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1. Introduction

Recently, the permutation-information theoretic approach to time series analysis proposed by Bandt
and Pompe [1] has become popular in various fields [2]. It has been proven that the method of
permutation is easy to implement relative to the other traditional methods and is robust under the
existence of noise [3–7]. However, if we turn our eyes to its theoretical side, few results are known
for the permutation analogues of information theoretic measures, except the entropy rate.

There are two approaches to introduce permutation into dynamical systems theory [8]. The first
approach is introduced by Bandt et al. [9]. Given a one-dimensional interval map, they considered
permutations induced by iterations of the map. Each point in the interval is classified into one of n!

permutations according to the permutation defined by n − 1 times iterations of the map starting from
the point. Then, the Shannon entropy of this partition (called the standard partition) of the interval is
taken and normalized by n. The quantity obtained in the limit n → ∞ is called permutation entropy if
it exists. It was proven that the permutation entropy is equal to the Kolmogorov-Sinai entropy for any
piecewise monotone interval map [9]. This approach based on the standard partitions was extended by
Keller et al. [10–14].

The second approach is taken by Amigó et al. [2,15,16]. In this approach, given a measure-preserving
map on a probability space, first, an arbitrary finite partition of the space is taken. This gives rise to a
finite-alphabet stationary stochastic process. An arbitrary ordering is introduced on the alphabet, and
the permutations of the words of finite lengths can be naturally defined (see Section 2 below). It is
proven that the Shannon entropy of the occurrence of the permutations of a fixed length normalized
by the length converges in the limit of the large length of the permutations. The quantity obtained is
called the permutation entropy rate (also called metric permutation entropy) and is shown to be equal
to the entropy rate of the process. By taking the limit of finer partitions of the measurable space, the
permutation entropy rate of the measure-preserving map is defined if the limit exists. Amigó [16] proved
that it exists and is equal to the Kolmogorov-Sinai entropy.

In this paper, we restrict our attention to finite-alphabet stationary stochastic processes. Thus, we
follow the second approach, namely, ordering on the alphabet is introduced arbitrarily. For quantities
other than the entropy rate, three results for finite-alphabet stationary ergodic Markov processes have
been shown by our previous work: the equality between the excess entropy and the permutation excess
entropy [17], the equality between the mutual information expression of the excess entropy and its
permutation analogue [18] and the equality between the transfer entropy rate and the symbolic transfer
entropy rate [19]. Whether these equalities for the permutation entropies can be extended to general
finite-alphabet stationary ergodic stochastic processes is still unknown. However, for the modified
permutation entropies defined by the partition of the set of words based on permutations and equalities
between occurrences of symbols, which is finer than the partition obtained by permutations only, we have
the corresponding equalities for general finite-alphabet stationary ergodic stochastic processes [20].

The purpose of this paper is to generalize our previous results on the permutation entropies for
finite-alphabet stationary ergodic Markov processes to output processes of finite-state finite-alphabet
hidden Markov models with ergodic internal processes. Upon this generalization, somewhat
ad hoc proofs in our previous work for multivariate stationary ergodic Markov processes become
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straightforward. The key property of hidden Markov models (HMMs), which we will use repeatedly,
is the following: a marginal process of the output process of a hidden Markov model with an ergodic
internal process is, again, the output process of a hidden Markov model with an ergodic internal
process obtained from the original hidden Markov model. In general, this property does not hold
for multivariate stationary ergodic Markov processes. The generalization also makes us easily access
quantities that have not been considered theoretically in the permutation approach. In this paper,
we shall treat the following quantities: excess entropy [21], transfer entropy [22,23], momentary
information transfer [24] and directed information [25,26]. As far as the authors are aware, the
equality between the momentary information transfer and its permutation analogue and that for directed
information have not been discussed anywhere. The equalities could be directly proven with some extra
discussion to that in [17] for finite-alphabet multivariate stationary ergodic Markov processes. However,
the equalities can be proven straightforwardly, as in [17], within the realm of HMMs with ergodic internal
processes, once we show Lemma 3 below.

This paper is organized as follows: In Section 2, we briefly review our previous result on
the duality between words and permutations to make this paper as self-contained as possible. In
Section 3, we prove a lemma about finite-state finite-alphabet hidden Markov models. In
Section 4, we show equalities between various information theoretic complexity and coupling measures
and their permutation analogues that hold for output processes of finite-state finite-alphabet hidden
Markov models with ergodic internal processes. In Section 5, we discuss how our results are related
to the previous work in the literature.

2. The Duality between Words and Permutations

In this section, we summarize the results from our previous work [17] that will be used in this paper.
Let An be a finite set consisting of natural numbers from one to n, called an alphabet. In this paper,

An is considered as a totally ordered set ordered by the usual “less-than-or-equal-to” relationship. When
we emphasize the total order, we call An an ordered alphabet.

Note that the results in this paper hold for every total order on An. This is because the probability
of the occurrence of the permutations in a given stationary stochastic process over An with an arbitrary
total order is just a re-indexing of that with the “less-than-or-equal-to” total order.

The set of all permutations of length L ≥ 1 is denoted by SL. Namely, SL is the set of all bijections
π on the set {1, 2, · · · , L}. For convenience, we sometimes denote a permutation π of length L by a
string π(1)π(2) · · · π(L). The number of descents, places with π(i) > π(i+ 1), of π ∈ SL is denoted by
Desc(π). For example, if π ∈ S5 is given by π(1)π(2)π(3)π(4)π(5) = 35, 142, then Desc(π) = 2.

