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Abstract

A system of interacting elements can be represented by a di-
rected network so that elements are nodes and interaction be-
tween two elements is an arc. Conventionally, each node is
just a point, each arc represents some kind of interaction be-
tween two nodes and nothing more after the system is mapped
to a directed network. However, in many real systems, each
element has its own intra-node process and interaction be-
tween two elements can be seen as an interface between two
intra-node processes. We can formalize this idea “objects as
processes, interactions as interfaces” within the framework
of category theory. We show that a new notion of connect-
edness calledlateral connectednessemerges as a canonical
structure obtained from the idea. Lateral connectedness is
not defined on the set of nodes of a directed network, but on
the set of arcs. By its definition, it may be associated with
functional commonality between arcs emerging from shared
input or output. As a first application, we examine signifi-
cance of lateral connectedness in the neuronal network of the
nematodeCaenorhabditis elegansby comparing the partition
of the set of arcs induced by the connectedness and the par-
titions based on neuron functions. Lateral connectedness can
capture a part of functional segregation of the neuronal net-
work above a certain interaction strength level.

Introduction
Science of complex networks is one promising approach
to understand the intrinsic organization of living systems
(Alon, 2006; Junker and Schreiber, 2008; Sporns, 2011).
Many characteristics such as degree distributions, average
path length, clustering coefficients, centralities, assortativ-
ity coefficient, network motifs have been introduced in or-
der to reveal functionality of biological, social, technologi-
cal systems from network topology (Boccaletti et al., 2006;
Newman et al., 2006; Newman, 2010). These characteris-
tics are based on the idea which I would like to call the
real viewon networks: each node is just a point and edges
or arcs between nodes indicate the existence of some kind
of interaction between nodes if a system is represented as
a network. However, in many real systems, it is the case
that some kind of process is running within an object rep-
resented by a node. For example, in neuronal networks,
nodes are neurons that have information processing ability.

In gene regulation networks, nodes are genes, but we should
include proteins coded by those genes into nodes if we con-
sider regulation relationships as arcs. Thus, we can think
that complicated chemical processes to synthesize proteins
occur within each node in a gene regulation network. We
can interpret other biological networks including ecological
networks, metabolic networks in the same way. If we con-
sider objects as processes, then interactions between objects
can be seen as interfaces between processes. I would like
to call this view “objects as processes, interactions as inter-
faces” on networks thedual viewin contrast to the ordinary
real view mentioned above.

In this paper, we examine what is involved in having in-
ternal processes on nodes in general for complex networks.
Usually, processes occurring on nodes are described as par-
ticular dynamics. Then, an appropriate statistical ensem-
ble of dynamics is studied in order to conclude something
in general (e.g. random Boolean networks by (Kauffman,
1969)). Instead of statistical generality, we here appeal to
category theoretical universality to study the problem.

We note that there is an inverse dual view, namely, “pro-
cesses as objects”. This idea appears in the formulation
of Metabolism-Repair System by R. Rosen (Rosen, 1958).
Recently, the idea was used as the line graph transforma-
tion in the community detection problem in complex net-
works (Ahn et al., 2010; Evans and Lambiotte, 2009). The
two ideas “objects as processes” and “processes as objects”
have a certain dual relationship called category theoretical
adjunction (MacLane, 1998) if they are formalized within
the framework of category theory (Haruna and Gunji, 2007;
Pultr, 1979).

There are many ways (indeed, uncountably many ways)
to consider objects as processes. However, we can show that
there exists a canonical way (in a precise mathematical sense
stated in Section 3) among all the ways to see objects as
processes within the framework of category theory (Haruna,
2011b). The canonical way to see objects as processes gives
rise to an equivalence relation on the set of arcs of each di-
rected network. This equivalence relation can be interpreted
as defining a new notion of connectedness calledlateral con-
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Figure 1: The idea “objects as processes, interactions as in-
terfaces”.

nectedness. An intuitive explanation of derivation of lateral
connectedness without category theory is the main aim of
the former half of this paper. In the latter half, we analyze
the neuronal network of the nematodeCaenorhabditis ele-
gansbased on lateral connectedness as a first application to
real world networks.

