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Abstra
t

In this paper we address balan
ing pro
ess of e
ologi
al 
ow networks.

In existing approa
hes, ma
ros
opi
 obje
tives to whi
h systems organize

are assumed. Flow balan
e provides only 
onstraints for the optimiza-

tion. Sin
e 
ow balan
e and obje
tives are separated from ea
h other,

it is impossible to address how the appearan
e of obje
tives is related to


ow balan
e. Therefore we take an alternative approa
h, in whi
h we

dire
tly des
ribe a dynami
s of balan
ing pro
ess. We propose a simple

mathemati
al formula for lo
al balan
ing dynami
s and show that it 
an

generate a self-organizing property, whi
h 
ould be seen as a primitive

obje
tive.

keywords: e
osystem, imbalan
e, balan
ing, obje
tive

1 Introdu
tion

E
osystems 
onsist of 
omplex networks of energy, materials and servi
es.

Various ma
ros
opi
 indi
es have been proposed in order to understand 
om-

plex e
ologi
al networks as a whole (Washida, 1995; Salthe, 2005). They 
an

be roughly 
lassi�ed as follows: indi
es emphasizing produ
tions in e
osystems

(Lotka, 1922; Odum and Pinkerton, 1955; J�rgensen and Mejer, 1979), indi
es

emphasizing dissipations in e
osystems (Sweanson, 1989; S
hneider, 1994; Aoki,

1998), and indi
es emphasizing a
tivities of biologi
al 
ommunities and their in-

terrelationships (Ulanowi
z, 1980; Washida, 1995). They are di�erent in details

and have advantages respe
tively, however, they all assume that ma
ros
opi
 ob-

je
tives to whi
h systems self-organize. In re
ent years, similar attempts emerges

in understanding biologi
al networks inside an organism su
h as metaboli
 or

gene trans
ription regulation networks (Beard et al., 2002; Ibarra et al., 2002;

Kau�man et al., 2003). As in e
ology, they assume ma
ros
opi
 obje
tives that

are to be maximized or minimized.
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The idea that biologi
al systems self-organize toward ma
ros
opi
 obje
tives

may be useful for systems on
e established. Indeed, 
ux balan
e analysis (F-

BA) theory makes good predi
tions on experiments if one 
an set appropriate

obje
tives (Kau�man et al., 2003). However, appearan
es of ma
ros
opi
 obje
-

tives 
annot be addressed if one assumes them in advan
e. In order to dis
uss

how ma
ros
opi
 obje
tives 
ould emerge we fo
us on an assumption that the

ma
ros
opi
 obje
tive approa
h makes. The ma
ros
opi
 obje
tive approa
h

assumes that a balan
e between in
oming 
ows to a system and outgoing 
ows

from the system. The 
ow balan
e de�nes 
onstraints under whi
h a ma
ro-

s
opi
 obje
tive is optimized. The balan
e and the obje
tive are separated from

ea
h other. Here the 
ow balan
e is expressed as merely a set of equations that

la
k the ability of balan
ing, whi
h 
an lo
ally regulate 
ows toward a balan
e.

Ma
ros
opi
 obje
tives are introdu
ed in order to 
ompensate for the la
k of

balan
ing ability. As an alternative to the ma
ros
opi
 obje
tive approa
h, we

dire
tly des
ribe the lo
al balan
ing dynami
s by a simple mathemati
al ex-

pression. This alternative approa
h admits imbalan
es between in
oming and

outgoing 
ows. In this paper we will dis
uss a possibility that a

umulations of

imbalan
es generate a developmental dire
tion of e
ologi
al 
ow networks.

This paper is organized as follows. In se
tion 2, we introdu
e the notion of

balan
ing. In se
tion 3, we present a mathemati
al formulation of balan
ing

pro
ess. In se
tion 4, we give two examples of balan
ing pro
ess. In se
tion 5,

we show balan
ing pro
ess 
an result in a self-organizing property by 
omputer

simulation. In se
tion 6, we analyze the me
hanism of balan
ing. Finally, in

se
tion 7, we give 
on
lusions.

2 From Balan
e to Balan
ing

The ma
ros
opi
 obje
tive approa
h assumes a balan
e in 
ows. For example,

the sum of in
oming 
ows to a system must be equal to the sum of outgoing


ows from the system for ea
h 
hemi
al spe
ies. Without this assumption, one

may not able to �nd maximal or minimal points of a ma
ros
opi
 obje
tive sin
e

the domain of the obje
tive fun
tion is inde�nite. This assumption might be

plausible for biologi
al systems that 
an exist persistently. The intuition that

this assumption is plausible might 
ome from the imagination that 
ow balan
es

are self-regulated as a whole at every moment in persistently existing biologi
al

systems. However, if this image is des
ribed by mathemati
s then it be
omes

merely a set of equations. The image of self-regulation at every moment is

killed. Ma
ros
opi
 obje
tives are introdu
ed in order to 
ompensate for the

la
k of the image of self-regulation at every moment. Here the image of self-

regulation toward a balan
e as a whole is separated into two parts, balan
e

equations and an obje
tive fun
tion.

Sin
e su
h a way of des
ription assumes a ma
ros
opi
 obje
tive in advan
e,

we 
annot address a question about how ma
ros
opi
 obje
tives 
ould appear.

An approa
h that 
ould get in this question is simply des
ribing the image of self-

regulation of 
ows toward a balan
e. In this approa
h we admit the existen
e
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of an imbalan
e between in
oming and outgoing 
ows at ea
h node of a 
ow

network (Matsuno, 1989). Flows in a network regulate their size in order to

eliminate the imbalan
es. We 
all this pro
ess balan
ing. However, if balan
ing

works only a lo
al manner then imbalan
es might be never eliminated. The

balan
ing pro
ess would persist inde�nitely. We 
onsider the possibility that

a lo
al balan
ing pro
ess 
ould indu
e development of 
ow networks toward

organization. In the next se
tion we introdu
e a mathemati
al formulation of

this idea.