Let ALn = An × · · · × An︸ ︷︷ ︸
L

be the L-fold product of An. A word of length L ≥ 1 is an element of

ALn . It is denoted by x1:L := x1 · · ·xL := (x1, · · · , xL) ∈ ALn . We say that the permutation type of
a word x1:L is π ∈ SL if we have xπ(i) ≤ xπ(i+1) and π(i) < π(i + 1) when xπ(i) = xπ(i+1) for i =

1, 2, · · · , L−1. Namely, the permutation type of x1:L is the permutation of indices defined by re-ordering
symbols x1, · · · , xL in the increasing order. For example, the permutation type of x1:5 = 31, 212 ∈ A5

3

is π(1)π(2)π(3)π(4)π(5) = 24, 351, because x2x4x3x5x1 = 11, 223.
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Let φn,L : ALn → SL be a map sending each word, x1:L, to its permutation type, π = φn,L(x1:L). For
example, the map, φ2,3 : A3

2 → S3, is given by:

A3
2
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This example illustrates the following two properties of the map, φn,L: first, φn,L(ALn) can be a proper
subset of SL. As one can see from Theorem 1 below, φn,L(ALn) is a proper subset of SL, if and only if
L > n. Second, two different words can have the same permutation type.

We define another map, µn,L : φn,L
(
ALn
)
⊆ SL → ALn , by the following procedure:

(i) Given a permutation, π ∈ φn,L
(
ALn
)
⊆ SL, we decompose the sequence, π(1) · · · π(L), of length

L into maximal ascending subsequences. A subsequence, ij · · · ij+k, of a sequence, i1 · · · iL, of
length L is called a maximal ascending subsequence if it is ascending, namely, ij ≤ ij+1 ≤ · · · ≤
ij+k, and neither ij−1ij · · · ij+k nor ijij+1 · · · ij+k+1 is ascending;

(ii) If π(1) · · · π(i1), π(i1 + 1) · · · π(i2), · · · , π(ik−1 + 1) · · · π(L) is a decomposition of π(1) · · · π(L)

into maximal ascending subsequences, then a word, x1:L ∈ ALn , is defined by:

xπ(1) = · · · = xπ(i1) = 1, xπ(i1+1) = · · · = xπ(i2) = 2, · · · , xπ(ik−1)+1 = · · · = xπ(L) = k.

We define µn,L(π) = x1:L. Note that Desc(π) ≤ n− 1, because π is the permutation type of some
word, y1:L ∈ ALn . Thus, we have k = Desc(π) + 1 ≤ n. Hence, µn,L is well-defined as a map from
φn,L

(
ALn
)

to ALn .

By construction, we have φn,L ◦ µn,L(π) = π for all π ∈ φn,L
(
ALn
)
. To illustrate the

construction of µn,L, let us consider a word, y1:5 = 21, 123 ∈ A5
3. The permutation type of y1:5 is

π(1)π(2)π(3)π(4)π(5) = 23, 145. The decomposition of 23, 145 into maximal ascending subsequences
is 23, 145. We obtain µn,L(π) = x1x2x3x4x5 = 21122 by putting x2x3x1x4x5 = 11, 222.

Theorem 1 (i) For every π ∈ SL,

|φ−1
n,L(π)| =

(
L+ n−Desc(π)− 1

L

)
,

where
(
a
b

)
= 0 if a < b. In particular, φ−1

n,L(π) = ∅, if and only if Desc(π) ≥ n;

(ii) Let us put:

Bn,L := {x1:L ∈ ALn |φ−1
n,L(π) = {x1:L} for some π ∈ SL},

Cn,L := {π ∈ SL||φ−1
n,L(π)| = 1}.
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Then, φn,L restricted on Bn,L is a map into Cn,L and µn,L restricted on Cn,L is a map into Bn,L.
They form a pair of mutually inverse maps. Furthermore, we have:

Bn,L = {x1:L ∈ ALn |1 ≤ ∀i ≤ n− 1, 1 ≤ ∃j < k ≤ L s. t. xj = i+ 1, xk = i},
Cn,L = {π ∈ SL|Desc(π) = n− 1}.

Proof. The theorem is a recasting of statements in Lemma 5 and Theorem 9 in [17].

Let X = {X1, X2, · · · } be a finite-alphabet stationary stochastic process, where each stochastic
variable, Xi, takes its value in An. By the assumed stationarity, the probability of the occurrence of
any word x1:L ∈ ALn is time-shift invariant:

Pr{X1 = x1, · · · , XL = xL} = Pr{Xk+1 = x1, · · · , Xk+L = xL}

for all k, L ≥ 1. Hence, it makes sense to define it without referring to the time to start. We denote the
probability of the occurrence of a word, x1:L ∈ ALn by p(x1:L) = p(x1 · · ·xL). The probability of the
occurrence of a permutation π ∈ SL is given by p(π) =

∑
x1:L∈φ−1

n,L(π) p(x1:L).
For a finite-alphabet stationary stochastic process, X, over the alphabet, An, we define:

αX,L :=
∑
π∈SL,

|φ−1
n,L(π)|>1

p(π) =
∑

π 6∈Cn,L

p(π)

and:

βx,X,L = Pr{x1:N ∈ ANn |xj 6= x for all 1 ≤ j ≤ N}
=

∑
xj 6=x,

1≤j≤N

p(x1 · · ·xN),

where L ≥ 1, x ∈ An, N = bL/2c, and bac is the largest integer not greater than a.

Lemma 2 Let X be a finite-alphabet stationary stochastic process and ε a positive real number. If
βx,X,L < ε for all x ∈ An, then we have αX,L < 2nε.

Proof. The claim follows from Theorem 1 (ii). See Lemma 12 in [17] for the complete proof.