This paper is organized as follows. In section 2, we de-
scribe a mathematical formulation of the dual view on di-
rected networks. In section 3, we introduce lateral connect-
edness for directed networks as a naturally emerging struc-
ture from the dual view. In section 4, we apply lateral con-
nectedness to the neuronal network ofC. elegansand discuss
its functional significance. In section 5, we give conclusions
and outlooks.

Objects as Processes, Interactions as Interfaces
In this paper, we only consider directed networks. Some
early attempts related to the content of this section are found
in Haruna and Gunji (2007); Haruna (2008a,b, 2011a).

In the dual view introduced in Section 1, each node is in-
terpreted as a process and each arc is seen as an interface
between two processes. This idea can be formalized as net-
work transformations as follows.

As a motivating example, let us interpret each node as
an arc (together with its source and target nodes) represent-
ing a process running in the node and each arc as a node
connecting two arcs representing processes running in the
original two nodes (Fig. 1). Of course, each node can be
replaced by a much more complicated network representing
a process running within the node. The connection between
the two complicated networks can also be arbitrary. We call
a network (that can be arbitrary complicated) representing
a process running within a node together with information
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Figure 2: Three examples of the calculation of the network
transformationL.

how its two copies form an interface corresponding to an arc
a model of directed network type. In general, models of di-
rected network type need not consist of directed networks
(Haruna, 2011b), however, in the following discussion, we
restrict ourselves on models consisting of directed networks
for simplicity.

Fig. 2 illustrates how the above motivating model of di-
rected network type gives rise to a network transformation
L. In Fig. 2 (a), the two nodesx andy are converted to two
arcsx andy by L. The target ofx and the source ofy are
glued by the arcf in the original network. In Fig. 2 (b), there
are three copies of arcsx, y andz after the transformationL
corresponding to the three nodesx, y andz in the original
network. Their sources and targets are glued according to
the arcsf andg in the original network. The similar copy
and glue rule works for the example in Fig. 2 (c).

Formally, the network transformationL can be defined
as follows. LetG = (A,O, ∂0, ∂1) be a directed network,
whereA is a set of arcs,O is a set of nodes and∂0 and∂1

are maps from the setA to the setO that send each arc to
its source node and target node, respectively. The directed
networkL(G) obtained by the application ofL to G is a
quartetL(G) = (O,O × {0, 1}/ ∼, ∂′

0, ∂
′
1), where the set

of arcs ofL(G) is identical to the set of nodesO of G, the
set of nodes ofL(G) is a quotient setO × {0, 1}/ ∼ and
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Figure 3: The mapφG materialize the idea “interaction as
interface”.

∼ is an equivalence relation on the setO ×{0, 1} generated
by the relation defined by(x, 1) ∼ (y, 0) if and only if there
exists an arcf from x to y in G. The symbol1 indicates the
“source part” of the nodex and the symbol0 indicates the
“target part” of the nodey. The source and target maps∂′

0,
∂′
1 are defined naturally.
In general, for any model of directed network type, the in-

duced network transformation can be described by a similar
copy and glue rule, no matter how complicated it is. For a
category theoretical formulation, see (Haruna, 2011a).

A New Notion of Connectedness
By the network transformationL introduced in Section 2,
each node in a directed networkG is sent to an arc inL(G).
On the other hand, we can think that each arcf in a directed
networkG = (A,O, ∂0, ∂1) is mapped to a node inL(G)
between two arcs inL(G) corresponding to the source and
the target nodes off , namely,∂0f and∂1f (Fig. 3). We
denote this map byφG : A → O × {0, 1}/ ∼. For each arc
f ∈ A, φG(f) is the target of∂0f (or the source of∂1f ) in
L(G). Hence, we haveφG(f) = [(∂0f, 1)](= [(∂1f, 0)]),
where[(x, i)] is an equivalence class containing(x, i) ∈ O×
{0, 1}.

A natural question about the nature of the mapφG is
“When doesφG(f) = φG(g) hold for arcsf, g ∈ A?” The
answer is straightforward and the necessary and sufficient
condition for the equalityφG(f) = φG(g) is that there ex-
ists a zigzag sequence of arcs betweenf andg as indicated
in Fig. 4. We say that two arcsf andg are laterally con-
nectedif φG(f) = φG(g) holds.

