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Abstract

In this paper we address balancing process of ecological flow networks.
In existing approaches, macroscopic objectives to which systems organize
are assumed. Flow balance provides only constraints for the optimiza-
tion. Since flow balance and objectives are separated from each other,
it is impossible to address how the appearance of objectives is related to
flow balance. Therefore we take an alternative approach, in which we
directly describe a dynamics of balancing process. We propose a simple
mathematical formula for local balancing dynamics and show that it can
generate a self-organizing property, which could be seen as a primitive
objective.
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1 Introduction

Ecosystems consist of complex networks of energy, materials and services.
Various macroscopic indices have been proposed in order to understand com-
plex ecological networks as a whole (Washida, 1995; Salthe, 2005). They can
be roughly classified as follows: indices emphasizing productions in ecosystems
(Lotka, 1922; Odum and Pinkerton, 1955; Jgrgensen and Mejer, 1979), indices
emphasizing dissipations in ecosystems (Sweanson, 1989; Schneider, 1994; Aoki,
1998), and indices emphasizing activities of biological communities and their in-
terrelationships (Ulanowicz, 1980; Washida, 1995). They are different in details
and have advantages respectively, however, they all assume that macroscopic ob-
jectives to which systems self-organize. In recent years, similar attempts emerges
in understanding biological networks inside an organism such as metabolic or
gene transcription regulation networks (Beard et al., 2002; Ibarra et al., 2002;
Kauffman et al., 2003). As in ecology, they assume macroscopic objectives that
are to be maximized or minimized.



The idea that biological systems self-organize toward macroscopic objectives
may be useful for systems once established. Indeed, flux balance analysis (F-
BA) theory makes good predictions on experiments if one can set appropriate
objectives (Kauffman et al., 2003). However, appearances of macroscopic objec-
tives cannot be addressed if one assumes them in advance. In order to discuss
how macroscopic objectives could emerge we focus on an assumption that the
macroscopic objective approach makes. The macroscopic objective approach
assumes that a balance between incoming flows to a system and outgoing flows
from the system. The flow balance defines constraints under which a macro-
scopic objective is optimized. The balance and the objective are separated from
each other. Here the flow balance is expressed as merely a set of equations that
lack the ability of balancing, which can locally regulate flows toward a balance.
Macroscopic objectives are introduced in order to compensate for the lack of
balancing ability. As an alternative to the macroscopic objective approach, we
directly describe the local balancing dynamics by a simple mathematical ex-
pression. This alternative approach admits imbalances between incoming and
outgoing flows. In this paper we will discuss a possibility that accumulations of
imbalances generate a developmental direction of ecological flow networks.

This paper is organized as follows. In section 2, we introduce the notion of
balancing. In section 3, we present a mathematical formulation of balancing
process. In section 4, we give two examples of balancing process. In section 5,
we show balancing process can result in a self-organizing property by computer
simulation. In section 6, we analyze the mechanism of balancing. Finally, in
section 7, we give conclusions.

2 From Balance to Balancing

The macroscopic objective approach assumes a balance in flows. For example,
the sum of incoming flows to a system must be equal to the sum of outgoing
flows from the system for each chemical species. Without this assumption, one
may not able to find maximal or minimal points of a macroscopic objective since
the domain of the objective function is indefinite. This assumption might be
plausible for biological systems that can exist persistently. The intuition that
this assumption is plausible might come from the imagination that flow balances
are self-regulated as a whole at every moment in persistently existing biological
systems. However, if this image is described by mathematics then it becomes
merely a set of equations. The image of self-regulation at every moment is
killed. Macroscopic objectives are introduced in order to compensate for the
lack of the image of self-regulation at every moment. Here the image of self-
regulation toward a balance as a whole is separated into two parts, balance
equations and an objective function.

Since such a way of description assumes a macroscopic objective in advance,
we cannot, address a question about how macroscopic objectives could appear.
An approach that could get in this question is simply describing the image of self-
regulation of flows toward a balance. In this approach we admit the existence



of an imbalance between incoming and outgoing flows at each node of a flow
network (Matsuno, 1989). Flows in a network regulate their size in order to
eliminate the imbalances. We call this process balancing. However, if balancing
works only a local manner then imbalances might be never eliminated. The
balancing process would persist indefinitely. We consider the possibility that
a local balancing process could induce development of flow networks toward
organization. In the next section we introduce a mathematical formulation of
this idea.

Imbalance can be seen as a local orientating function of ecosystems, which
is not a macroscopic objective but specifies only direction of change of each
flow. The idea of orientating function is due to Ulanowicz (1997). At first
he propose a quantity called ascendency (which will be reviewed in section 5)
as a macroscopic objective of ecosystems (Ulanowicz, 1980; Ulanowicz, 1986).
However, he later turned to ascendency as an orientating function of ecosystem,
not an objective. This probably arises from internal perspective since ecosystems
themselves would never know the global optimums. We enforce the direction of
Ulanowicz by focusing on locality (Matsuno, 1989; Salthe, 1993).

