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Abstract
We propose a new data analytical tool for directed networks by using category
theory. We develop a category theoretical treatment of directed networks in order to
obtain functional networks for real networks. By applying our method to concrete
data on real information processing biological networks, we find a distinguishing
global structure of functional networks. A possibility of a new hypothesis on network
motifs is also indicated based on our theory and data analysis.
Keywords : Directed Networks, Category Theory, Presheaves, Information Pro-
cessing, Network Motifs.

1 Introduction

A network represented as a directed graph consists of a set of nodes and a set
of arcs between each pair of nodes. A node is just a point, both structure-less and
function-less. However, nodes in real networks often have structures or functions.
For example, a node in a gene transcription regulation network consists of a gene and
a protein coded by that gene (Arcs are regulation relations). There is information
processing from DNA to protein in each node, which can be seen as a function of
each node. Such aspect is usually neglected in the study of complex networks since
the statistical property of the entire network is the main focus in this field [4, 17].

It would be useful for further understanding of real networks if we can obtain
a formal representation including a function of nodes. In this paper we develop a
general way to associate a function with each node in a network. In particular,
we focus on information processing as a function of nodes. We simply represent
information processing in a node by a directed graph. We use category theory to
construct our theory [13].

In the previous work on applications of category theory to theoretical biology,
category theory is used to describe general framework to describe general organi-
zation of biological systems [7, 8, 18, 19, 21]. In contrast our aim in this paper is
to show that category theory can provide a new tool in order to analyze concrete
biological networks.



This paper is organized as follows. In section 2 we develop a category theoretical
treatment of directed networks and obtain functional networks for real networks.
In section 3 we apply our theory to real network data. In section 4 we suggest a
possibility of a new hypothesis on network motifs based on our theory and data
analysis. In section 5 we give conclusions.

2 Construction of Functional Networks for Directed Net-
works

In this section we develop a category theoretical treatment of directed networks.
We describe how to associate a function with each node in a directed network so
that we obtain functional networks for real networks.

2.1 Networks as Presheaves

We consider networks that can be represented as directed graphs. A directed
graph is a quartet G = (A,O, ∂0, ∂1) where A is a set of arcs, O is a set of nodes and
∂i(i = 0, 1) are functions from A to O taking a source of each arc (i = 0) or a target
of each arc (i = 1). A directed graph G = (A,O, ∂0, ∂1) can be seen as a presheaf in
the following way. Let C2 be a finite category defined by the following diagram:

0
m0

⇒
m1

1.

We can make G a functor from C2
op to the category of sets Set by setting G(1) =

A,G(0) = O and G(mi) = ∂i(i = 0, 1). Thus G is a presheaf on the category C2.
A homomorphism D from a directed graph G = (A,O, ∂0, ∂1) to a directed graph

G′ = (A′, O′, ∂′0, ∂
′
1) is a pair of two maps DA : A → A′ and DO : O → O′ satisfying

∂′i ◦DA = DO ◦ ∂i(i = 0, 1). That is, D preserves sources and targets. If we think of
G and G′ as presheaves then D is a natural transformation from G to G′. Thus we
can identify the category of directed graphs Grph with the category of presheaves
on C2 denoted by SetC2

op

. Indeed they are isomorphic categories.
In the following we make use of category theoretical structures in order to study

directed graphs. Hence we shall use the presheaf notation to denote directed graphs.

2.2 Representation of Function of Nodes

We focus on information processing as a function of nodes in a network. We do
not consider what information is processed but treat patterns of information flow.
We consider a unit for patterns of information flow consists of the following three
aspects: receiving, transformation and sending of information. We represent this by
a directed graph consisting of two distinct nodes and an arc between them:

• → •.



Thus any directed graph would represent a pattern of information flow. Now we
would like to associate a pattern of information flow to each node in a network. We
can achieve this by considering a functor called distributor in category theory.

Let A,B be small categories. A distributor (or module) from A to B is just a
functor D : A → SetBop

[5]. The notion of distributor is considered as a generaliza-
tion of binary relation. They form a bicategory. However, we consider only a special
case with A = B = C2 in this paper.

In the case A = B = C2 we call a distributor M : C2 → SetC2
op

information
processing pattern. In this case M consists of the following data: two directed graphs
M(0),M(1) and two directed graph homomorphisms M(m0),M(m1) : M(0) →
M(1). M(0) is a representation of a function of each node, which we call a pattern
of information flow at the beginning of this subsection. M(1) is for an arc in a
network which represents how functions of two nodes are related when there is an
arc between two nodes. M(m0) and M(m1) specify a source part and a target part
in M(1) respectively by mapping M(0) into M(1).