3. A Result on Finite-State Finite-Alphabet Hidden Markov Models

In this paper, we use the parametric description of hidden Markov models as given in [27].
A finite-state finite-alphabet hidden Markov model (in short, HMM) [27] is a quadruple,

(Σ, A, {T (a)}a∈A, µ), where Σ andA are finite sets, called state set and alphabet, respectively, {T (a)}a∈A
is a family of |Σ| × |Σ| matrices indexed by elements of A, where |Σ| is the size of state set Σ, and µ is
a probability distribution on the set Σ. The following conditions must be satisfied:

(i) T (a)
ss′ ≥ 0 for any s, s′ ∈ Σ and a ∈ A;
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(ii)
∑

s′,a T
(a)
ss′ = 1 for any s ∈ Σ;

(iii) and µ(s′) =
∑

s,a µ(s)T
(a)
ss′ for any s′ ∈ Σ.

Any probability distribution satisfying condition (iii) is called a stationary distribution. The |Σ| × |Σ|
matrix T :=

∑
a∈A T

(a) is called a state transition matrix. The ternary, (Σ, T, µ), defines the underlying
Markov chain. Note that condition (iii) is equivalent to condition (iii’) µ(s′) =

∑
s µ(s)Tss′ .

Two finite-alphabet stationary processes are induced by a HMM (Σ, A, {T (a)}a∈A, µ). One is solely
determined by the underlying Markov chain. It is called an internal process and is denoted by S =

{S1, S2, · · · }. The alphabet for S is Σ. The joint probability distributions that characterize S is given by:

Pr{S1 = s1, S2 = s2, · · · , SL = sL} := µ(s1)Ts1s2 · · ·TsL−1sL

for any s1, · · · , sL ∈ Σ and L ≥ 1. The other process X = {X1, X2, · · · } with the alphabet, A, is
defined by the following joint probability distributions:

Pr{X1 = x1, X2 = x2, · · · , XL = xL} :=
∑
s,s′

µ(s)
(
T (x1) · · ·T (xL)

)
ss′

for any x1, · · · , xL ∈ A and L ≥ 1 and is called an output process. The stationarity of the probability
distribution µ ensures that of both the internal and output processes.

Symbols a ∈ A, such that T (a) = O occurs in the output process with a probability of zero. Hence,
we obtain the equivalent output process, even if we remove these symbols. Thus, we can assume that
T (a) 6= O for any a ∈ A without loss of generality.

The internal process, S, of an HMM (Σ, A, {T (a)}a∈A, µ) is called ergodic if the state transition
matrix, T , is irreducible [28]: for any s, s′ ∈ Σ, there exists k > 0, such that (T k)ss′ > 0. If the internal
process, S, is ergodic, then the stationary distribution µ is uniquely determined by the state transition
matrix T via condition (iii). Every finite-alphabet finite-order multivariate stationary ergodic Markov
process can be described as an HMM with an ergodic internal process.

Lemma 3 Let X be the output process of an HMM (Σ, An, {T (a)}a∈An , µ), where An = {1, 2, · · · , n}
is an ordered alphabet. If the internal process, S, of the HMM is ergodic, then for every x ∈ An, there
exists 0 < γx < 1 and Cx > 0, such that βx,X,L < Cxγ

L
x for all L ≥ 1.

Proof. Given L ≥ 1, let us put N := bL/2c. Fix an arbitrary x ∈ An. We have:

βx,X,L =
∑
xj 6=x,

1≤j≤N

p(x1 · · ·xN)

=
∑
xj 6=x,

1≤j≤N

∑
s,s′

µ(s)
(
T (x1) · · ·T (xN )

)
ss′

= 〈µ
(
T − T (x)

)N
,1〉,

where 1 = (1, 1, · · · , 1) and 〈· · · , · · · 〉 is the usual inner product of the |Σ|-dimensional Euclidean
space, R|Σ|. The spectral radius ρ(Tx) of the matrix T(x) := T − T (x) is less than one. Indeed, this
follows immediately from the Perron-Frobenius theorem for non-negative irreducible matrices: T is a
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non-negative irreducible matrix with ρ(T ) = 1 by the assumption. Since T ≥ T(x) ≥ O and T 6= T(x),
applying Theorem 1.5 (e) in [29] implies that ρ(T(x)) < ρ(T ) = 1. By Lemma 5.6.10 in [30], for any
ε > 0, there exists a matrix norm, ‖ · · · ‖′, such that ρ(T(x)) ≤ ‖T(x)‖′ < ρ(T(x)) + ε. It follows that for
any ε > 0, there exists Cε > 0, such that for all k ≥ 1:

‖µT k(x)‖ ≤ Cε(ρ(T(x)) + ε)k‖µ‖,

where ‖ · · · ‖ is the Euclidean norm. Since we have ρ(T(x)) < 1, we can choose ε > 0, so that ρ(T(x)) +

ε < 1. If we put γx := (ρ(T(x))+ε)
1
2 andCx := Cε(ρ(T(x))+ε)−1‖µ‖‖1‖, then we obtain βx,X,L < Cxγ

L
x

by the Cauchy-Schwartz inequality as desired.

4. Permutation Complexity and Coupling Measures

In this section, we discuss the equalities between complexity and coupling measures and their
permutation analogues for the output processes of HMMs whose internal processes are ergodic.

4.1. Fundamental Lemma

Let (X1, · · · ,Xm) be a multivariate finite-alphabet stationary stochastic process, where each
univariate process, Xk = {Xk

1 , X
k
2 , · · · }, k = 1, 2, · · · ,m, is defined over an ordered alphabet, Ank

.
Note that the notation for stochastic variables is different from that in [17]. Here, Xk

t is the stochastic
variable for the k-th component of the multivariate process at time step t.

We use the notations:

p(x1
1:L1

, · · · , xm1:Lm
) := Pr{X1

t1:t1+L1−1 = x1
1:L1

, · · · , Xm
tm:tm+Lm−1 = xm1:Lm

},
p(π1, · · · , πm) := Pr{φnk,Lk

◦Xk
tk:tk+Lk−1 = πk, k = 1, · · · ,m}

and:

p(πk) := Pr{φnk,Lk
◦Xk

tk:tk+Lk−1 = πk},

where 1 ≤ tk, Lk, xk1:Lk
∈ ALk

nk
and πk ∈ SLk

for k = 1, · · · ,m. In general, if m ≥ 2,
then p(x1

1:L1
, · · · , xm1:Lm

) and p(π1, · · · , πm) depend on (t1, · · · , tm) and are invariant only by the
simultaneous time shift (t1, · · · , tm) 7→ (t1 + τ, · · · , tm + τ). However, here, we make the dependence
on (t1, · · · , tm) implicit for notational simplicity.