We can compare our approach with the existing approach as follows.

Existing Approach Balance+Objective.
Our Approach Balancing.

The same idea as balancing here is proposed in the study of animal learn-
ing behaviors such as sexual imprinting and discrimination learning of mimicry
(Lynn, 2005; Lynn, 2006; ten Cate et al., 2006; ten Cate and Rowe, 2007).
We briefly explain them as an auxiliary line of understanding. Peak shift is
known as the following phenomenon. When animals are trained to discrimi-
nate between a positively rewarded stimulus (S+) and a negatively or neutrally
rewarded stimulus (S-), we might expect that their responses to novel stimuli
are the strongest around the training stimuli. In peak shift, however, animals’
responses to novel stimuli are stronger away from the S+ in a direction opposite
from the S-, and vice versa.

The research group of ten Cate treats sexual imprinting of male children of
a zebra finch (ten Cate et al., 2006). Male children are raised by parents that
are sexually dimorphic, different in only beak color. Beaks of fathers in the first
experimental group are colored red and that of mothers are colored orange. In
the second group, the reverse coloring is done. It is known that when a male
raised in this way becomes an adult he prefers females with orange beaks if he
belongs to the first group. On the other hand, if he belongs to the second group
then he prefers females with red beaks. Thus the beak color of mothers works as
S+ and that of fathers works as S-. In the experiment of ten Cate et al. (2006),
the males can choose their mates from eight females whose beaks are colored in
different eight stages from more intense red to more yellow orange including two
beak colors (i.e. red and orange) of their parents. Males in the first group tend
to choose females with more extreme red than their mother on one hand, males
in the second group prefer females with more yellow orange than their mother



Figure 1: Imbalance of flow ¢ — j at node j.

on the other hand. In the other articles, the possibility that peak shifts lead to
species discrimination is discussed (Lynn, 2006; ten Cate and Rowe, 2007).

In general learning is aimed to an acquisition of a specific performance.
However, the experiment of ten Cate et al. (2006) shows that if males try to learn
a performance of choosing females with a specific color then the performance
itself shifts as a result. This implies that there are biases in males’ cognitions.
It suggests that an accumulation of the biases in animal cognitions could cause
species discrimination.

3 Imbalance and Balancing in Flow Networks

Let an ecosystem consist of N nodes (taxa). Let T;; be the size of flow from
node i to node j for 1 <i,j < N. Total throughput in the system is defined by
T = Z” Tij. The sum of incoming flows to node i is denoted by Ty; = ", Thi
and the sum of outgoing flows from node i is denoted by T;. = >, Tjr. The
flow balance at node i is defined by

T*i — Lk

As mentioned in section 2, we do not assume flow balance in advance and ad-
mit imbalances (Matsuno, 1995). Instead of flow balance condition we assume
balancing process at each flow. Each flow in a flow network detects an imbal-
ance locally and changes its size in the direction that decreases the imbalance
detected.

The definition of imbalance d;; for flow i — j is as follows. One of the sim-
plest way is to define imbalance at each node as the difference between the sum
of incoming flows and the sum of outgoing flows. In this definition imbalance
is defined associated with a node. However, we would like to define imbalance
associated with a flow. This is done by considering how an incoming flow to a
node is distributed between outgoing flows from the node and how an outgoing
flow from a node is contributed by incoming flows to the node. This considera-
tion can be seen as a generalization of an operation called “decomposition into



function” in Haruna and Gunji (2007).
Let us focus on node j (Figure 1). The amount of flow from i — j to j — k
will be

T}
T}

Tij X

if how obtained materials are utilized is irrelevant to their sources at node j.
On the other hand, the contribution of ¢ = j to T} will be

T

T X
Jk T*J

under the same assumption. Obviously if flow balance is satisfied at node j
then these two quantities are equal. So we make use of the absolute value of
the difference between them in order to define imbalance associated with a flow.
Consider the summation with respect to & :

1 1 1 1 T
TyTj| e — | = Ty Ty o — ——| = Tyj|1 — 3.
g I T]* T*] J=7 T]* T*] J T*]

Moreover we consider imbalance per unit flow by dividing this quantity by 7}; :

T},

- ==
T.;

If we focus on node 7 then we obtain a quantity

T*i |
T;

-

by the same manner. Let 0 < a < 1 be contribution rate of node i. We define
an imbalance associated with flow i — j by

Ty T
Gy = ot = 1+ (1= )1~ ).