Imbalan
e 
an be seen as a lo
al orientating fun
tion of e
osystems, whi
h

is not a ma
ros
opi
 obje
tive but spe
i�es only dire
tion of 
hange of ea
h


ow. The idea of orientating fun
tion is due to Ulanowi
z (1997). At �rst

he propose a quantity 
alled as
enden
y (whi
h will be reviewed in se
tion 5)

as a ma
ros
opi
 obje
tive of e
osystems (Ulanowi
z, 1980; Ulanowi
z, 1986).

However, he later turned to as
enden
y as an orientating fun
tion of e
osystem,

not an obje
tive. This probably arises from internal perspe
tive sin
e e
osystems

themselves would never know the global optimums. We enfor
e the dire
tion of

Ulanowi
z by fo
using on lo
ality (Matsuno, 1989; Salthe, 1993).

We 
an 
ompare our approa
h with the existing approa
h as follows.

Existing Approa
h Balan
e+Obje
tive.

Our Approa
h Balan
ing.

The same idea as balan
ing here is proposed in the study of animal learn-

ing behaviors su
h as sexual imprinting and dis
rimination learning of mimi
ry

(Lynn, 2005; Lynn, 2006; ten Cate et al., 2006; ten Cate and Rowe, 2007).

We brie
y explain them as an auxiliary line of understanding. Peak shift is

known as the following phenomenon. When animals are trained to dis
rimi-

nate between a positively rewarded stimulus (S+) and a negatively or neutrally

rewarded stimulus (S-), we might expe
t that their responses to novel stimuli

are the strongest around the training stimuli. In peak shift, however, animals'

responses to novel stimuli are stronger away from the S+ in a dire
tion opposite

from the S-, and vi
e versa.

The resear
h group of ten Cate treats sexual imprinting of male 
hildren of

a zebra �n
h (ten Cate et al., 2006). Male 
hildren are raised by parents that

are sexually dimorphi
, di�erent in only beak 
olor. Beaks of fathers in the �rst

experimental group are 
olored red and that of mothers are 
olored orange. In

the se
ond group, the reverse 
oloring is done. It is known that when a male

raised in this way be
omes an adult he prefers females with orange beaks if he

belongs to the �rst group. On the other hand, if he belongs to the se
ond group

then he prefers females with red beaks. Thus the beak 
olor of mothers works as

S+ and that of fathers works as S-. In the experiment of ten Cate et al. (2006),

the males 
an 
hoose their mates from eight females whose beaks are 
olored in

di�erent eight stages from more intense red to more yellow orange in
luding two

beak 
olors (i.e. red and orange) of their parents. Males in the �rst group tend

to 
hoose females with more extreme red than their mother on one hand, males

in the se
ond group prefer females with more yellow orange than their mother
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Figure 1: Imbalan
e of 
ow i! j at node j.

on the other hand. In the other arti
les, the possibility that peak shifts lead to

spe
ies dis
rimination is dis
ussed (Lynn, 2006; ten Cate and Rowe, 2007).

In general learning is aimed to an a
quisition of a spe
i�
 performan
e.

However, the experiment of ten Cate et al. (2006) shows that if males try to learn

a performan
e of 
hoosing females with a spe
i�
 
olor then the performan
e

itself shifts as a result. This implies that there are biases in males' 
ognitions.

It suggests that an a

umulation of the biases in animal 
ognitions 
ould 
ause

spe
ies dis
rimination.

3 Imbalan
e and Balan
ing in Flow Networks

Let an e
osystem 
onsist of N nodes (taxa). Let T

ij

be the size of 
ow from

node i to node j for 1 � i; j � N . Total throughput in the system is de�ned by

T =

P

i;j

T

ij

. The sum of in
oming 
ows to node i is denoted by T

�i

=

P

k

T

ki

and the sum of outgoing 
ows from node i is denoted by T

i�

=

P

k

T

ik

. The


ow balan
e at node i is de�ned by

T

�i

= T

i�

:

As mentioned in se
tion 2, we do not assume 
ow balan
e in advan
e and ad-

mit imbalan
es (Matsuno, 1995). Instead of 
ow balan
e 
ondition we assume

balan
ing pro
ess at ea
h 
ow. Ea
h 
ow in a 
ow network dete
ts an imbal-

an
e lo
ally and 
hanges its size in the dire
tion that de
reases the imbalan
e

dete
ted.

The de�nition of imbalan
e Æ

ij

for 
ow i! j is as follows. One of the sim-

plest way is to de�ne imbalan
e at ea
h node as the di�eren
e between the sum

of in
oming 
ows and the sum of outgoing 
ows. In this de�nition imbalan
e

is de�ned asso
iated with a node. However, we would like to de�ne imbalan
e

asso
iated with a 
ow. This is done by 
onsidering how an in
oming 
ow to a

node is distributed between outgoing 
ows from the node and how an outgoing


ow from a node is 
ontributed by in
oming 
ows to the node. This 
onsidera-

tion 
an be seen as a generalization of an operation 
alled \de
omposition into
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fun
tion" in Haruna and Gunji (2007).

Let us fo
us on node j (Figure 1). The amount of 
ow from i! j to j ! k

will be

T

ij

�

T

jk

T

j�

if how obtained materials are utilized is irrelevant to their sour
es at node j.

On the other hand, the 
ontribution of i! j to T

jk

will be

T

jk

�

T

ij

T

�j

under the same assumption. Obviously if 
ow balan
e is satis�ed at node j

then these two quantities are equal. So we make use of the absolute value of

the di�eren
e between them in order to de�ne imbalan
e asso
iated with a 
ow.