Lemma 4 Let:

∆H := H(X1
t1:t1+L1−1, · · · , Xm

tm:tm+Lm−1)−H∗(X1
t1:t1+L1−1, · · · , Xm

tm:tm+Lm−1),

where:

H(X1
t1:t1+L1−1, · · · , Xm

tm:tm+Lm−1) = −
∑

x11:L1
,··· ,xm1:Lm

p(x1
1:L1

, · · · , xm1:Lm
) log p(x1

1:L1
, · · · , xm1:Lm

)

and:

H∗(X1
t1:t1+L1−1, · · · , Xm

tm:tm+Lm−1) = −
∑

π1,··· ,πm

p(π1, · · · , πm) log p(π1, · · · , πm)
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are the Shannon entropies of the joint occurrence of words x1
1:L1

, · · · , xm1:Lm
and permutations

π1, · · · , πm, respectively, and the base of the logarithm is taken as two. Then, we have:

0 ≤ ∆H ≤

(
m∑
k=1

αXk,Lk

)(
m∑
k=1

nk log(Lk + nk)

)
.

Proof. We have:

∆H = H(X1
t1:t1+L1−1, · · · , Xm

tm:tm+Lm−1)−H∗(X1
t1:t1+L1−1, · · · , Xm

tm:tm+Lm−1)

=
∑

π1,··· ,πm,
p(π1,··· ,πm)>0

p(π1, · · · , πm)

×

− ∑
xk1:Lk

∈φ−1
nk,Lk

(πk),

1≤k≤m

p(x1
1:L1

, · · · , xm1:Lm
)

p(π1, · · · , πm)
log

p(x1
1:L1

, · · · , xm1:Lm
)

p(π1, · · · , πm)

 .

By Theorem 1 (i), it holds that:

0 ≤ −
∑

xk1:Lk
∈φ−1

nk,Lk
(πk),

1≤k≤m

p(x1
1:L1

, · · · , xm1:Lm
)

p(π1, · · · , πm)
log

p(x1
1:L1

, · · · , xm1:Lm
)

p(π1, · · · , πm)

≤ log

(
m∏
k=1

(
Lk + nk −Desc(πk)− 1

Lk

))

≤ log

(
m∏
k=1

(Lk + nk)
nk

)

=
m∑
k=1

nk log(Lk + nk)

for (π1, · · · , πm) ∈ SL1 × · · · × SLk
such that p(π1, · · · , πm) > 0.

If |(φn1,L1 × · · · × φnm,Lm)−1(π1, · · · , πm)| = 1 then:

−
∑

xk1:Lk
∈φ−1

nk,Lk
(πk),

1≤k≤m

p(x1
1:L1

, · · · , xm1:Lm
)

p(π1, · · · , πm)
log

p(x1
1:L1

, · · · , xm1:Lm
)

p(π1, · · · , πm)
= 0.

On the other hand, we have:∑
π1,··· ,πm,

∃k s.t. |φ−1
nk,Lk

(πk)|>1

p(π1, · · · , πm) ≤
m∑
k=1

∑
πk,

|φ−1
nk,Lk

(πk)|>1

p(πk)

=
m∑
k=1

αXk,Lk
.

This completes the proof of the inequality.
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4.2. Excess Entropy

Let X be a finite-alphabet stationary stochastic process. Its excess entropy is defined by [21]:

E(X) = lim
L→∞

(H(X1:L)− h(X)L)

=
∞∑
L=1

(H(XL|X1:L−1)− h(X)) ,

if the limit on the right-hand side exists, where h(X) = limL→∞H(X1:L)/L is the entropy rate of X,
which exists for any finite-alphabet stationary stochastic process [31].

The excess entropy has been used as a measure of complexity [32–37]. Actually, it quantifies global
correlations present in a given stationary process in the following sense. If E(X) exists, then it can be
written as the mutual information between the past and future:

E(X) = lim
L→∞

I(X1:L;XL+1:2L).

It is known that if X is the output process of an HMM, then E(X) exists [38].
When the alphabet of X is an ordered alphabet An, we define the permutation excess entropy of X

by [17]:

E∗(X) = lim
L→∞

(H∗(X1:L)− h∗(X)L)

=
∞∑
L=1

(H∗(XL|X1:L−1)− h∗(X)) ,

if the limit on the right-hand side exists, where h∗(X) = limL→∞H
∗(X1:L)/L is the permutation entropy

rate of X, which exists for any finite-alphabet stationary stochastic process and is equal to the entropy
rate h(X) [2,15,16], H∗(XL|X1:L−1) := H∗(X1:L)−H∗(X1:L−1), and H∗(X1:L) and H∗(X1:L−1) are as
defined in the statement of Lemma 4.

The following proposition is a generalization of our previous results in [17,18].

Proposition 5 Let X be the output process of an HMM (Σ, An, {T (a)}a∈An , µ) with an ergodic internal
process. Then, we have:

E(X) = E∗(X) = lim
L→∞

I∗(X1:L;XL+1:2L),

where I∗(X1:L;XL+1:2L) := H∗(X1:L) + H∗(XL+1:2L) − H∗(X1:L, XL+1:2L) = 2H∗(X1:L) −
H∗(X1:L, XL+1:2L).