Let us consider gene transcription regulation networks as an example. If a pro-
tein coded by a gene X regulates a gene Y then there is an arc from X to Y . There
is complicated chemical information processing from DNA to protein including tran-
scription, translation and synthesis in a node. However, here we focus on an overall
pattern of information flow. We represent information flow from DNA to protein by
a directed graph consisting of two distinct nodes and an arc between them. Thus
we put

M(0) = • → •.
The source node in M(0) is an abstraction for DNA whose function is considered
as receiving information and the target node in M(0) is an abstraction for protein
whose function is considered as sending information. If there is an arc from X to Y
then we could imagine the sending of information in X contacts to the receiving of
information in Y . We represent this situation just by identifying them as a node.
Thus we define

M(1) = • → • → •.
M(m0) is defined by sending the unique arc in M(0) to the left arc in M(1). M(m1)
is defined by sending the unique arc in M(0) to the right arc in M(1).

The above argument can be applied to not only gene transcription regulation
networks but also the other information processing biological networks such as neu-
ronal networks, signal transduction networks and so on.

One may consider more complicated directed graphs for M(0) and M(1). How-
ever, in the following we mainly consider the information processing pattern M
defined above since its intuitive meaning is obvious and it is mathematically easy
to tractable. We denote this information processing pattern by M0.



2.3 Functional Networks for Real Networks

First let us consider a general situation. Let C be a small category and D be
a distributor C → SetCop

. D induces a Hom-tensor adjunction on SetCop

in the
following way. Define a functor RD : SetCop → SetCop

by sending G to RD(G) =
Hom(D(−), G). For an object c in C RD(G)(c) = Hom(D(c), G), which is the set
of all natural transformations from D(c) to G. Given a morphism u : c′ → c in C,
RD(G)(u) is a map from Hom(D(c), G) to Hom(D(c′), G) defined by composition
from right (−) ◦D(u):

D(c′)
D(u)→ D(c) → G.

RD has a left adjoint LD defined as follows. Let G be a presheaf on C. The
category of elements for G denoted by

∫
C

G is defined by the following data: Objects
are pairs (c, x) where c is an object in C and x ∈ G(c). A morphism from (c′, x′)
to (c, x) is a morphism u : c′ → c in C with G(u)(x) = x′. Let πG be a functor∫
C

G → C defined by πG(c, x) = c. Then we define LD(G) as the following colimit:

LD(G) = Colim

(∫

C

G
πG→ C

D→ SetCop

)
.

In other words, LD is a left Kan extension of D along Yoneda embedding y : C →
SetCop

.
For a presheaf G on C and an object d in C we have

LD(G)(d) =

(∑
c∈C

G(c)×D(c)(d)

)
/ ∼,

where ∼ is an equivalence relation generated by (α ·u, y) ∼ (α, u ·y), α ·u = G(u)(α)
and u · y = D(u)(d)(y) for α ∈ G(c), y ∈ D(c′)(d) and a morphism u : c′ → c in C.
We write α⊗ y for an equivalence class containing (α, y).

We have a natural isomorphism Hom(LD(F ), G) ∼= Hom(F,RD(G)) for any
presheaves F,G on C. Since LD is a left adjoint to a Hom functor RD, we may
write LD(F ) = F ⊗ D. Indeed we have a property of usual tensor products for
modules, associativity for “coefficients”, namely (α · u) ⊗ y = α ⊗ (u · y). For the
proof of the adjunction LD a RD see [9, 12].

Now we go back to our finite category C2. Given an information processing
pattern M : C2 → SetC2

op

and a directed graph G (recall that a directed graph is
a presheaf on C2), RM(G) is also a directed graph. How can we interpret RM(G)?
RM(G)(0) = Hom(M(0), G) is the set of nodes for RM(G). Each node is a homo-
morphism from M(0) to G. Hence each image of M(0) in G is collapsed into a
node in RM(G). Similarly each image of M(1) in RM(G) is collapsed into an arc in
RM(G). In short, we can say that RM collapses M in G.



Fig. 1: Two examples for the calculation of LM0 (subscript M0 is omitted in the
figure).

On the other hand, we can say that LM embeds M into G. Indeed we have the
following representation of LM(G) if G has no isolated node. Assume that for any
x ∈ G(0) there is α ∈ G(1) such that α ·m0 = x or α ·m1 = x. Then we have

LM(G)(i) ∼= G(1)×M(1)(i)/ ∼
for i = 0, 1, where ∼ is generated by (α, ψ) ∼ (α′, ψ′) ⇔ ∃y ∈ M(0)(i) ∃j0, j1 ∈
{0, 1} such that α · mj0 = α′ · mj1 , ψ = mj0 · y, ψ′ = mj1 · y for (α, ψ), (α′, ψ′) ∈
G(1)×M(1)(i). We can read this equation for LM(G) as follows: first make a copy
of M(1) for each arc in G and second glue them according to how arcs are connected
in G. Some examples for the calculation of LM0(G) is given in Figure 1.