Consider the summation with respe
t to k :

X

k

T

ij

T

jk

j

1

T

j�

�

1

T

�j

j = T

ij

T

j�

j

1

T

j�

�

1

T

�j

j = T

ij

j1�

T

j�

T

�j

j:

Moreover we 
onsider imbalan
e per unit 
ow by dividing this quantity by T

ij

:

j1�

T

j�

T

�j

j:

If we fo
us on node i then we obtain a quantity

j1�

T

�i

T

i�

j

by the same manner. Let 0 � � � 1 be 
ontribution rate of node i. We de�ne

an imbalan
e asso
iated with 
ow i! j by

Æ

ij

= �j1�

T

�i

T

i�

j+ (1� �)j1�

T

j�

T

�j

j:

Balan
ing pro
ess is de�ned so that ea
h 
ow 
hanges its size in the dire
tion

in whi
h the imbalan
e asso
iated with it de
reases. That is, if the partial

di�erential with respe
t to T

ij

�Æ

ij

�T

ij

= sgn(T

i�

� T

�i

)�

T

�i

T

2

i�

+ sgn(T

�j

� T

j�

)(1� �)

T

j�

T

2

�j

is negative then the 
ow in
reases and if the partial di�erential is positive then

the 
ow de
reases, where sgn(x) = +1(x > 0); sgn(x) = �1(x < 0). At present

we do not spe
ify pre
ise fun
tional form of 
ow 
hange but only spe
ify the

dire
tion of 
ow 
hange.

In the next se
tion we analyze two examples by using the above formulation.
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4 Examples

The �rst example is from e
onomi
s. Let us denote the size of material 
ow

from resour
es to manufa
turers by f

0

, from manufa
turers to mer
hants by f

1

and from mer
hants to 
onsumers by f

2

.

resour
es

f

0

�! manufa
turers

f

1

�! mer
hants

f

2

�! 
onsumers

We fo
us on the 
ow f

1

from manufa
turers to mer
hants. The imbalan
e

asso
iated with this 
ow and its partial di�erential with respe
t to f

1

are

Æ

1

= �j1�

f

0

f

1

j+ (1� �)j1�

f

2

f

1

j;

�Æ

1

�f

1

= sgn(f

1

� f

0

)�

f

0

f

2

1

+ sgn(f

1

� f

2

)(1� �)

f

2

f

2

1

:

If f

1

< f

0

; f

2

then sgn(f

1

�f

0

) = sgn(f

1

�f

2

) = �1. Sin
e �Æ

1

=�f

1

< 0 for any �,

f

1

in
reases by balan
ing pro
ess independent of �. This 
ould be interpreted

as follows. If outgoing 
ow is greater than in
oming 
ow at mer
hants then

they try to in
rease in
oming 
ow in order to sell more and at the same time

if outgoing 
ow is less than in
oming 
ow at manufa
turers then they try to

in
rease outgoing 
ow in order to de
rease sto
ks.

If f

1

> f

0

; f

2

then sgn(f

1

� f

0

) = sgn(f

1

� f

2

) = +1. In this 
ase we

have �Æ

1

=�f

1

> 0. Hen
e f

1

de
reases independent of �. Sin
e produ
tion and

sales of 
ommodities are restre
ted by both in
ow of resour
es and amount of


onsumption, this 
ase is also 
onsistent with our intuition about e
onomi
s.

Next we 
onsider the 
ase f

0

< f

1

< f

2

. In this 
ase whether f

1

in
reases or

de
reases is dependent on �. The 
ondition in whi
h

�Æ

1

�f

1

=

�f

0

� (1� �)f

2

f

2

1

is negative is

f

2

>

�

1� �

f

0

:

If � � 1=2 then this 
ondition is always satis�ed by the assumption f

2

> f

0

and hen
e f

1

in
reases. On the other hand, if � > 1=2 then f

1

in
reases only if

f

2

=f

0

is greater than �=(1� �), that is, f

0

is suÆ
iently smaller than f

2

.

If f

2

< f

1

< f

0

then the 
ondition in whi
h

�Æ

1

�f

1

=

��f

0

+ (1� �)f

2

f

2

1

is negative is

f

2

<

�

1� �

f

0

:
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f0

f2

=α/(1-α)
f2 f0

+

+

-

f0

f2

=α/(1-α)
f2 f0+

+

-

(a) (b)

Figure 2: minff

0

; f

2

g < f

1

< maxff

0

; f

2

g. + indi
ates the region in whi
h f

1

in
reases and � indi
ates the region in whi
h f

1

de
reases. (a)� >

1

2

. (b)� <

1

2

.

If � � 1=2 then this is always true and hen
e f

1

in
reases. If � < 1=2 then f

1

in
reases only if f

2

=f

0

is smaller than �=(1��), that is, f

0

is suÆ
iently larger

than f

2

.

Figure 2 summarizes the 
ase minff

0

; f

2

g < f

1

< maxff

0

; f

2

g. First note

that if 0 < � < 1 and sizes of f

0

and f

2

are 
hosen independently in the 
ir
le


entered at the origin then the probability of in
rease of f

1

is greater than

the probability of de
rease. In parti
ular, if f

0

< f

1

< f

2

then f

1

in
reases

if f

2

=f

0

is suÆ
iently large for given �. This would mean that manufa
turers


ow more 
ommodities to mer
hants in order to ful�ll the demand of 
onsumers

f

2

. In this 
ase f

0

must also in
rease in order manufa
turers to survive. If

the demand of 
onsumers in
reases 
ontinually then the 
ow from resour
es to

manufa
turers must in
rease in order to respond to the demand. This would

be possible in the knowledge based industries like software business in whi
h

one 
an expe
t in
reasing return, not in the resour
e based industries like heavy

industries (Arthur, 1994). For small �, f

1


an in
rease easily. On the other

hand, if � is large then the possibility of in
rease in f

1

de
reases. Thus roughly

it seems that small � 
orresponds to the knowledge based industries that 
an

be pulled by the demand of 
onsumers and large � 
orresponds to the resour
e

based industries that are largely restri
ted by resour
es. Of 
ourse we 
annot

know all aspe
ts of the e
onomi
 system in terms of balan
ing pro
ess, however,

we 
an see 
ertain aspe
ts through the proposed formulation.