Proof. Let L ≥ 1. We have:

| (H(X1:L)− h(X)L)− (H∗(X1:L)− h∗(X)L) | = |H(X1:L)−H∗(X1:L)|
≤ αX,Ln log(L+ n)

≤ 2Cn2 log(L+ n)γL,

where C := maxx∈An{Cx}, γ := maxx∈An{γx} < 1, and we have used h(X) = h∗(X) for the first
equality, Lemma 4 for the second inequality and Lemma 2 and Lemma 3 for the last inequality. By
taking the limit, L→∞, we obtain E(X) = E∗(X).
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To prove limL→∞ I(X1:L;XL+1:2L) = limL→∞ I
∗(X1:L;XL+1:2L), it is sufficient to show that

|H(X1:L, XL+1:2L)−H∗(X1:L, XL+1:2L)| → 0 as L→∞. This is because we have:

|I(X1:L;XL+1:2L)− I∗(X1:L;XL+1:2L)|
≤ 2|H(X1:L)−H(X1:L)|+ |H(X1:L, XL+1:2L)−H∗(X1:L, XL+1:2L)|.

However, this can be shown similarly with the above discussion by applying Lemma 4 to the bivariate
process (X1,X2) := (X,X) and, then, using Lemma 2 and Lemma 3.

4.3. Transfer Entropy and Momentary Information Transfer

In this subsection, we consider two information rates that are measures of coupling direction and
strength between two jointly distributed processes and discuss the equalities between them and their
permutation analogues. One is the rate of the transfer entropy [22], and the other is the rate of
the momentary information transfer [24]. Both are particular instances of the conditional mutual
information [39].

Let (X,Y) be a bivariate finite-alphabet stationary stochastic process. We assume that the alphabets
of X and Y are ordered alphabets, An and Am, respectively. For τ = 1, 2, · · · , we define the τ -step
transfer entropy rate from Y to X by:

tτ (Y → X) = lim
L→∞

[
H(XL+1:L+τ |X1:L)−H(XL+1:L+τ |X1:L, Y1:L)

]
= lim

L→∞

[
H(X1:L+τ )−H(X1:L)−H(X1:L+τ , Y1:L) +H(X1:L, Y1:L)

]
.

When τ = 1, t1(Y → X) is called just the transfer entropy rate [40] from Y to X and simply denoted
by t(Y → X).

If we introduce the τ -step entropy rate of X by:

hτ (X) = lim
L→∞

H(XL+1:L+τ |X1:L)

and the τ -step conditional entropy rate of X given Y by:

hτ (X|Y) = lim
L→∞

H(XL+1:L+τ |X1:L, Y1:L)

then we can write:
tτ (Y → X) = hτ (X)− hτ (X|Y)

because both hτ (X) and hτ (X|Y) exist. We call h1(X|Y) the conditional entropy rate and denote
it by h(X|Y). Note that the conditional entropy rate here is slightly different from that found in the
literature. For example, in [41], the conditional entropy rate (called the conditional uncertainty) is
defined by limL→∞H(XL+1|X1:L, Y1:L+1). The difference from the conditional entropy rate defined
here is in whether the conditioning on YL+1 is involved or not.
hτ (X) is additive, namely, we always have:

hτ (X) = τh1(X) = τh(X).
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However, for the τ -step conditional entropy rate, the additivity cannot hold in general. It is at most
super-additive: we only have the inequality:

hτ (X|Y) ≥ τh(X|Y)

in general. Indeed, we have:

hτ (X|Y) = lim
L→∞

H(XL+1:L+τ |X1:L, Y1:L)

= lim
L→∞

τ∑
τ ′=1

H(XL+τ ′ |X1:L+τ ′−1, Y1:L)

≥ lim
L→∞

τ∑
τ ′=1

H(XL+τ ′ |X1:L+τ ′−1, Y1:L+τ ′−1)

= τh(X|Y).

This leads to the sub-additivity of the τ -step transfer entropy rate:

tτ (Y → X) ≤ τt(Y → X).

An example with the strict inequality can be easily given. Let Y be an independent and identically
distributed (i.i.d.) process and X defined by X1 = Y1 and Xi+1 = Yi. We have h(X) = h(Y) = H(Y1)

and hτ (X|Y) = (τ − 1)H(Y1). Hence, tτ (Y → X) = H(Y1) for all τ = 1, 2, · · · .
There are two permutation analogues of the transfer entropy. One is called the symbolic transfer

entropy (STE) [42], and the other is called the transfer entropy on rank vector (TERV) [43]. Here, we
introduce their rates as follows: the rate of STE from Y to X is defined by:

t∗∗τ (Y → X) = lim
L→∞

[
H∗(X1:L, X1+τ :L+τ )−H∗(X1:L)−H∗(X1:L, X1+τ :L+τ , Y1:L) +H∗(X1:L, Y1:L)

]
if the limit on the right-hand side exists. The rate of TERV from Y to X is defined by:

t∗τ (Y → X) = lim
L→∞

[
H∗(X1:L+τ )−H∗(X1:L)−H∗(X1:L+τ , Y1:L) +H∗(X1:L, Y1:L)

]
.

if the limit on the right-hand side exists. If E∗(X) exists, then, by the definition of the permutation
excess entropy, we have:

h∗(X) = lim
L→∞

(H∗(X1:L+1)−H∗(X1:L)) .

In this case, t∗1(Y → X) coincides with a quantity called the symbolic transfer entropy rate, introduced
in [19].

Proposition 6 Let (X,Y) be the output process of an HMM (Σ, An × Am, {T (a,b)}(a,b)∈An×Am , µ) with
an ergodic internal process. Then, we have:

tτ (Y → X) = t∗τ (Y → X) = t∗∗τ (Y → X).
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Proof. Since both X and Y are the output processes of appropriate HMMs with ergodic internal
processes, the equalities follow from the similar discussion with that in the proof of Proposition 5.
Indeed, for example, X is the output process of the HMM (Σ, An, {T (a)}a∈An , µ), where T (a) :=∑

b∈Am
T (a,b).

