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Abstract In gene regulation networks, nodes are genes, but we should
include proteins coded by those genes into nodes if we con-

; ) sider regulation relationships as arcs. Thus, we can think
rected network so that elements are nodes and interaction be- that complicated chemical processes to svnthesize proteins
tween two elements is an arc. Conventionally, each node is _p_ A p y p
just a point, each arc represents some kind of interaction be- ~ 0CCur within each node in a gene regulation network. \We
tween two nodes and nothing more after the systemis mapped  can interpret other biological networks including ecological
to a directed network. However, in many real systems, each  petworks, metabolic networks in the same way. If we con-
element has its own intra-node process and interaction be-  giqer gjects as processes, then interactions between objects
tween two elements can be seen as an interface between two . .

can be seen as interfaces between processes. | would like

intra-node processes. We can formalize this idea “objects as SRR . . .
processes, interactions as interfaces” within the framework  t0 call this view “objects as processes, interactions as inter-

A system of interacting elements can be represented by a di-

of category theory. We show that a new notion of connect- faces” on networks thdual viewin contrast to the ordinary
edness callethteral connectednessmerges as a canonical real view mentioned above.

structure obtained from the idea. Lateral connectedness is . . .. . ..
not defined on the set of nodes of a directed network, but on In this paper, we examine what is involved in having in-

the set of arcs. By its definition, it may be associated with ternal processes on nodes in general for complex networks.
functional commonality between arcs emerging from shared  Usually, processes occurring on nodes are described as par-
input or output. As a first application, we examine signifi- ticular dynamics. Then, an appropriate statistical ensem-

cance of lateral connectedness in the neuronal network of the C Lo .
nematodeaenorhabditis elegartsy comparing the partition ble of dynamics is studied in order to conclude something

of the set of arcs induced by the connectedness and the par- In general (e.g. random Boolean nerorks by (Kauffman,
titions based on neuron functions. Lateral connectedness can  1969)). Instead of statistical generality, we here appeal to

capture a part of functional segregation of the neuronal net-  category theoretical universality to study the problem.

work above a certain interaction strength level. . . .
g We note that there is an inverse dual view, namely, “pro-

cesses as objects”. This idea appears in the formulation

Introduction of Metabolism-Repair System by R. Rosen (Rosen, 1958).
Science of complex networks is one promising approach Recently, the idea was used as the line graph transforma-
to understand the intrinsic organization of living systems tion in the community detection problem in complex net-
(Alon, 2006; Junker and Schreiber, 2008; Sporns, 2011). Works (Ahn et al., 2010; Evans and Lambiotte, 2009). The
Many characteristics such as degree distributions, average WO ideas “objects as processes” and “processes as objects”
path length, clustering coefficients, centralities, assortativ- Nave & certain dual relationship called category theoretical
ity coefficient, network motifs have been introduced in or- adjunction (MacLane, 1998) if they are formalized within
der to reveal functionality of biological, social, technologi-  the framework of category theory (Haruna and Gunji, 2007;
cal systems from network topology (Boccaletti et al., 2006; Pultr, 1979).
Newman et al., 2006; Newman, 2010). These characteris- There are many ways (indeed, uncountably many ways)
tics are based on the idea which | would like to call the to consider objects as processes. However, we can show that
real viewon networks: each node is just a point and edges there exists a canonical way (in a precise mathematical sense
or arcs between nodes indicate the existence of some kind stated in Section 3) among all the ways to see objects as
of interaction between nodes if a system is represented as processes within the framework of category theory (Haruna,
a network. However, in many real systems, it is the case 2011b). The canonical way to see objects as processes gives
that some kind of process is running within an object rep- rise to an equivalence relation on the set of arcs of each di-
resented by a node. For example, in neuronal networks, rected network. This equivalence relation can be interpreted
nodes are neurons that have information processing ability. as defining a new notion of connectedness cdfisztal con-
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nectednessAn intuitive explanation of derivation of lateral . .
connectedness without category theory is the main aim of - \./
the former half of this paper. In the latter half, we analyze — T,

the neuronal network of the nemato@aenorhabditis ele-
gansbased on lateral connectedness as a first application to
real world networks.