Given any directed network G we obtain a directed graph LM(G) constructed
by embedding M into G. Since we consider that M represents a function, we would
like to call LM(G) a functional network for G.

In the next section we obtain functional networks for real information processing
biological networks by applying LM0 to them. We will find a distinguishing global
structure of functional networks for real networks.

3 Data Analysis

In Figure 2 we apply LM0 to five real information processing biological networks
provided at [1]. Explanations for these networks are found in [16]. A number
associated with each LM0(G) is the largest number of self-loops on a single node. It
is typically on the pivot node for the largest fan.

In order to characterize the feature of functional networks for real networks
quantitatively, we calculate two indices. The first index is the ratio of the number
of nodes in LM0(G) (denoted by n′) to the number of node in G (denoted by n).
The second index is the ratio of the maximum degree of a node in LM0(G) (denoted
by d′max) to n. The degree of a node is calculated by just summing in-degree and
out-degree for the node. If there is a self-loop then it is counted only once. We can
prove that 0 ≤ n′/n ≤ 2 and 0 ≤ d′max/n ≤ 1.

We plot the pair of indices (n′/n, d′max/n) for five real networks in Figure 3 (black
squares). For comparison, we also plot the pair of values for random networks (small



Fig. 2: Functional networks LM0(G) for real information processing biological net-
works G (subsript M0 is omitted in the figure). A number associated with each
LM0(G) is the largest number of self-loops on a single node. (a) Gene transcription
regulation network of E. coli. (b) Gene transcription regulation network of S. cere-
visiae. (c) Developmental gene transcription regulation network of drosophila. (d)
Developmental gene transcription regulation network of sea urchin. (e) Neuronal
synaptic network of C. elegans (only synaptic connections with more than or equal
to 5 synapses are included). All network data used are provided at [1].



Fig. 3: Plot for (n′/n, d′max/n) where n is the number of nodes in real (and random)
networks, n′ is the number of nodes in functional networks and d′max is the maximum
degree of a node in functional networks. Real networks (black squares) and random
networks (small dots) are shown. Symbols for real networks correspond to those in
Figure 2. See text for detail.

dots). Random networks are prepared as follows. For each real networks, we fix n
and vary the number of arcs a from n to 2n. For each pair (n, a) we generate 100
random networks that have n nodes and a arcs with no isolated node. Lines are
averages of random networks for each real network.

One can see a trade-off between the two indices for random networks. This can
be roughly understood as follows. If a is close to n then copies of M0(1) are hard
to be glued. Hence random networks with n nodes and a arcs have relatively high
values of n′ and low values of d′max in their functional networks. On the other hand,
if a is large (close to 2n) then copies of M0(1) tend to be glued into a few nodes
with many self-loops. Hence we obtain functional networks with low values of n′

and high values of d′max.
Obviously real networks are deviated from the trade-off curve for random net-

works. Their typical tendency is that their functional networks have nearly the same
number of nodes as that for real networks and have a high maximum degree of a
node. Combining with visual inspections for Figure 2, we suggest a distinguishing
global structure of functional networks for real networks (Figure 4). Functional net-
works for real networks typically have many input nodes and many output nodes
together with a central node with the small number of self-loops. We would like to
call such structure bottleneck structure.

In the next section we discuss implications of the bottleneck structure in func-
tional networks for real network structures.



Fig. 4: Distinguish global feature of functional networks for real information pro-
cessing biological networks.

4 Toward a New Hypothesis on Network Motifs

In this section we first obtain the condition that directed networks are stable under
embedding of information processing pattern M0. Second we suggest a possibility
of new hypothesis on network motifs by combining the stability condition and the
result of data analysis in the previous section.

Given an information processing pattern M , we say a directed graph G is stable
for M if ηG : G → RMLM(G) is an isomorphism where η is a unit of adjunction LM a
RM . This means that all functional constraint by LM(G) is already incorporated
into G.

We can obtain the stability condition for M0 as an explicit condition for the
structure of directed graphs. We have ηG : G ∼= RM0LM0(G) if and only if (i) G is a
binary graph (that is, there is at most one arc from one node to another node) and
(ii) if a → b ← c → d in G then a → d in G where we write a → b when there is
an arc from node a to node b. In particular, we call the second condition (ii) bifan
condition. An intuitive explanation for a proof of the “if part ’’is given in Figure
5(a).

More generally, one can see that a multi-fan structure in a real network corre-
sponds to a bottleneck structure (without self-loops) in its functional network under
the stability condition for M0 (Figure 5(b)).

We can prove that the bifan condition is generic in the following sense. Let C be
a small category and M,N : C → SetCop

be two distributors. We define a tensor
product between M and N (denoted by M ⊗ N) by the following composition of
functors [5]:

C
M→ SetCop LN→ SetCop

.