Next example is a simple tritrophi
 e
osystem 
onsisting of plants, herbivores

and 
arnivores. We denote material 
ows between them as follows.

environment

f

0

�! plants

f

1

�! herbivores

f

2

�! 
arnivores

In parti
ular here we suppose a tritrophi
 e
osystem su
h as 
onsisting of Li-

ma bean, two-spotted spider mites and predatory mites in whi
h plants emit

volatiles that attra
t 
arnivores when herbivores eat plants (Shiojiri et al., 2002;

7



Suzuki et al., 2002). The 
onditions for in
rease or de
rease in f

1

are the same

as in the �rst example. Carnivores that 
at
h herbivores are bodyguards for

plants and 
arnivores 
an �nd their foods by volatiles emitted by plants that

attra
t them. One question arises here. Is there any merit for herbivores in this

system? It is known that plants do not emit volatiles that 
an attra
t 
arnivores

by physi
al stimuli only. Plants attra
t 
arnivores only if they are subje
t to


hemi
al stimuli originated from herbivores. Why do herbivores provide 
hem-

i
al stimuli to plants that attra
t 
arnivores (Shiojiri et al., 2002)? On the

other hand, Suzuki et al. (2002) shows that if there is intera
tion by volatiles

then both the number of herbivores and 
arnivores 
an in
rease by 
omputer

simulation.

Let us answer the question in terms of balan
ing pro
ess. Sin
e plants do

not emit volatiles until the amount of 
hemi
al stimuli ex
eeds a 
ertain level,

we 
an assume that f

0

< f

1

when they begin to emit volatiles. On the other

hand, sin
e if 
arnivores begin to 
at
h herbivores then the number of herbivores

tends to de
rease, we assume that f

1

< f

2

. Hen
e the situation f

0

< f

1

< f

2

appears. In this 
ase if f

2

=f

0

is greater than a 
onstant dependent on � then

f

1

in
reases by balan
ing pro
ess. This 
ould be a merit for herbivores. How is

su
h a 
onsequen
e possible in reality? We borrow an explanation by Suzuki et

al. (2002). As mentioned above, there is a time-lag between start of eating by

herbivores and emission of volatiles. Therefore a part of herbivores will be able

to move to the other leaves before the arrival of 
arnivores. Su
h herbivores

will make a new 
olony on the other leaves. Thus in some 
ases, the number of

herbivores 
ould in
rease.

From the above two examples, one 
an see that balan
ing pro
ess 
ould

have 
ertain explanatory power. In the next se
tion we present the result of


omputer simulation based on balan
ing pro
ess on more general 
ow networks

and dis
uss how the distribution of 
ows develops.

5 Computer Simulation

In this se
tion we dis
uss balan
ing pro
ess on more general 
ow networks.

We prepare a random network with N nodes. We assume that the number of

in-degree is the same as the number of out-degree for every node. We denote

the number by m. We also assume that there is no self-loop in the random

network. Su
h a setting is not realisti
, however, the purpose of this se
tion is

to address the properties of balan
ing pro
ess. This setting is adopted in order

to fa
ilitate mathemati
al analysis. In the 
omputer simulation below, N = 30

and m = 10. So the total number of 
ows is 300. Furthermore, we assume that

� = 1=2 in this se
tion. The behaviors for di�erent values of � is dis
ussed

in the next se
tion. When � = 1=2 we will show that the 
ow network has a

self-organizing property in the following.

Time evolution of 
ows is de�ned by the following sto
hasti
 model. Let �

8
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Figure 3: Time evolution of mean 
ow size.

be a uniform random number in [0; 2�℄. We de�ne

T

�+1

ij

=

8

<

:

T

�

ij

+ � (

�Æ

�

ij

�T

�

ij

< 0)

T

�

ij

� � (

�Æ

�

ij

�T

�

ij

> 0):

The suÆx � indi
ates quantities at �th period. As a 
ontrol experiment, we also

show results when imbalan
e is de�ned by

�

ij

= jT

�i

� T

i�

j+ jT

�j

� T

j�

j:

Initial 
ondition is given by a uniform distribution with mean 20 and width 0:1

in both 
ases. Moreover, � = 0:1 for both 
ases. Figure 3 shows time evolution

of mean 
ow size. Ea
h point is averaged over 1000 trials. Mean 
ow size

in
reases when imbalan
e is given by Æ

ij

. In 
ontrast, it does not in
rease in the


ase of �

ij

.

Next we 
al
ulate as
enden
y of the system in order to measure degree of

development of 
ow networks. As
enden
y is �rst de�ned as a ma
ros
opi
 ob-

je
tive of e
osystem organization, afterward re-de�ned as an orientating fun
tion

(Ulanowi
z, 1980; Ulanowi
z, 1986; Ulanowi
z, 1997). It is de�ned for a 
ow

network by the multipli
ation of total throughput T and mutual information

I of the network. Total throughput T is an index of growth of the system on

one hand, mutual information I measures how the system is organized. The

re-de�ned version of as
enden
y hypothesis says that \any e
osystem has a nat-

ural propensity to in
rease its as
enden
y if there is no signi�
ant perturbations

9



from outside of the system" (Ulanowi
z, 1997). Note that this statement is de-

rived from empiri
al observations. From Figure 3, we already know that total

throughput T in
reases by balan
ing pro
ess with Æ

ij

. Hen
e we fo
us on mu-

tual information I in the following. Mutual information I to be de�ned here

is average information gain between in
oming 
ows and outgoing 
ows at ea
h

node. The a priori probability to �nd a 
ow i! j and its un
ertainty are

T

i�

T

�

T

�j

T

; � log

T

i�

T

�j

T

2

;

respe
tively. On the other hand, the empri
al probability to �nd a 
ow i ! j

and its un
ertainty are

T

ij

T

; � log

T

ij

T

;

respe
tively. Therefore average information gain (mutual information) I is

X

i;j

T

ij

T

(� log

T

i�

T

�j

T

2

� (� log

T

ij

T

)) =

X

i;j

T

ij

T

log

TT

ij

T

i�

T

�j

:

As
enden
y is de�ned by

A = T � I =

X

i;j

T

ij

log

TT

ij

T

i�

T

�j

:

If a distribution of 
ows is given by P (t) then mutual information I is ap-

proximately given by the following formula (Ulanowi
z and Wol�, 1991).