For any model of directed network type, a similar map
on the set of arcs of a given directed network can be defined.
Such a map induces an equivalence relation on the set of arcs
by identifying two arcs if they are sent to the same element
in the codomain of the map. Let us denote the equivalence
relation induced by the mapφG above byRLC . Then,RLC

is canonical in the following sense.For any directed net-
work G = (A,O, ∂0, ∂1), RLC is the smallest equivalence
relation on the set of arcsA among those induced by all
models of directed network type.In other words, the par-
tition of the set of arcs induced by lateral connectedness is
the finest one among those induced by the idea “objects as
processes, interactions as interfaces”. We call each equiva-
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Figure 4: Two arcsf andg are laterally connected if there
is a zigzag sequence of arcs between them. There are four
cases depending on the situations at the both ends.

lence classlaterally connected component. This statement
can be proved within the framework of category theory in
more general form (Haruna, 2011b).

In summary, we obtain the notion of lateral connected-
ness as a canonically emerging structure of directed net-
works from the idea “objects as processes, interactions as
interfaces”.

By its definition, lateral connectedness may be relevant
with functional commonality between arcs emerging from
shared input or output. This is in contrast to the notion of
strong connectedness. Here we say that two arcs are strongly
connected if one arc can be reached from the other by a di-
rected path and vice versa. Strong connectedness may be
associated with functionality resulting from circulation of
information or materials. Intuitively, they seem to be dual
to each other. Indeed, this intuition can be enhanced by the
following category theoretical point of view.

Lateral connectedness derives from the network transfor-
mationL which is based on the idea “objects as processes,
interactions as interfaces”. On the other hand, strong con-
nectedness can be obtained from the line graph transfor-
mation R which is based on the idea “processes as ob-
jects”. Given a directed networkG = (A,O, ∂0, ∂1), its line
graph is a directed networkR(G) = (S,A, ∂′′

0 , ∂′′
1 ), where

S = {(f, g) ∈ A × A|∂1f = ∂0g}, ∂′′
0 (f, g) = f and

∂′′
1 (f, g) = g for any(f, g) ∈ S. As noted in Section 1, the

two transformationsL andR satisfy a certain category the-
oretical duality called adjunction (Haruna and Gunji, 2007;
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Figure 5: The wiring diagram of the neuronal network ofC. elegansbased on the database (Oshio et al., 2003)
(http://ims.dse.ibaraki.ac.jp/ccep/) depicted by Graphviz (http://www.graphviz.org/). (a) Arcs are colored based on pairs of
functions of their source and target neurons. (b) Correspondence between colors and pairs of functions of neurons.

Pultr, 1979). By definition,S is the set of arcs of the directed
networkR(G), but it can be seen as a binary relation on the
setA. Mathematically, the notion of strong connectedness
defined above is an equivalence relationSC on the setA of
arcs ofG. On the other hand, we have an equality

SC = S ∩ S−1, (1)

whereS−1 is the inverse of the binary relationS andT for a
binary relationT onA is its reflexive and transitive closure.
In this sense, strong connectedness is generated by the line
graph transformationR which is category theoretical dual to
L.

One might think that the duality between lateral connect-
edness and strong connectedness in the above sense is a
mathematical expression for Lorente de Nó’s two principles
of plurality and reciprocity (Lorente de Ńo, 1938).

Analysis of a Neuronal Network
In this section, we discuss significance of lateral connected-
ness in the neuronal network ofC. elegansas a first applica-
tion of it. We compare the partitions of the set of arcs based
on functions of neurons with the partition induced by lateral
connectedness to examine functional significance of lateral
connectedness. We make use of two similarity measures de-
scribed in the next subsection for the comparison.

Network Data
We make use of the database constructed by Oshio et al.
(2003) (http://ims.dse.ibaraki.ac.jp/ccep/) whose original
reference is White et al. (1986). We remove nodes and con-
nections other than neurons and chemical synapses. The re-
sulting data set contains 233 neurons among 282 neurons

in the somatic nervous system and 4170 chemical synapses.
We construct a family of directed networks whose nodes are
233 neurons in the following way: First, we put an arc from
one node to another node if there exists a chemical synapse
from the former to the latter. Second, since there is multi-
ple chemical synapses from one neuron to another neuron
in general, we specify a weight for each arc by the number
of chemical synapses from the source to the target of the
arc. Finally, we introduce thresholds for the weight values
and consider the network topology consisting of arcs whose
weights are greater or equal to a given threshold.