A different instance of conditional mutual information, called momentary information transfer, is
considered in [24]. It was proposed to improve the ability to detect coupling delays, which is lacking in
the transfer entropy. Here, we consider its rate: the momentary information transfer rate is defined by:

mτ (Y → X) = lim
L→∞

[
H(XL+τ |X1:L+τ−1, Y1:L−1)−H(XL+τ |X1:L+τ−1, Y1:L)

]
= lim

L→∞

[
H(X1:L+τ , Y1:L−1)−H(X1:L+τ−1, Y1:L−1)

−H(X1:L+τ , Y1:L) +H(X1:L+τ−1, Y1:L)
]
.

Its permutation analogue, called the momentary sorting information transfer rate, is defined by:

m∗τ (Y → X) = lim
L→∞

[
H∗(X1:L+τ , Y1:L−1)−H∗(X1:L+τ−1, Y1:L−1)

−H∗(X1:L+τ , Y1:L) +H∗(X1:L+τ−1, Y1:L)
]
.

By a similar discussion with that in the proof of Proposition 6, we obtain the following equality:

Proposition 7 Let (X,Y) be the output process of an HMM (Σ, An × Am, {T (a,b)}(a,b)∈An×Am , µ) with
an ergodic internal process. Then, we have:

mτ (Y → X) = m∗τ (Y → X).

4.4. Directed Information

Directed information is a measure of coupling direction and strength based on the idea of causal
conditioning [26,44]. Since it is not a particular instance of conditional mutual information, here, we
treat it separately. In the following presentation, we make use of terminologies from [40,45].

Let (X,Y) be a bivariate finite-alphabet stationary stochastic process. The alphabets of X and Y are
ordered alphabets, An and Am, respectively. The directed information rate from Y to X is defined by:

I∞(Y → X) = lim
L→∞

1

L
I(Y1:L → X1:L)

where:

I(Y1:L → X1:L) =
L∑
i=1

I(Xi, Y1:i|X1:i−1)

= H(X1:L)−
L∑
i=1

H(Xi|X1:i−1, Y1:i).

Note that if Y1:i in the above expression on the right-hand side is replaced by Y1:L, then we obtain the
mutual information between X1:L and Y1:L:

I(X1:L;Y1:L) = H(X1:L)−
L∑
i=1

H(Xi|X1:i−1, Y1:L).
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Thus, conditioning on Y1:i for i = 1, · · · , L, not on Y1:L, distinguishes the directed information from the
mutual information. Following [44], we write:

H(X1:L||Y1:L) :=
L∑
i=1

H(Xi|X1:i−1, Y1:i)

and call the quantity causal conditional entropy. By using this notation, we have:

I(Y1:L → X1:L) = H(X1:L)−H(X1:L||Y1:L).

The permutation analogue of the directed information rate, which we call the symbolic directed
information rate is defined by:

I∗∞(Y → X) = lim
L→∞

1

L
I∗(Y1:L → X1:L)

if the limit on the right-hand side exists, where:

I∗(Y1:L → X1:L) := H∗(X1:L)−
L∑
i=1

(H∗(X1:i, Y1:i)−H∗(X1:i−1, Y1:i)) .

If we write:

I∗(Xi;Y1:i|X1:i−1) := H∗(X1:i)−H∗(X1:i−1)−H∗(X1:i, Y1:i) +H∗(X1:i−1, Y1:i)

and:

H∗(X1:L||Y1:L) :=
L∑
i=1

(H∗(X1:i, Y1:i)−H∗(X1:i−1, Y1:i))

then we have the expressions:

I∗(Y1:L → X1:L) =
L∑
i=1

I∗(Xi;Y1:i|X1:i−1) = H∗(X1:L)−H∗(X1:L||Y1:L).

Proposition 8 Let (X,Y) be the output process of an HMM (Σ, An × Am, {T (a,b)}(a,b)∈An×Am , µ) with
an ergodic internal process. Then, we have:

I∞(Y → X) = I∗∞(Y → X).

Proof. We have:

|I(Y1:L → X1:L)− I∗(Y1:L → X1:L)|

≤ |H(X1:L)−H∗(X1:L)|+
L∑
i=1

|H(X1:i, Y1:i)−H∗(X1:i, Y1:i)|

+
L∑
i=1

|H(X1:i−1, Y1:i)−H∗(X1:i−1, Y1:i)|.
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We know that the first term on the right-hand side in the above inequality goes to zero as L → ∞. Let
us evaluate the second sum. By Lemma 4, it holds that:

L∑
i=1

|H(X1:i, Y1:i)−H∗(X1:i, Y1:i)| ≤
L∑
i=1

(αX,i + αY,i) (n log(i+ n) +m log(i+m))

By Lemma 2 and Lemma 3, we have:

L∑
i=1

αX,in log(i+ n) ≤ 2Cn2

L∑
i=1

γi log(i+ n),

where C := maxx∈An{Cx} and γ := maxx∈An{γx} < 1. It is elementary to show that
limL→∞

∑L
i=1 γ

i log(i + n) is finite. The limits of the other terms are also shown to be finite similarly.
Thus, we can conclude that the limit of the second sum is bounded. Similarly, the limit of the third sum
is also bounded. The equality in the claim follows immediately.

For output processes of HMMs with ergodic internal processes, properties on the directed information
rate can be transferred to those on the symbolic directed information rate. Since proofs of them can be
given by the same manner as those of the above propositions, here, we list some of them without proofs.
For the proofs of the properties on the directed information rate, we refer to [44,45].

Let (X,Y) be the output process of an HMM (Σ, An × Am, {T (a,b)}(a,b)∈An×Am , µ) with an ergodic
internal process. Then, we have:

(i)
I∗∞(Y → X) = lim

L→∞
I∗(XL;Y1:L|X1:L−1).

