz(e) is the
number of arcs, we find that the probability that there is a
link from a node with out-degree [ to a node with in-degree

k
: l ~ kL _ _kl

kis1l— (1 “we) * 1—(1-— Nz(e)) = Ni(e I the
limit of large N. The probability of deletion of this link is

1/k under the approximation. Thus, we obtain o_ ;(e) =
kKl 1 _ 1

Nz(e) k — Nz(e)"
As in the case with the stationary in-degree distribution,

the stationary out-degree distribution P2, (1) should satisfy

out
@ i1 B0+ 1) = ¢3 1 Fou (D), )

for all I > 0, where ¢5 ; = piol, ¢, = po®,,

Py = Dpeo Pak)pe, p2 = 3207, Pr(k)(1 — pi) and
of and o7 ; are stationary values for corresponding epoch-
dependent quantities, respectively. Since py = 1, we have

P = p> (10)
by (5). Substituting the stationary analogue of (8) and (10)
into (9), we obtain equation (4)

1P+
SN P

where z is the stationary average in-degree.
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