Each neuron has one of three functional types: sensory,
inter and motor. We consider three partitions of the set of
arcs based on the functions of neurons. The first one is
called ST-partitionwhich considers types of the two neu-
rons at both ends of each arc. Thus, there are nine clusters
for the ST-partition. In the wiring diagram shown in Fig. 5
(a) where threshold is 1, each arc is colored based on the ST-
partition. The correspondence between colors and the ST-
partition clusters is indicated in Fig. 5 (b). The second one
is called theS-partitionwhich considers type of the source
neuron of each arc. The third one is called theT-partition
which considers type of the target neuron of each arc. The
number of clusters in the S-partition or T-partition is three.

The equivalence relationRLC induced by lateral connect-
edness also gives rise to a partition of the set of arcs. We
call this partition theLC-partition. In the following discus-
sion, we measure similarity between the LC-partition and
the above three functional partitions.

Similarity Measures
We make use of two similarity measures to quantify similar-
ity between two partitions on a set. The first one is called the
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Figure 6: (a) The number of arcs as a function of threshold. (b) The number of clusters in the LC-partition and in the ST-partition
as a function of threshold.

Adjusted Rand Index (ARI)(Hubert and Arabie, 1985). The
second one is called theAdjusted normalized Mutual Infor-
mation (AMI)(Vinh et al., 2009). To explain the idea of the
ARI, we first review the definition of theRand Index (RI)
(Rand, 1971).

Let X be a set consisting ofN points. Let U =
{U1, U2, · · · , Ul} andV = {V1, V2, · · · , Vm} be two par-
titions of X, namely, they are families of subsets ofX sat-
isfying Ui ∩ Ui′ = Vj ∩ Vj′ = ∅ for i ̸= i′, j ̸= j′ and
∪l

i=1Ui = ∪m
j=1Vj = X. Let us putnij := |Ui ∩ Vj |, ai :=

|Ui| andbj := |Vj | for i = 1, 2, · · · , l andj = 1, 2, · · · , m,
where|Y | for a setY denotes its cardinality. Then, we have
ai =

∑m
j′=1 nij′ andbj =

∑l
i′=1 ni′j for i = 1, 2, · · · , l

andj = 1, 2, · · · ,m. A l × m matrix C := (nij) is called
thecontingency matrix, which encodes information how two
partitionsU andV overlap. We can calculate both the ARI
and the AMI by using elements of the contingency matrix
C.

The Rand Index (RI) between partitionsU andV is de-
fined by counting the number of pairs of elements ofX on
which two partitions agree or disagree:

RI(U,V) =
N00 + N11

N00 + N01 + N10 + N11
, (2)

whereN00 is the number of pairs that are in the same cluster
in bothU andV, N01 is the number of pairs that are in the
same cluster inU but in different clusters inV, N10 is the
number of pairs that are in different clusters inU but in the
same cluster inV andN11 is the number of pairs that are
in different clusters in bothU andV. After a few algebras,
one can see thatN01 andN10 are given by

N01 =
m∑

j=1

(
bj

2

)
−

l∑
i=1

m∑
j=1

(
nij

2

)
, (3)

N10 =
l∑

i=1

(
ai

2

)
−

l∑
i=1

m∑
j=1

(
nij

2

)
. (4)

Since we haveN00 + N01 + N10 + N11 =
(
N
2

)
, we obtain

the following explicit formula for the RI:

RI(U,V) =(
N
2

)
−

{∑
i

(
ai

2

)
+

∑
j

(
bj

2

)}
+ 2

∑
i,j

(
nij

2

)(
N
2

) . (5)

The RI takes its maximum value1 when two partitions
are identical. The minimum value0 is taken if and only if
one partition consists of a single cluster and the other con-
sists of only clusters with a single point, which is hard to
satisfy by random partitions. Indeed, the RI takes relatively
high values for two random partitions. However, it is plau-
sible for a similarity measure to take values close to zero
for random partitions. To improve this disadvantage of the
RI, Hubert and Arabie (1985) introduced the Adjusted Rand
Index (ARI) which takes over a correction for chance:

ARI(U,V) =
RI(U,V) − E (RI|a,b)

1 − E (RI|a,b)
, (6)

where1 in the denominator is the maximum value of the
RI andE (RI|a,b) is the expected value of the RI between
two randomly chosen partitions of the setX subject to the
condition that two vectorsa = (a1, a2, · · · , al) andb =
(b1, b2, · · · , bm) are fixed. Since we haveE

((
nij

2

)
|a,b

)
=(

ai

2

)(
bj

2

)
/
(
N
2

)
(Hubert and Arabie, 1985), an explicit for-

mula for the ARI is given by

ARI(U,V) = (7)∑
i,j

(
nij

2

)
−

{∑
i

(
ai

2

)∑
j

(
bj

2

)}
/
(
N
2

)
1
2

{∑
i

(
ai

2

)
+

∑
j

(
bj

2

)}
−

{∑
i

(
ai

2

) ∑
j

(
bj

2

)}
/
(
N
2

) .

Our second measure of similarity, the AMI is defined
based on the mutual information between two partitions
(Vinh et al., 2009). Let us introduce the probability that an
element ofX is contained in a clusterUi by P (i) = ai/N .
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Figure 7: Comparisons between the LC-partition and partitions based on neuron functions. Two similarity measures, one is
pair-counting based (the ARI) and the other is information-theoretic (the AMI), are used. (a) The LC-partition vs the ST-
partition. (b) The LC-partition vs the S-partition. (c) The LC-partition vs the T-partition. (d) Z-scores for the values of two
similarity measures as functions of threshold.

The Shannon entropy with respect to the partitionU
is defined byH(U) = −

∑l
i=1 P (i) log2 P (i). Sim-

ilarly, the Shannon entropy with respect to the parti-
tion V is given by H(V) = −

∑m
j=1 P ′(j) log2 P ′(j),

whereP ′(j) = bj/N . Then, the mutual information be-
tween two partitionsU and V is defined byI(U,V) =∑l

i=1

∑m
j=1 P (i, j) log2

P (i,j)
P (i)P ′(j) , whereP (i, j) = nij/N

which is the joint probability that an element ofX falls into
bothUi andVj .

Strehl and Ghosh (2002) proposed the normalized mutual
information (NMI) as follows:

NMI(U,V) =
I(U,V)√
H(U)H(V)

, (8)

which takes its values in the unit interval[0, 1]. The NMI
takes its maximum value1 when two partitions are identi-
cal. The minimum value0 is realized when two partitions
are independent, namely,nij = aibj holds for all1 ≤ i ≤ l
and1 ≤ j ≤ m. Hence, the NMI for random partitions
takes its values close to0. However, its adjusted version is
more preferable. The adjusted normalized mutual informa-
tion (AMI) is defined in the similar spirit as in the ARI (Vinh

et al., 2009) :

AMI(U,V) =
I(U,V) − E (I|a,b)√
H(U)H(V) − E (I|a,b)

, (9)

whereE (I|a,b) is the expected value of the mutual in-
formation I between two randomly chosen partitions of
the setX subject to the condition that two vectorsa =
(a1, a2, · · · , al) andb = (b1, b2, · · · , bm) are fixed.

In the next subsection, we apply these two adjusted simi-
larity measures, the ARI and the AMI, to the partitions of the
set of arcs in the neuronal network ofC. elegansby neuron
functions and the partition based on lateral connectedness
for each threshold.

Results

Fig. 6 (a) shows the number of arcs as a function of thresh-
old. Fig. 6 (b) indicates the number of clusters in the LC-
partition and in the ST-partition. The former tends to in-
crease for thresholds within the range from 1 to 10 because
decrease in the number of arcs can leads to division of one
cluster into two or more clusters. It decreases for thresholds
larger than 12 simply because the number of arcs is too small
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Figure 8: The wiring diagram of the neuronal network ofC. elegans at threshold 4 depicted by Graphviz
(http://www.graphviz.org/). (a) Arcs are colored by the ST-partition. Color assignment is the same for Fig. 5. (b) Arcs are
colored by the LC-partition. Colors of different clusters are specified arbitrarily.

for the number of the LC-clusters to grow by divisions for
those relatively large thresholds.