This is the permutation analogue of the equality:

I∞(Y → X) = lim
L→∞

I(XL;Y1:L|X1:L−1);

(ii)

I∞(DY → X) = I∗∞(DY → X) = lim
L→∞

I∗(XL;Y1:L−1|X1:L−1).

Here:

I∞(DY → X) := lim
L→∞

1

L
I(DY1:L → X1:L)

and:

I(DY1:L → X1:L) :=
L∑
i=1

I(Xi;Y1:i−1|X1:i−1).

The symbol, D, denotes the one-step delay. I∗∞(DY → X) is the corresponding permutation
analogue. The second equality is the permutation analogue of the equality I∞(DY → X) =

limL→∞ I(XL;Y1:L−1|X1:L−1). Since I∞(DY → X) coincides with the transfer entropy rate, the
first equality is just the equality between the transfer entropy rate and the symbolic transfer entropy
rate (or the rate of one-step TERV) proven in Proposition 6, given the second equality;
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(iii)

I∞(Y → X||DY) = I∗∞(Y → X||DY) = lim
L→∞

I∗(XL;YL|X1:L−1, Y1:L−1),

where I∞(Y → X||DY) is called the instantaneous information exchange rate and is defined by:

I∞(Y → X||DY) := lim
L→∞

1

L
I(Y1:L → X1:L||DY1:L)

and:

I(Y1:L → X1:L||DY1:L) = H(X1:L||DY1:L)−H(X1:L||Y1:L, DY1:L)

=
L∑
i=1

I(Xi;Y1:i|X1:i−1, Y1:i−1)

=
L∑
i=1

I(Xi;Yi|X1:i−1, Y1:i−1).

From the last expression of I(Y1:L → X1:L||DY1:L), we can obtain:

I∞(Y → X||DY) = lim
L→∞

I(XL;YL|X1:L−1, Y1:L−1).

I∗∞(Y → X||DY) is the corresponding permutation analogue and called the symbolic
instantaneous information exchange rate;

(iv)

I∗∞(Y → X) = I∗∞(DY → X) + I∗∞(Y → X||DY).

Namely, the symbolic directed information rate decomposes into the sum of the symbolic transfer
entropy rate and the symbolic instantaneous information exchange rate. This follows immediately
from (ii), (iii) and the equality saying that the directed information rate decomposes into the sum
of the transfer entropy rate and the instantaneous information exchange rate:

I∞(Y → X) = I∞(DY → X) + I∞(Y → X||DY);

(v)

I∗∞(Y → X) + I∗∞(DX→ Y) = I∗∞(X;Y).

This is the permutation analogue of the equality saying that the mutual information rate between
X and Y is the sum of the directed information rate from Y to X and the transfer entropy rate
from X to Y:

I∞(Y → X) + I∞(DX→ Y) = I∞(X;Y),

where:

I∞(X;Y) := lim
L→∞

1

L
I(X1:L;Y1:L)
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is the mutual information rate and I∗∞(X;Y) is its permutation analogue, called the symbolic
mutual information rate. It is known that they are equal for any bivariate finite-alphabet stationary
stochastic process [19]. Thus, the symbolic mutual information rate between X and Y is the sum
of the symbolic directed information rate from Y to X and the symbolic transfer entropy rate from
X to Y.

We can also introduce the permutation analogue of the causal conditional directed information rate
and prove the corresponding properties. To be precise, let us consider a multivariate finite-alphabet
stationary stochastic process (X,Y,Z1, · · · ,Zk) with the alphabet, An × Am × Al1 × · · · × Alk . The
causal conditional directed information rate from Y to X given (Z1, · · · ,Zk) is defined by:

I∞(Y → X||Z1, · · · ,Zk) := lim
L→∞

1

L
I(Y1:L → X1:L||Z1

1:L, · · · , Zk
1:L)

where:

I(Y1:L → X1:L||Z1
1:L, · · · , Zk

1:L) = H(X1:L||Z1
1:L, · · · , Zk

1:L)−H(X1:L||Y1:L, Z
1
1:L, · · · , Zk

1:L)

=
L∑
i=1

I(Xi;Y1:i|X1:i−1, Z
1
1:L, · · · , Zk

1:L).

Corresponding to Proposition 8, we have the following equality if (X,Y,Z1, · · · ,Zk) is the output
process of an HMM with an ergodic internal process:

I∞(Y → X||Z1, · · · ,Zk) = I∗∞(Y → X||Z1, · · · ,Zk),

where I∗∞(Y → X||Z1, · · · ,Zk) is the symbolic causal conditional directed information rate, which
is defined in the same manner as the symbolic directed information rate. The following properties also
hold: assume that (X,Y,Z1, · · · ,Zk) is the output process of an HMM with an ergodic internal process.
Then, we have:

(i’)
I∗∞(Y → X||Z1, · · · ,Zk) = lim

L→∞
I∗(XL;Y1:L|X1:L−1, Z

1
1:L, · · · , Zk

1:L).

This is the permutation analogue of the equality:

I∞(Y → X||Z1, · · · ,Zk) = lim
L→∞

I(XL;Y1:L|X1:L−1, Z
1
1:L, · · · , Zk

1:L);

(ii’)

I∞(DY → X||Z1, · · · ,Zk) = I∗∞(DY → X||Z1, · · · ,Zk)
= lim

L→∞
I∗(XL;Y1:L−1|X1:L−1, Z

1
1:L, · · · , Zk

1:L).