This paper is organized as follows. In section 2, we de-
scribe a mathematical formulation of the dual view on di-
rected networks. In section 3, we introduce lateral connect-
edness for directed networks as a naturally emerging struc-
ture from the dual view. In section 4, we apply lateral con-
nectedness to the neuronal networkotlegansand discuss
its functional significance. In section 5, we give conclusions
and outlooks.

Figure 2: Three examples of the calculation of the network
transformation’.

how its two copies form an interface corresponding to an arc
amodel of directed network typén general, models of di-
rected network type need not consist of directed networks
(Haruna, 2011b), however, in the following discussion, we
restrict ourselves on models consisting of directed networks
for simplicity.
Obi p | . | £ Fig. 2 illustrates how the above motivating model of di-
Jects as Processes, Interactions as Interfaces rected network type gives rise to a network transformation

In this paper, we only consider directed networks. Some L. In Fig. 2 (a), the two nodes andy are converted to two
early attempts related to the content of this section are found arcsz andy by L. The target ofr and the source of are
in Haruna and Gunji (2007); Haruna (2008a,b, 2011a). glued by the ar¢ in the original network. In Fig. 2 (b), there

In the dual view introduced in Section 1, each node is in- are three copies of aras y andz after the transformation
terpreted as a process and each arc is seen as an interfaceorresponding to the three nodesy andz in the original
between two processes. This idea can be formalized as net-network. Their sources and targets are glued according to
work transformations as follows. the arcsf andg in the original network. The similar copy

As a motivating example, let us interpret each node as and glue rule works for the example in Fig. 2 (c).
an arc (together with its source and target nodes) represent- Formally, the network transformatioh can be defined
ing a process running in the node and each arc as a nodeas follows. LetG = (A, O, 9y, 0:) be a directed network,
connecting two arcs representing processes running in the where A is a set of arcsQ is a set of nodes and, and o,
original two nodes (Fig. 1). Of course, each node can be are maps from the set to the setO that send each arc to
replaced by a much more complicated network representing its source node and target node, respectively. The directed
a process running within the node. The connection between network L(G) obtained by the application of to G is a
the two complicated networks can also be arbitrary. We call quartetZL(G) = (0,0 x {0,1}/ ~, 8}, d;), where the set
a network (that can be arbitrary complicated) representing of arcs of L(G) is identical to the set of nodes of G, the
a process running within a node together with information set of nodes of.(G) is a quotient se© x {0,1}/ ~ and
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Figure 3: The maps materialize the idea “interaction as
interface”.

~ is an equivalence relation on the gt {0, 1} generated
by the relation defined b, 1) ~ (y,0) if and only if there
exists an argf from x to y in G. The symboll indicates the
“source part” of the node and the symbol indicates the
“target part” of the node. The source and target mafi§
01 are defined naturally.

In general, for any model of directed network type, the in-
duced network transformation can be described by a simila
copy and glue rule, no matter how complicated it is. For a
category theoretical formulation, see (Haruna, 2011a).

A New Notion of Connectedness

By the network transformatiodh introduced in Section 2,
each node in a directed netwatkis sent to an arc il (G).
On the other hand, we can think that each Ama a directed
networkG = (A, O, 0y, ;) is mapped to a node if(G)
between two arcs if.(G) corresponding to the source and
the target nodes of, namely,dyf andd; f (Fig. 3). We
denote this map by : A — O x {0,1}/ ~. For each arc
f € A pa(f)is the target ob, f (or the source 0, f) in
L(G). Hence, we have:(f) = [(00f, ))(= [(81f,0))),
where[(z, 7)] is an equivalence class containifig i) € O x
{0,1}.