I = h

t

hti

log

t

hti

i+ log

N

m

;

where h� � � i is average with respe
t to P , N is the number of nodes and m is

the number of in-degree or out-degree of ea
h node (they are the same num-

ber for every node). Unfortunately, I 
an in
rease by isotropi
 di�usion. We


onsider that this e�e
t is a super�
ial organization of 
ow networks. In order

to eliminate the e�e
t we subtra
t it from I . If ea
h 
ow in
reases by � with

probability 1=2 and de
reases by � with the same probability independently at

ea
h step, where � is a uniform random number in [0; 2�℄, then we 
an easily

show that the expe
ted value of in
rease in I per one step is approximately

2

3hti

h

1

t

i�

2

:

We de�ne 
 by


(0) = �(0); 
(� + 1) = 
(�) +

2

3hti

�

h

1

t

i

�

�

2

where �(�) = I

�

� logN=m = h(t=hti

�

) log(t=hti

�

)i

�

and h� � � i

�

denotes average

with respe
t to the distribution of 
ows at �th period. Note that logN=m is a

10



 0


 0.005


 0.01


 0.015


 0.02


 0.025


 0.03


 0.035


 0.04


 0
  500
  1000
  1500
  2000


β


time


δ
ij

∆
ij


(a)

-0.02


-0.015


-0.01


-0.005


 0


 0.005


 0.01


 0.015


 0.02


 0
  500
  1000
  1500
  2000


β
-

γ


time


δ
ij

∆
ij


(b)

Figure 4: (a)Time evolution of �. (b)Time evolution of � � 
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onstant. Figure 4 shows the result of our 
omputer simulation averaged over

1000 trials. � in
reases due to the e�e
t of isotropi
 di�usion even in the 
ase

of �

ij

(Figure 4(a)). However, if the expe
ted value of in
rease by the e�e
t

of isotropi
 di�usion is subtra
ted from � then � � 
 still in
reases in the 
ase

of Æ

ij

as before on one hand, it now de
reases in the 
ase of �

ij

on the other

hand (Figure 4(b)). This result suggests that if balan
ing pro
ess pro
eeds by

Æ

ij

then 
ow networks really develop to more organized dire
tion.

Let us examine how 
ow networks are organized by balan
ing pro
ess. Figure

5(a) shows frequen
y distribution of 
ow size in 100 steps from 1000th period

a

umulated over 1000 trials. In the 
ase of �

ij

the distribution is bell-shaped.

On the other hand, the distribution 
orresponding to Æ

ij

has a long tail toward

large 
ow size. Figure 5(b) shows probability of in
rease at ea
h 
ow size

estimated from the same data in Figure 5(a). In the 
ase of �

ij

the smaller


ow size is, the larger the probability of in
rease is below mean 
ow size and

the larger 
ow size is, the smaller the probability of in
rease is above mean 
ow

size. On the other hand, in the 
ase of Æ

ij

the larger 
ow size is, the larger

the probability of in
rease is even above mean 
ow size. Thus 
ow networks

developing by balan
ing pro
ess with Æ

ij

have a self-organizing property that

larger 
ows tend to in
rease more frequently, whi
h 
ould be seen as a primitive

obje
tive. This self-organizing property 
an generate a distribution of 
ow size

with longer tail. We note that the distributions of 
ow size of real e
osystems

are 
lose to power law distributions that have long tails (Ulanowi
z and Wol�,

1991).

In the next se
tion we analyze the me
hanism how the results in this se
-

tion arises through balan
ing pro
ess. In parti
ular, we will see that the self-

organizing property that larger 
ows tend to in
rease more frequently remains

if � is in a suÆ
iently small neighborhood of 1=2. This implies that the self-

organizing property is robust under small perturbations to � at � = 1=2.

6 Me
hanism of Balan
ing Pro
ess

First we see how the behavior of 
ow networks 
hanges if � is di�rent from

� = 1=2. Figure 6 shows that how mean 
ow size after 2000 periods depends

on �. All the other 
onditions in 
omputer simulation are the same as those in

the previous se
tion. It takes maximal values as a fun
tion of � at two points

� = 0:4984; 0:5016, slightly displa
ed from � = 1=2. There is a 
at region

around � = 1=2 between the two maximal points. As � be
omes 
lose to 0 or

1, in
rease in mean 
ow size after 2000 periods tends to be
ome 0. Figure 7(a)

shows that 
ow size distributions for � = 0:5; 0:499; 0:4984. The distribution for

� = 0:499 is similar to that for � = 0:5 with a long tail toward larger 
ow size.

On the other hand, the distribution for � = 0:4984 is a bimodal distribution.

Figure 7(b) shows that probability of in
rease at ea
h 
ow size. One might

expe
t that the organizing me
hanism at � = 0:4984 is totally di�erent from

that around � = 0:5. In order to explain su
h behaviors next we investigate the

me
hanism of balan
ing pro
ess.

12



 10
  15
  20
  25
  30
  35
  40
  45
  50


fr
eq

ue
nc

y


flow size


δ
ij

∆
ij


(a)

 0.48


 0.49


 0.5


 0.51


 0.52


 0.53


 0.54


 0.55


 0.56


 0.57


 0.58


 15
  20
  25
  30
  35
  40
  45


av
er

ag
e 

pr
ob

ab
ili

ty
 o

f i
nc

re
as

e


flow size


δ
ij

∆
ij


(b)

Figure 5: (a)Frequen
y distribution of 
ow size in 100 steps from 1000th period.

(b)Probability of in
rease at ea
h 
ow size estimated from the same data in (a).
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Sin
e the dire
tion of 
hange of T

ij

is dependent on four values T

�i

; T

i�

; T

�j

and T

j�

we �rst fo
us on the relationships between them. We assume that all

the four values have di�erent values and all 
ows with positive sizes also have

di�erent values. It is enough to 
onsider � � 1=2 by symmetry.

(i) T

�i

> T

i�

and T

�j

< T

j�

.

In this 
ase we have

�Æ

ij

�T

ij

= ��

T

�i

T

2

i�

� (1� �)

T

j�

T

2

�j

< 0:

Thus T

ij

always in
reases regardless of �.

(ii) T

�i

< T

i�

and T

�j

> T

j�

.

In this 
ase we have

�Æ

ij

�T

ij

= �

T

�i

T

2

i�

+ (1� �)

T

j�

T

2

�j

> 0:

Thus T

ij

always de
reases independent of �.