Thus for any object c in C we have (M ⊗ N)(c) = M(c) ⊗ N . If we consider the
case C = C2 then we can obtain more complicated information processing pattern
M ⊗N from simpler ones (M and N). We have the following theorem:



Fig. 5: (a) An intuitive sketch of derivation of the stability condition for M0. See
text for detail. (b) The correspondence between multi-fan structure in real networks
and bottleneck structure in their functional networks under the stability condition.

Theorem 1 For any information processing pattern N , consider a tensor product
M0 ⊗N . If a directed graph G is stable for M0 ⊗N then the bifan condition holds
for G.

Outline of a proof. Assume ηG : G ∼= Hom(M0 ⊗ N(−), G ⊗ (M0 ⊗ N)) and a →
b ← c → d in G. We have ϕ ∈ Hom(M0(1), G⊗M) corresponding to a possible arc
a → d in G. We define ϕN ∈ Hom(M0(1) ⊗ N, (G ⊗M0) ⊗ N) by ϕN(i)(α ⊗ y) =
ϕ(j)(α)⊗ y for (α, y) ∈ M0(1)(j)×N(j)(i). Since G⊗ (M0 ⊗N) ∼= (G⊗M0)⊗N
and G ∼= Hom(M0 ⊗ N(−), G ⊗ (M0 ⊗ N)) by assumption, ϕN corresponds to an
arc a → d in G, which now exists. ¤

Thus the bifan condition is a necessary condition so that a directed graph is
stable for an information processing pattern of the form M0 ⊗N .

Now we discuss implications of our theory and data analysis for real network
structures. Network motifs are patterns found in given networks that are signifi-
cantly more frequently than those in randomized networks [2, 3, 14, 15]. Bifan is a
typical network motif in real networks. It is ubiquitously found in various real infor-
mation processing biological networks and is most over-represented [10, 11]. In the
previous work, the abundance of a motif in a real network is explained by its func-
tion considered as a dynamical system [2, 3]. Here both structure and function are
considered locally. Such an explanation seems to succeed in the case of feed-forward



loop motif [2, 3]. However, function of bifan is still controversial [10, 11].
Our theory and data analysis suggests a new possibility. First the fact that bi-

fan is over-represented in real networks suggests that real networks have a tendency
toward a stabilization in our sense. Furthermore, we see that the correspondence
between multi-fan structure in real networks and bottleneck structure in their func-
tional networks under the stability condition. It suggests that a possibility that the
abundance of bifan in real networks is explained in relation to the global feature of
functional networks.

We should note that the meaning of our stability condition is not obvious. In
particular, its relation to dynamical stability is still unknown. However, our theory
and data analysis suggest a totally new direction (global perspective) different from
the previous one (local perspective).

5 Conclusions

In this paper we proposed a new approach to the study of complex networks. By
developing a category theoretical treatment of directed networks, we constructed
a systematic method to obtain functional networks for real networks. We applied
our theory to a few real information processing biological networks. We found a
distinguishing global structure of functional networks for real networks compared to
randomized networks. We suggested a possibility of a new hypothesis on network
motifs based on our theory and data analysis.

Many tasks are left as future work. A few of them are listed below:

(i) More enhanced data analysis.

(ii) Calculation of stability condition for more general information processing pat-
terns.

(iii) Relation to dynamical stability.

(iv) Experimental study for our approach to network motifs.

For a theoretical issue, we would like to put a few words on (ii). For infor-
mation processing pattern M0, TM0 := RM0LM0 is an idempotent monad since we
have RM0LM0RM0

∼= RM0 . Hence the category of TM0-algebras is equivalent to the
category of free TM0-algebras, which is equivalent to a full subcategory of Grph
consisting of directed graphs G satisfying ηG : G ∼= TM0(G) [6]. This suggests that
we should obtain a condition for more general information processing patterns M
such that the corresponding monads TM become idempotent. One might classify
information processing patterns M satisfying this undiscovered condition based on
the stability condition.

Applications of category theory to theoretical biology originated from the work
of Robert Rosen, who is also a pioneer in the study of anticipatory systems [20]. In



one of his early papers [19], he introduced a conversion which sends input-output
systems to diagrams that he called abstract block diagrams. This conversion is the
fundamental basis for his work on Metabolism-Repair systems. The essence of the
idea of the conversion is inversion of nodes and arcs, that is, each arc is converted to
a node. One can see that this conversion is embedded in the functor RM0 since each
arc in a directed graph G is sent to a node in RM0(G) when RM0 is applied to G.
Although the details of Rosen’s conversion and the functor RM0 are different, the
spirit is quite similar. This connection with Rosen’s work suggests a potentiality of
our approach for applications to anticipatory systems.
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