A natural question about the nature of the magp is
“When doespi(f) = v (g) hold for arcsf, g € A?” The
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Figure 4: Two arcg andg are laterally connected if there
is a zigzag sequence of arcs between them. There are four
cases depending on the situations at the both ends.

lence clasdaterally connected componenThis statement
can be proved within the framework of category theory in
more general form (Haruna, 2011b).

In summary, we obtain the notion of lateral connected-
ness as a canonically emerging structure of directed net-
works from the idea “objects as processes, interactions as
interfaces”.

By its definition, lateral connectedness may be relevant
with functional commonality between arcs emerging from
shared input or output. This is in contrast to the notion of

answer is straightforward and the necessary and sufficient strong connectedness. Here we say that two arcs are strongly

condition for the equalityp. (f) = ¢c(g) is that there ex-
ists a zigzag sequence of arcs betw¢eandg as indicated
in Fig. 4. We say that two arcg and g arelaterally con-
nectedf ¢ (f) = ¢a(g) holds.

For any model of directed network type, a similar map

connected if one arc can be reached from the other by a di-
rected path and vice versa. Strong connectedness may be
associated with functionality resulting from circulation of
information or materials. Intuitively, they seem to be dual
to each other. Indeed, this intuition can be enhanced by the

on the set of arcs of a given directed network can be defined. following category theoretical point of view.

Such a map induces an equivalence relation on the set of arcs Lateral connectedness derives from the network transfor-
by identifying two arcs if they are sent to the same element mation L which is based on the idea “objects as processes,
in the codomain of the map. Let us denote the equivalence interactions as interfaces”. On the other hand, strong con-

relation induced by the maps above byR; . Then,R; ¢

is canonical in the following senseror any directed net-

work G = (4,0, 0y, 01), Rrc is the smallest equivalence
relation on the set of arcsl among those induced by all
models of directed network typeln other words, the par-

nectedness can be obtained from the line graph transfor-
mation R which is based on the idea “processes as ob-
jects”. Given a directed network = (A, O, 9y, 01), its line
graph is a directed networkR(G) = (S, A, 9, d7), where
S = {(f.9) € Ax Aloif = dog}, 95(f,9) = f and

tition of the set of arcs induced by lateral connectedness is 97 (f,g) = g forany(f,g) € S. As noted in Section 1, the
the finest one among those induced by the idea “objects as two transformationd. and R satisfy a certain category the-
processes, interactions as interfaces”. We call each equiva- oretical duality called adjunction (Haruna and Guniji, 2007;
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S: sensory neuron
m: motor neuron
I inter neuron

Figure 5: The wiring diagram of the neuronal network ©f elegansbased on the database (Oshio et al., 2003)
(http:/fims.dse.ibaraki.ac.jp/ccep/) depicted by Graphviz (http://www.graphviz.org/). (a) Arcs are colored based on pairs of
functions of their source and target neurons. (b) Correspondence between colors and pairs of functions of neurons.

Pultr, 1979). By definitionS is the set of arcs of the directed  in the somatic nervous system and 4170 chemical synapses.
network R(G), but it can be seen as a binary relation on the We construct a family of directed networks whose nodes are
set A. Mathematically, the notion of strong connectedness 233 neurons in the following way: First, we put an arc from

defined above is an equivalence relatfx® on the setd of one node to another node if there exists a chemical synapse
arcs ofGG. On the other hand, we have an equality from the former to the latter. Second, since there is multi-

o ple chemical synapses from one neuron to another neuron

SC=85nS-1, 1) in general, we specify a weight for each arc by the number

L ] ] ] _ of chemical synapses from the source to the target of the
whereS™ " is the inverse of the binary relatighand” for a arc. Finally, we introduce thresholds for the weight values

binary relationl” on A is its reflexive and transitive closure. 514 consider the network topology consisting of arcs whose

In this sense, strong connectedness is generated by the "”eweights are greater or equal to a given threshold.

graph transformatio® which is category theoretical dual to Each neuron has one of three functional types: sensory,