We 
an prove that the number of pairs (i; j) that satisfy (i) is the same as

the number of pairs (i; j) that satisfy (ii). Indeed, we 
an assume that T

�i

> T

i�

for 1 � i � n and T

�i

< T

i�

for n + 1 � i � N . Suppose the number of

pairs (i; j) with T

�i

> T

i�

; T

�j

< T

j�

is k. Then the number of pairs (i; j)

with T

�i

> T

i�

; T

�j

> T

j�

is nm � k. In order to obtain the number of pairs

(i; j) with T

�i

< T

i�

; T

�j

> T

j�

we subtra
t the number of pairs (i; j) with

T

�i

> T

i�

; T

�j

> T

j�

from the number of pairs (i; j) with T

�j

> T

j�

. That is,

the number of pairs (i; j) with T

�i

< T

i�

; T

�j

> T

j�

is nm � (nm � k) = k.

This implies that if two 
ases (i) and (ii) are 
ombined together then they do

not 
ontribute to in
rease of mean 
ow size.

(iii) T

�i

> T

i�

and T

�j

> T

j�

.

Sin
e

�Æ

ij

�T

ij

= ��

T

�i

T

2

i�

+ (1� �)

T

j�

T

2

�j

is a summation of a positive number and a negative number, the sign depends

on the relationships between T

�i

; T

i�

; T

�j

; T

j�

and �.

(iii)-(i)

T

i�

T

i�

+T

�j

< �.

Sin
e the 
ondition is equivalent to

��

1

T

i�

+ (1� �)

1

T

�j

< 0;

we obtain

�Æ

ij

�T

ij

= ��

T

�i

T

2

i�

+ (1� �)

T

j�

T

2

�j

< ��

1

T

i�

+ (1� �)

1

T

�j

< 0:
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x

y

y=-x
0

(ri, rj)

(β, γ)

Figure 8: h(�; 
); (r

i

; r

j

)i is negative if the angle between the two ve
tors is

greater than

�

2

.

(iii)-(ii) � <

T

i�

T

i�

+T

�j

.

Put r

i

= T

�i

=T

i�

; r

j

= T

j�

=T

�j

. By the 
ondition of (iii), r

i

> 1 and r

j

< 1.

We also put � = ��=T

i�

and 
 = (1��)=T

�j

. Then �Æ

ij

=�T

ij


an be represented

as an inner produ
t of two plane ve
tors (�; 
) and (r

i

; r

j

):

�Æ

ij

�T

ij

= �r

i

+ 
r

j

= h(�; 
); (r

i

; r

j

)i;

where h� � � ; � � � i is the standard inner produ
t in R

2

. Sin
e � < 0; 
 > 0 and

� + 
 > 0 by the 
ondition of (iii)-(ii), (�; 
) is in f(x; y) 2 R

2

jy > �x; x <

0; y > 0g. On the other hand, sin
e 0 < r

j

< 1 < r

i

, (r

i

; r

j

) is in f(x; y) 2

R

2

jy < x; x > 0; y > 0g. Therefore h(�; 
); (r

i

; r

j

)i tends to be negative if (a)

the angle between (�; 
) and (�1; 1) is smaller or (b) the angle between (r

i

; r

j

)

and (1; 0) is smaller (Figure 8). Note that the two 
onditions (a) and (b) are

not independent.

First we 
onsider (a). The 
loser the inner produ
t

h(�1; 1);

1

p

�

2

+ 


2

(�; 
)i =

1

p

�

2

+ 


2

(�� + 
)

is to

p

2, the smaller the angle between (�; 
) and (�1; 1). In order to see how

the value of the inner produ
t depends on T

ij

, let us assume that a =

P

k 6=j

T

ik

and b =

P

k 6=i

T

kj

are 
onstant and 
onsider the following fun
tion.

f

�

(x) =

1

q

(

�

x+a

)

2

+ (

1��

x+b

)

2

(

�

x + a

+

1� �

x+ b

):

The di�erential of f

�

(x) is

f

0

�

(x) =

�(1� �)(a � b)f(1� �)a� �b+ (1� 2�)xg

f(1� �)

2

(x+ a)

2

+ �

2

(x+ b)

2

g

3

2

:
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There is just one point that gives an extreme value of f

�

if � 6= 1=2. We denote

it by

x

�

=

�b� (1� �)a

1� 2�

:

By the 
ondition of (iii)-(ii), we have

T

ij

>

�b� (1� �)a

1� 2�

= x

�

:

Therefore we only 
onsider the range x > x

�

. In this range (1��)a��b+(1�

2�)x is always positive. So the sign of f

0

�

only depends on a� b. If a > b whi
h

is equivalent to T

i�

> T

�j

then f

�

(x) is in
reasing for x > x

�

. f

�

(x) 
onverges

to 1=

p

�

2

+ (1� �)

2

from below as x ! 1. Note that x

�

is negative if a > b.

If a < b whi
h is equivalent to T

i�

< T

�j

then f

�

(x) is de
reasing for x > x

�

.

f

�

(x) 
onverges to 1=

p

�

2

+ (1� �)

2

from above as x ! 1. If � = 1=2 then

f

0

�

(x) has no zero point. Sin
e the 
ondition of (iii)-(ii) be
omes a > b, f

�

(x)

is in
reasing for all x 2 R. It 
onverges to

p

2 as x ! 1. However, we 
an

virtually suppose that f

�

(x) takes a minimal value at �1 and treat both 
ases

� < 1=2 and � = 1=2 at the same time.

Next we 
onsider (b). The 
loser the inner produ
t

h(1; 0);

1

q

r

2

i

+ r

2

j

(r

i

; r

j

)i =

r

i

q

r

2

i

+ r

2

j

is to 1, the smaller the angle between (1; 0) and (r

i

; r

j

) is. Assuming p =

T

�i

; q = T

j�

are 
onstants, we de�ne a fun
tion

g(x) =

p

x+a

q

(

p

x+a

)

2

+ (

q

x+b

)

2

:

Sin
e g(x) 
an be rewritten as

g(x) =

1

q

1 + (

q

p

)

2

(1 +

a�b

x+b

)

2

;

g(x) is in
reasing if a > b and 
onverges to 1=

q

1 + (

q

p

)

2

from below as x!1.