In Fig. 7 (a), we plot the ARI and the AMI between the
LC-partition and the ST-partition as a function of threshold.
It takes its maximum value when threshold is equal to6.
As a control experiment, we calculate averages and stan-
dard deviations of the ARI and the AMI between the LC-
partition and the ST-partition on 1000 randomized networks
by re-wiring arcs randomly, which are also shown in Fig. 7
(a). Note that degree distributions are invariant under the
re-wiring process. We can see a large deviation from the
control around the maximum point. We have similar results
for the S-partition and the T-partition (Fig. 7 (b),(c)).

To quantify deviation from the control experiment, we
calculate the Z-score for each comparison. The Z-score of a
quantityQ is defined by

zQ =
Qorig − ⟨Qrand⟩

σ
, (10)

where Qorig is the value ofQ in the original network,
⟨Qrand⟩ is the average ofQ calculated from an ensemble
of randomized networks andσ is its standard deviation. The
Z-scores of both the ARI and the AMI take their maximum
value when threshold is equal to4 for all comparisons (Fig. 7
(d)). All of the maximum values of the Z-scores are more
than5, which indicates significant deviation from the con-
trol in all comparisons. However, we should note that the
absolute values of the two similarity measures are not so
high, at most0.152.

In Fig. 8, we plot the wiring diagram where we set thresh-

old 4. Arcs are colored based on the ST-partition (Fig. 8
(a)) and the LC-partition (Fig. 8 (b)). There are two weakly
connected components, one is large and the other is small.
Here, we define a weakly connected component of a directed
network as a maximal set of arcs in which every pair of
arcs are connected by a sequence of arcs ignoring the direc-
tion. Almost all the motor-motor connections are included
in the smaller weakly connected component on one hand,
they also form a single laterally connected component in
the LC-partition. However, the LC-partition fails to capture
more detailed functional partition within the larger weakly
connected component possibly due to many recurrent con-
nections between the sensor, inter and motor region of the
neuronal network ofC. elegans(Varshney et al., 2011). This
is one reason that we have relatively low absolute values for
the two similarity measures.

Conclusions and Outlooks
In this paper, we intuitively explained that how the idea “ob-
jects as processes, interactions as interfaces” can be formal-
ized within the framework of category theory. We derived
the notion of lateral connectedness as a canonical structure
obtained from the idea. By its definition, lateral connect-
edness has possibility to be associated with functional com-
monality between arcs arising from shared input or output.
As a first application of lateral connectedness, we exam-
ined functional significance of lateral connectedness in the
neuronal network ofC. elegansby the method of clustering
comparison. For the analysis, we made use of two similar-
ity measures to quantify similarity between two partitions



on the same set, one is pair-counting based measure and the
other is information-theoretic measure.

We showed that the partition of the set of arcs based on
lateral connectedness is not inconsistent with the functional
partition of the set of arcs. However, even if we set threshold
at the point where the largest deviation from an ensemble of
randomized networks is observed, it can only capture a part
of the partitions based on neuron functions. One problem of
the analysis performed in this paper may be that the direct
comparison to functional partitions is too strict to recognize
significance of lateral connectedness. Another problem is
that the data used is incomplete. Analysis with more com-
plete data (Varshney et al., 2011) will be necessary.

Introduction of lateral connectedness has several impli-
cations. First, we can analytically solve percolation prob-
lems with respect to lateral connectedness on configuration
model (networks chosen uniformly at random from the set of
all possible networks with a specified degree distribution) of
directed networks (Haruna, 2011b). Applications of the ana-
lytical result on configuration model to biological networks
are now ongoing. Second, we can define alternatives for
some notions used in conventional complex network studies.
For example, the notion of path length can be defined based
on lateral connectedness. Since metrics such as closeness
and betweenness centralities are functions of path lengths,
they are also the targets of alternative definitions. Finally,
theoretical development and empirical applications of the
duality between lateral connectedness and strong connect-
edness are also intriguing issues.
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