L. ) . ) inter and motor. We consider three partitions of the set of
One might think that the duality between lateral connect- 41c5 hased on the functions of neurons. The first one is

edness and strong connectedness in the above sense is @4)led ST-partitionwhich considers types of the two neu-

mathematical expression for Lorente d&'t\two principles  ons at both ends of each arc. Thus, there are nine clusters
of plurality and reciprocity (Lorente dedy1938). for the ST-partition. In the wiring diagram shown in Fig. 5
vsis of | K (a) where threshold is 1, each arc is colored based on the ST-
Analysis of a Neuronal Networ partition. The correspondence between colors and the ST-
In this section, we discuss significance of lateral connected- partition clusters is indicated in Fig. 5 (b). The second one
ness in the neuronal network Gf eleganss a first applica-  is called theS-partitionwhich considers type of the source

tion of it. We compare the partitions of the set of arcs based neuron of each arc. The third one is called Tapartition

on functions of neurons with the partition induced by lateral which considers type of the target neuron of each arc. The
connectedness to examine functional significance of lateral number of clusters in the S-partition or T-partition is three.
connectedness. We make use of two similarity measures de-  The equivalence relatioR ¢ induced by lateral connect-

scribed in the next subsection for the comparison. edness also gives rise to a partition of the set of arcs. We
N KD call this partition theLC-partition. In the following discus-
etwork Data sion, we measure similarity between the LC-partition and

We make use of the database constructed by Oshio et al. the above three functional partitions.

(2003) (http:/fims.dse.ibaraki.ac.jp/ccep/) whose original

reference is White et al. (1986). We remove nodes and con- Similarity Measures

nections other than neurons and chemical synapses. The re\We make use of two similarity measures to quantify similar-
sulting data set contains 233 neurons among 282 neuronsity between two partitions on a set. The first one is called the
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Figure 6: (a) The number of arcs as a function of threshold. (b) The number of clusters in the LC-partition and in the ST-partition

as a function of threshold.

Adjusted Rand Index (AR{Hubert and Arabie, 1985). The
second one is called thdjusted normalized Mutual Infor-
mation (AMI)(Vinh et al., 2009). To explain the idea of the
ARI, we first review the definition of th&and Index (RI)
(Rand, 1971).

Let X be a set consisting ofV points. LetU
{U1,Us,---, Ui} andV = {V;,V,,---,V,,} be two par-
titions of X, namely, they are families of subsetsXfsat-
isfyingU; N Uy = V; NV = (fori # 4, j # j and
UL_ Uy = U, V; = X. Letus putn;; := iy a; =
|U;| andb; := |V;| fori=1,2,--- ,landj =1,2,--- ,m,
where|Y'| for a setY” denotes its cardinality. Then, we have
a; = E"/L 1 Mg andb Zi’:l N fori = 1,2,---,1
andj = 1,2,- -, m. Al x m matrix C := (n;;) is called
thecontingency matri,xwhich encodes information how two
partitionsU andV overlap. We can calculate both the ARI
and the AMI by using elements of the contingency matrix
C.

The Rand Index (RI) between partitiohs andV is de-
fined by counting the number of pairs of elementskobn
which two partitions agree or disagree:

Noo + N1t @)
Noo + No1 + N1g + N11’

whereN is the number of pairs that are in the same cluster
in bothU andV, Ny, is the number of pairs that are in the
same cluster ifU but in different clusters ifV, Ny is the
number of pairs that are in different clusterstinbut in the
same cluster irV and Ny, is the number of pairs that are
in different clusters in botfJ andV. After a few algebras,
one can see thdt,; and N, are given by

RI(U,V) =

W= S()-550) @
o= 25550 @

Since we haveVyo + Noi + Nig + N1t = (%), we obtain
the following explicit formula for the RI:

RI(U,V) =

M) = {Z @) +x, () +25, (%)
N
(2)