If a < b then g(x) is de
reasing and 
onverges to 1=

q

1 + (

q

p

)

2

from above as

x!1.

Combining both (a) and (b), we 
an 
on
lude as follows for given 0 � � �

1=2. If T

i�

> T

�j

then �Æ

ij

=�T

ij

be
omes negative more often for larger T

ij

. If

T

i�

< T

�j

then �Æ

ij

=�T

ij

be
omes negative more often for smaller T

ij

.

Next we examine how the degrees of the above properties 
hange if � 
hanges.

The partial di�erential of f

�

with respe
t to � is

�f

�

��

=

(x+ a)(x+ b)f(1� �)a� �b+ (1� 2�)xg

f(1� �)

2

(x + a)

2

+ �

2

(x+ b)

2

g

3

2

:
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By the 
ondition of (iii)-(ii), (1� �)a� �b+ (1� 2�)x is always positive hen
e

�f

�

=�� > 0. Therefore if � be
omes smaller then f

�

(x) de
reases for a �xed x,

whi
h implies that �Æ

ij

=�T

ij

be
omes negative less often.

(iv) T

�i

< T

i�

and T

�j

< T

j�

.

In this 
ase we have

�Æ

ij

�T

ij

= ��

T

�i

T

2

i�

+ (1� �)

T

j�

T

2

�j

:

So the sign is dependent on T

�i

; T

i�

; T

�j

; T

j�

and � as in (iii).

(iv)-(i) � <

T

i�

T

i�

+T

�j

.

By the 
ondition, we 
an obtain �Æ

ij

=�T

ij

< 0 as in (iii)-(i).

(iv)-(ii)

T

i�

T

i�

+T

�j

< �.

As in (iii)-(ii), we represent �Æ

ij

=�T

ij

by an inner produ
t

�Æ

ij

�T

ij

= h(�

0

; 


0

); (r

i

; r

j

)i;

where r

i

= T

�i

=T

i�

; r

j

= T

j�

=T

�j

and �

0

= �=T

i�

; 


0

= (1 � �)=T

�j

. By a

similar argument, we 
an see that the inner produ
t tends to be negative if (
)

the angle between (�

0

; 


0

) and (1;�1) is smaller or (d) the angle between (r

i

; r

j

)

and (0; 1) is smaller. We 
an obtain the same fun
tion f

�

(x) as in (iii)-(ii)

for (
). By the 
ondition of (iv)-(ii), we always have a < b if 0 < � � 1=2.

Therefore, again by the 
ondition of (iv)-(ii), the range of x to be 
onsidered is

x < x

�

. In this range f

�

(x) is in
reasing.

For (d), we 
onsider the following inner produ
t

h(0; 1);

1

q

r

2

i

+ r

2

j

(r

i

; r

j

)i =

r

j

q

r

2

i

+ r

2

j

:

As in (iii)-(ii), we de�ne a fun
tion

h(x) =

q

x+b

q

(

p

x+a

)

2

+ (

q

x+b

)

2

=

1

q

1 + (

p

q

)

2

(1 +

b�a

x+a

)

2

:

If a < b then h(x) is in
reasing and 
onverges to 1=

q

(

p

q

)

2

+ 1 from below.

Thus one 
an see that �Æ

ij

=�T

ij

be
omes negative more often as T

ij

be
omes

large if (
) and (d) are 
ombined together. Moreover, we have �f

�

=�� < 0 by

the 
ondition of (iv)-(ii). Hen
e f

�

(x) be
omes larger as � be
omes smaller,

whi
h implies that �Æ

ij

=�T

ij


an be
ome negative more often.
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So far we argue the non-statisti
al stru
tures of balan
ing pro
ess. In par-

ti
ular, we �nd that in the two 
ases (iii)-(ii) with T

i�

> T

�j

and (iv)-(ii) larger

T

ij


an in
rease more often. Figure 9 shows that these stru
tures are e�e
tive

to generate longer tail 
ow size distributions around � = 0:5 and a bimodal

distribution at � = 0:4984. The distributions in the 
ontrolled numeri
al exper-

iments are generated by as follows. First we estimate the probability of in
rease

in the 
ase (iii)-(ii) with T

i�

> T

�j

, whi
h is denoted by p

1

, and the probability

of in
rease in the 
ase (iv)-(ii), whi
h is denoted by p

2

, from the un
ontrolled

numeri
al experiment for ea
h value of �. Se
ond, in the 
ontrolled numeri
al

experiments, if T

ij

satis�es the 
onditions of (iii), (iii)-(ii) and T

i�

> T

�j

(or

the 
onditions of (iv) and (iv)-(ii)), it in
reases with probability p

1

(or p

2

), re-

gardless of 
ow size. Thus the stru
tures of balan
ing pro
ess des
ribed above

whi
h enable larger 
ows to in
rease more often are broken.

If � is suÆ
iently 
lose to 1=2 then the e�e
t of these stru
tures would not so

di�erent from that for � = 1=2 by the 
ontinuity of 
onditions with respe
t to �

appeared in the above argument. This suggests that the self-organizing property

at � = 1=2 observed in the previous se
tion is robust to small perturbations to

�.

There are also statisti
al e�e
ts. For example, suppose T

�i

; T

i�

; T

�j

and

T

j�

have values 
lose to mean. If the 
ondition of (iii) T

�i

> T

i�

and T

�j

> T

j�

is satis�ed then the greater T

ij

is apart from mean 
ow size toward larger 
ow

size, the smaller

P

k 6=j

T

ik

is in order T

�i

> T

i�

to hold. This implies that

T

i�

< T

�j

is satis�ed more often if T

ij

larger than mean 
ow size is larger. In

addition, the greater T

ij

is apart from mean 
ow size toward smaller 
ow size,

the larger

P

k 6=i

T

kj

is in order T

�j

> T

j�

to be satis�ed. Hen
e T

i�

< T

�j

is

satis�ed more often if T

ij

smaller than mean 
ow size is smaller. Su
h an e�e
t

would be relevant to frequen
y distribution of 
ow size within (iii)-(i) if � � 1=2

is 
lose to 1=2. The same thing 
an be said for (iv).