The second equality is the permutation analogue of the equality:

I∞(DY → X||Z1, · · · ,Zk) = lim
L→∞

I(XL;Y1:L−1|X1:L−1, Z
1
1:L, · · · , Zk

1:L);

The quantities, I∞(DY → X||Z1, · · · ,Zk) and I∗∞(DY → X||Z1, · · · ,Zk), are called the
causal conditional transfer entropy rate and the symbolic causal conditional transfer entropy
rate, respectively.
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(iii’)

I∞(Y → X||DY,Z1, · · · ,Zk) = I∗∞(Y → X||DY,Z1, · · · ,Zk)
= lim

L→∞
I∗(XL;YL|X1:L−1, Y1:L−1, Z

1
1:L, · · · , Zk

1:L),

where I∞(Y → X||DY,Z1, · · · ,Zk) is called the causal conditional instantaneous information
exchange rate. The second equality is the permutation analogue of the equality:

I∞(Y → X||DY,Z1, · · · ,Zk) = lim
L→∞

I(XL;YL|X1:L−1, Y1:L−1, Z
1
1:L, · · · , Zk

1:L).

I∗∞(Y → X||DY,Z1, · · · ,Zk) is the permutation analogue and is called the symbolic causal
conditional instantaneous information exchange rate;

(iv’)

I∗∞(Y → X||Z1, · · · ,Zk) = I∗∞(DY → X||Z1, · · · ,Zk) + I∗∞(Y → X||DY,Z1, · · · ,Zk).

This is the permutation analogue of the following equality:

I∞(Y → X||Z1, · · · ,Zk) = I∞(DY → X||Z1, · · · ,Zk) + I∞(Y → X||DY,Z1, · · · ,Zk);

(v’)

I∗∞(Y → X||Z1, · · · ,Zk) + I∗∞(DX→ Y||Z1, · · · ,Zk) = I∗∞(X;Y||Z1, · · · ,Zk).

This is the permutation analogue of the equality:

I∞(Y → X||Z1, · · · ,Zk) + I∞(DX→ Y||Z1, · · · ,Zk) = I∞(X;Y||Z1, · · · ,Zk),

where:

I∞(X;Y||Z1, · · · ,Zk) := lim
L→∞

1

L

(
H(X1:L||Z1

1:L, · · · , Zk
1:L)

+H(Y1:L||Z1
1:L, · · · , Zk

1:L)−H(X1:L, Y1:L||Z1
1:L, · · · , Zk

1:L)
)

is the causal conditional mutual information rate and I∗∞(X;Y||Z1, · · · ,Zk) is its permutation
analogue, called the symbolic causal conditional mutual information rate. It can be shown that:

I∞(X;Y||Z1, · · · ,Zk) = I∗∞(X;Y||Z1, · · · ,Zk)

if (X,Y,Z1, · · · ,Zk) is the output process of an HMM with an ergodic internal process.
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5. Discussion

In this section, we discuss how our theoretical results in this paper are related to the previous work in
the literature.

Being confronted with real-world time series data, we cannot take the limit of a large length of words.
Hence, we have to estimate information rates with a finite length of words. In such a situation, one
permutation method could have some advantages over the other permutation methods. As a matter of
fact, TERV was originally proposed as an improved analogue of STE [43]. However, it has been unclear
whether they coincide in the limit of a large length of permutations. In this paper, we provide a partial
answer to this question: the two permutation analogues of the transfer entropy rate, the rate of STE and
the rate of TERV, are equivalent to the transfer entropy rate for bivariate processes generated by HMMs
with ergodic internal processes.

The Granger causality graph [46] is a model of causal dependence structure in multivariate stationary
stochastic processes. Given a multivariate stationary stochastic process, nodes in a Granger causality
graph are components of the process. There are two types of edges: one is directed, and the other is
undirected. The absence of a directed edge from one node to another node indicates the lack of the
Granger cause from the former to the latter relative to the other remaining processes. Similarly, the
absence of an undirected edge between two nodes indicates the lack of the instantaneous cause between
them relative to the other remaining processes. Amblard and Michel [40,45] proposed that the Granger
causality graph can be constructed based on directed information theory: let X = (X1,X2, · · · ,Xm) be
a multivariate finite-alphabet stationary stochastic process with the alphabet, An1 × An2 × · · · × Anm ,
and (V,Ed, Eu), the Granger causality graph of the process, X , where V = {1, 2, · · · ,m} is the set of
nodes, Ed is the set of directed edges and Eu is the set of undirected edges. Their proposal is that:

(i) for any i, j ∈ V , (i, j) 6∈ Ed, if and only if I∞(DXi → Xj||X \ {Xi,Xj}) = 0;

(ii) for any i, j ∈ V , (i, j) 6∈ Eu, if and only if I∞(Xi → Xj||DXi,X \ {Xi,Xj}) = 0.

Thus, in the Granger causality graph construction proposed in [40], the causal conditional transfer
entropy rate captures the Granger cause from one process to another process relative to the other
remaining processes. On the other hand, the causal conditional instantaneous information exchange
rate captures the instantaneous cause between two processes relative to the other remaining processes.

Now, let us consider the case when X is an output process of an HMM with an ergodic internal
process. Then, from the results of Section 4.4, we have:

(i’) for any i, j ∈ V , (i, j) 6∈ Ed, if and only if I∗∞(DXi → Xj||X \ {Xi,Xj}) = 0;

(ii’) for any i, j ∈ V , (i, j) 6∈ Eu, if and only if I∗∞(Xi → Xj||DXi,X \ {Xi,Xj}) = 0.

Thus, the Granger causality graphs in the sense of [40,45] for multivariate processes generated by HMMs
with ergodic internal processes can be captured by the language of the permutation entropy: the symbolic
causal conditional transfer entropy rate and the symbolic instantaneous information exchange rate. This
statement opens up a possibility of the permutation approach to the problem of assessing the causal
dependence structure of multivariate stationary stochastic processes. However, of course, the details of
the practical implementation should be an issue of further study.
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Real-world time series data are often multivariate. However, it seems that univariate analysis is still
main stream in the field of ordinal pattern analysis (see, for example, the papers in [47]). We hope that
this work stimulates multivariate analysis of real-world time series data.
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