The RI takes its maximum valuke when two partitions
are identical. The minimum valugis taken if and only if
one partition consists of a single cluster and the other con-
sists of only clusters with a single point, which is hard to
satisfy by random patrtitions. Indeed, the RI takes relatively
high values for two random partitions. However, it is plau-
sible for a similarity measure to take values close to zero
for random partitions. To improve this disadvantage of the

RI, Hubert and Arabie (1985) introduced the Adjusted Rand
Index (ARI) which takes over a correction for chance:

RI(U,V)— E(RI|a,b)

— E(RI|a,b) ’
wherel in the denominator is the maximum value of the
Rl andE (RI|a,b) is the expected value of the RI between
two randomly chosen patrtitions of the sgtsubject to the
condition that two vectora = (a1,as,---,q;) andb =
(b1, ba, -+, by,) are fixed. Since we havg (("i7)|a,b) =
(4)(%)/(5) (Hubert and Arabie, 1985), an explicit for-
mula for the ARI is given by

ARI(U,V) =
S () {2 ) 2 (G
1 (3)+2(3) - (5 (5) /()
{
Our second measure of similarity, the AMI is defined
based on the mutual information between two partitions

(Vinh et al., 2009). Let us introduce the probability that an
element ofX is contained in a clustdy; by P(i) = a;/N.

. (5)

ARI(U,V) = (6)

(@)
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Figure 7: Comparisons between the LC-partition and partitions based on neuron functions. Two similarity measures, one is
pair-counting based (the ARI) and the other is information-theoretic (the AMI), are used. (a) The LC-partition vs the ST-
partition. (b) The LC-partition vs the S-partition. (c) The LC-partition vs the T-partition. (d) Z-scores for the values of two

similarity measures as functions of threshold.

The Shannon entropy with respect to the partition
is defined by H(U) = —Y'_, P(i)log, P(i). Sim-
ilarly, the Shannon entropy with respect to the parti-
tion V is given by H(V) — >0t P'(4)logy P'(5),
where P'(j) = b;/N. Then, the mutual information be-
tween two partitionsU and V is defined byl (U, V)

Yoy Y0ty P(i, 5) 1085 5 iy WhereP(i, j) = nij /N
which is the joint probability that an element &f falls into
bothU; andVj.

Strehl and Ghosh (2002) proposed the normalized mutual

information (NMI) as follows:

(U, V)

NMI(U,V) = THOET

8

which takes its values in the unit interv@l, 1]. The NMI
takes its maximum valué when two partitions are identi-
cal. The minimum valué is realized when two partitions
are independent, namely;; = a;b; holds for alll <i <
andl < j < m. Hence, the NMI for random partitions
takes its values close tb However, its adjusted version is
more preferable. The adjusted normalized mutual informa-
tion (AMI) is defined in the similar spirit as in the ARI (Vinh

etal., 2009) :

I(U,V) — E(I|a,b)

VHU)H(V) — E(I|a,b)’

where E (I]a, b) is the expected value of the mutual in-
formation I between two randomly chosen partitions of
the setX subject to the condition that two vectoss =
(a1,az2, -+ ,a;)andb = (b1, ba, - -+, by,) are fixed.

In the next subsection, we apply these two adjusted simi-
larity measures, the ARl and the AMI, to the partitions of the
set of arcs in the neuronal network Gf elegandy neuron
functions and the partition based on lateral connectedness
for each threshold.

AMI(U,V) =

9)

Results

Fig. 6 (a) shows the number of arcs as a function of thresh-
old. Fig. 6 (b) indicates the number of clusters in the LC-

partition and in the ST-partition. The former tends to in-

crease for thresholds within the range from 1 to 10 because
decrease in the number of arcs can leads to division of one
cluster into two or more clusters. It decreases for thresholds
larger than 12 simply because the number of arcs is too small
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Figure 8: The wiring diagram of the neuronal network 6f elegansat threshold 4 depicted by Graphviz
(http://lwww.graphviz.org/). (a) Arcs are colored by the ST-partition. Color assignment is the same for Fig. 5. (b) Arcs are
colored by the LC-partition. Colors of different clusters are specified arbitrarily.