There is another statisti
al e�e
t what we 
all the e�e
t of threshold. We

see T

i�

=(T

i�

+ T

�j

) as a fun
tion of T

ij

. That is, we 
onsider a fun
tion

k(x) =

x+ a

2x+ a+ b

=

1

2

(1 +

a� b

2x+ a+ b

);

where a =

P

k 6=j

T

ik

and b =

P

k 6=i

T

kj

are supposed to be 
onstants. If a > b

then k(x) > 1=2 for all x > 0. If a < b then k(x) is in
reasing for x > 0 and


onverges to 1=2 as x ! 1. Therefore � < T

i�

=(T

i�

+ T

�j

) will be satis�ed

if T

ij

is larger than 
ertain threshold value when � < 1=2. If � is too 
lose

to or too far from 1=2 then su
h an e�e
t would not be relevant. However,

for some values of � the e�e
t of threshold might be signi�
ant. For example,

the bimodal distribution without long tail for � = 0:4984 shown in Figure 7(a)

would be a 
ooperative e�e
t of the e�e
t of threshold and the me
hanism for

(iii)-(ii) with T

i�

< T

�j

.
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Figure 9: Results of 
ontrolled numeri
al experiments in whi
h the stru
tures

of balan
ing pro
ess whi
h enable larger T

ij

to in
rease more often are broken.

See text for details. (a)For � = 0:5, p

1

= 0:035451 and p

2

= 0:035566. (b)For

� = 0:4990, p

1

= 0:008836 and p

2

= 0:033590. (
)For � = 0:4984, p

1

= 0:002520

and p

2

= 0:004638.
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7 Con
lusions

We give up the position where one 
an assume ma
ros
opi
 obje
tives to

whi
h e
osystems organize themselves. At this position we 
annot address the

relationship between 
ow balan
e and ma
ros
opi
 obje
tives. Instead, in this

paper we dire
tly des
ribe a dynami
s of balan
ing pro
ess and argue how a self-

organizing property 
an arise from the balan
ing pro
ess. Balan
ing pro
ess we

proposed is a pro
ess of lo
al elimination of imbalan
es. Sin
e the pro
ess of

balan
ing is lo
al, an e�ort of eliminating an imbalan
e 
an lead to generation

of a new imbalan
e. As a result of su
h a pro
ess, 
ow networks 
an have a

self-organizing property.

Obje
tives are related to wholeness of biologi
al systems. Apparently obje
-

tives are unique to biologi
al systems sin
e they seem not to be in physi
al or


hemi
al systems. However, if one 
an set an obje
tive that 
an be identi�ed

from the outside of a system then he treats the system as a ma
hine. Any

ma
hine is made for 
ertain obje
tive. If it is broken then it is not a ma
hine

sin
e it does not have fun
tions that are expe
ted. A broken ma
hine is not a

ma
hine, however, it is at least some material. If this material 
ould a
quire a

new fun
tion by itself then we might re
ognize it as a new ma
hine. However

one might also feel that it is not appropriate to 
all it ma
hine anymore. In su
h

a situation one would not �nd a ma
hine but a life. At this point we fo
us on

a system that 
omes into existen
e as the system. When a system is re
ognized

as the system, there is already a wholeness that enable the system to 
ome into

existen
e. We 
all su
h a wholeness intrinsi
 wholeness, whi
h is distinguished

from a wholeness spe
i�ed by a ma
ros
opi
 obje
tive.

In this paper we attempt to represent intrinsi
 wholeness as balan
ing pro-


ess toward 
ow balan
e. Intrinsi
 wholeness itself does not imply any ma
ro-

s
opi
 obje
tive, however, balan
ing pro
ess, an e�ort to maintain intrinsi
 w-

holeness, 
an generates a self-organizing property, whi
h 
ould be seen as a

primitive obje
tive.

Our stan
e in this paper is that of minimalist. We propose a model of

balan
ing pro
ess without any 
onsideration on 
onstraints in real e
osystems.

Su
h minimalist stan
e indu
es a gap between the behavior of our model and

real e
osystems. While our model 
ow network keeps glowing forever, real

e
osystems senes
e in their �nal stage of developmental pro
ess (Salthe, 1993;

Ulanowi
z, 1997). However, su
h an unrealisti
 result would be resolved if we

introdu
e 
onstraints to the system from its environment in a suitable manner,

whi
h is left as a future work.

Another link to real e
osystems is an appli
ation of the idea in our model

to data analysis (Ulanowi
z, 2004). In the de�nition of balan
ing pro
ess we


onsider the 
ow from node i to node k via node j. The probability that a unit

amount of 
ow from node i goes into node k via node j is

T

ij

T

�j

�

T

jk

T

j�

if we assume that the mass a
tion intera
tion at node j. On the other hand, the
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probability of intera
tion among node i, node j and node k will be proportional

to

B

i

B

�

B

j

B

�

B

k

B

if we assume the mass a
tion law on the whole system, where B

i

is the amount of

sto
k at node i and B =

P

i

B

i

. We de�ne the former probability by 
onsidering

ea
h node as a 
olle
tion of relations with other nodes. In 
ontrast, the latter

probability is de�ned by 
onsidering ea
h node as a stru
ture-less element. In

order to quantify the di�eren
e between these two perspe
tives, we 
an 
onsider

the Kullba
k-Leibler information of the latter probability q

ik

= B

i

B

k

=B

2

from

the former probability p

ik

= T

ij

T

jk

=T

�j

T

j�

(Kullba
k and Leibler, 1951)

I

j

=

X

i;k

p

ik

log

p

ik

q

ik

for ea
h node j. Ulanowi
z and Abar
a-Arenas (1997) 
onsidered the Kullba
k-

Leibler information for the whole system in order to de�ne the as
enden
y in-


luding biomass. However, I

j

here is not de�ned for the whole system but for

ea
h node j. Hen
e I

j


ould be used to measure the degree of organization

around node j. The 
olle
tion of all I

j

would 
hara
terize the heterogeneity of

organization in the whole system. If both 
ow and sto
k data are available for

real e
osystems, we 
an readily 
al
ulate the quantity I

j

. Data analysis on real

e
osystems is also left as a future work.
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