for the number of the LC-clusters to grow by divisions for old 4. Arcs are colored based on the ST-partition (Fig. 8
those relatively large thresholds. (a)) and the LC-patrtition (Fig. 8 (b)). There are two weakly

In Fig. 7 (a), we plot the ARI and the AMI between the connected components, one is large and the other is small.
LC-partition and the ST-partition as a function of threshold. Here, we define a weakly connected component of a directed
It takes its maximum value when threshold is equabto network as a maximal set of arcs in which every pair of
As a control experiment, we calculate averages and stan- arcs are connected by a sequence of arcs ignoring the direc-
dard deviations of the ARI and the AMI between the LC- tion. Almost all the motor-motor connections are included
partition and the ST-partition on 1000 randomized networks in the smaller weakly connected component on one hand,
by re-wiring arcs randomly, which are also shown in Fig. 7 they also form a single laterally connected component in
(a). Note that degree distributions are invariant under the the LC-partition. However, the LC-partition fails to capture
re-wiring process. We can see a large deviation from the more detailed functional partition within the larger weakly
control around the maximum point. We have similar results connected component possibly due to many recurrent con-
for the S-partition and the T-partition (Fig. 7 (b),(c)). nections between the sensor, inter and motor region of the

To quantify deviation from the control experiment, we neuronal network o€. elegangVarshney et al., 2011). This
calculate the Z-score for each comparison. The Z-score of a is one reason that we have relatively low absolute values for
quantity@ is defined by the two similarity measures.

2 = Qoris = (@rana) (10) Conclusions and Outlooks

g In this paper, we intuitively explained that how the idea “ob-

where Q.4 IS the value of@ in the original network, jects as processes, interactions as interfaces” can be formal-
(Qrana) 1s the average of) calculated from an ensemble ized within the framework of category theory. We derived
of randomized networks andis its standard deviation. The  the notion of lateral connectedness as a canonical structure
Z-scores of both the ARI and the AMI take their maximum obtained from the idea. By its definition, lateral connect-
value when threshold is equal4dor all comparisons (Fig. 7 edness has possibility to be associated with functional com-
(d)). All of the maximum values of the Z-scores are more monality between arcs arising from shared input or output.
than5, which indicates significant deviation from the con- As a first application of lateral connectedness, we exam-
trol in all comparisons. However, we should note that the ined functional significance of lateral connectedness in the
absolute values of the two similarity measures are not so neuronal network o€. elegandy the method of clustering
high, at mos®.152. comparison. For the analysis, we made use of two similar-
In Fig. 8, we plot the wiring diagram where we set thresh- ity measures to quantify similarity between two partitions



on the same set, one is pair-counting based measure and theHaruna, T. (2011b). In preparation.

other is information-theoretic measure.
We showed that the partition of the set of arcs based on
lateral connectedness is not inconsistent with the functional
partition of the set of arcs. However, even if we set threshold
at the point where the largest deviation from an ensemble of
randomized networks is observed, it can only capture a part
of the partitions based on neuron functions. One problem of
the analysis performed in this paper may be that the direct
comparison to functional partitions is too strict to recognize
significance of lateral connectedness. Another problem is
that the data used is incomplete. Analysis with more com-
plete data (Varshney et al., 2011) will be necessary.
Introduction of lateral connectedness has several impli-
cations. First, we can analytically solve percolation prob-
lems with respect to lateral connectedness on configuration
model (networks chosen uniformly at random from the set of
all possible networks with a specified degree distribution) of
directed networks (Haruna, 2011b). Applications of the ana-
lytical result on configuration model to biological networks
are now ongoing. Second, we can define alternatives for
some notions used in conventional complex network studies.
For example, the notion of path length can be defined base

on lateral connectedness. Since metrics such as closeness
and betweenness centralities are functions of path lengths,

they are also the targets of alternative definitions. Finally,
theoretical development and empirical applications of the

duality between lateral connectedness and strong connect-

edness are also intriguing issues.
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