Balancing process is defined so that each flow changes its size in the direction
in which the imbalance associated with it decreases. That is, if the partial
differential with respect to Tj;

96;; T .
81_:;; - Sgn(Ti* - T*i)af%: -+ Sgn(T*j _ T] )(1 _ Ol) TiQ]

is negative then the flow increases and if the partial differential is positive then
the flow decreases, where sgn(z) = +1(z > 0),sgn(z) = —1(z < 0). At present
we do not specify precise functional form of flow change but only specify the
direction of flow change.

In the next section we analyze two examples by using the above formulation.



4 Examples

The first example is from economics. Let us denote the size of material flow
from resources to manufacturers by fq, from manufacturers to merchants by f;
and from merchants to consumers by fs.

fo f1 f2
resources — manufacturers — merchants — consumers

We focus on the flow f; from manufacturers to merchants. The imbalance
associated with this flow and its partial differential with respect to f; are

TR (PR RN |
h = all f1|+(1 a)ll T
g—f{ = sgn(fi — fo)aj:_% +sgn(f1 — f2)(1 - a)}%.

If f1 < fo, f2 then sgn(fi1—fo) = sgn(fi—f2) = —1. Since 901 /9 f1 < 0 for any «a,
f1 increases by balancing process independent of a. This could be interpreted
as follows. If outgoing flow is greater than incoming flow at merchants then
they try to increase incoming flow in order to sell more and at the same time
if outgoing flow is less than incoming flow at manufacturers then they try to
increase outgoing flow in order to decrease stocks.

If fi > fo,fo then sgn(fi — fo) = sgn(fi — f2) = +1. In this case we
have 9091 /0f1 > 0. Hence f; decreases independent of a.. Since production and
sales of commodities are restrected by both inflow of resources and amount of
consumption, this case is also consistent with our intuition about economics.

Next we consider the case fo < fi < fo. In this case whether f; increases or
decreases is dependent on a. The condition in which

9%, _afy-(1-a)f
oft 1t
is negative is

(0%
1-—

f2> fo-
!
If @« < 1/2 then this condition is always satisfied by the assumption fo > fo
and hence f; increases. On the other hand, if @ > 1/2 then f; increases only if
f2/ fo is greater than «/(1 — ), that is, fy is sufficiently smaller than f.

If fo < f1 < fo then the condition in which

00 _ —afo+(1-a)fs
0fi ft

is negative is

«
l1—«

fa < fo-
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Figure 2: min{fy, fo} < f1 < max{fo, f2}. + indicates the region in which f;
increases and — indicates the region in which f; decreases. (a)a > 1. (b)a < 3.

If & > 1/2 then this is always true and hence f; increases. If &« < 1/2 then f;
increases only if fo/fo is smaller than /(1 — ), that is, fo is sufficiently larger
than f5.

Figure 2 summarizes the case min{ fy, fo} < fi < max{fy, f}. First note
that if 0 < a < 1 and sizes of fo and f5 are chosen independently in the circle
centered at the origin then the probability of increase of f; is greater than
the probability of decrease. In particular, if fo < fi < fo then f; increases
if fo/fo is sufficiently large for given «. This would mean that manufacturers
flow more commodities to merchants in order to fulfill the demand of consumers
f2- In this case fp must also increase in order manufacturers to survive. If
the demand of consumers increases continually then the flow from resources to
manufacturers must increase in order to respond to the demand. This would
be possible in the knowledge based industries like software business in which
one can expect increasing return, not in the resource based industries like heavy
industries (Arthur, 1994). For small «, f; can increase easily. On the other
hand, if a is large then the possibility of increase in f; decreases. Thus roughly
it seems that small a corresponds to the knowledge based industries that can
be pulled by the demand of consumers and large « corresponds to the resource
based industries that are largely restricted by resources. Of course we cannot
know all aspects of the economic system in terms of balancing process, however,
we can see certain aspects through the proposed formulation.

Next example is a simple tritrophic ecosystem consisting of plants, herbivores
and carnivores. We denote material flows between them as follows.

environment 2% plants 1, herbivores 25 carnivores

In particular here we suppose a tritrophic ecosystem such as consisting of Li-
ma bean, two-spotted spider mites and predatory mites in which plants emit
volatiles that attract carnivores when herbivores eat plants (Shiojiri et al., 2002;



Suzuki et al., 2002). The conditions for increase or decrease in f; are the same
as in the first example. Carnivores that catch herbivores are bodyguards for
plants and carnivores can find their foods by volatiles emitted by plants that
attract them. One question arises here. Is there any merit for herbivores in this
system? It is known that plants do not emit volatiles that can attract carnivores
by physical stimuli only. Plants attract carnivores only if they are subject to
chemical stimuli originated from herbivores. Why do herbivores provide chem-
ical stimuli to plants that attract carnivores (Shiojiri et al., 2002)? On the
other hand, Suzuki et al. (2002) shows that if there is interaction by volatiles
then both the number of herbivores and carnivores can increase by computer
simulation.

Let us answer the question in terms of balancing process. Since plants do
not emit volatiles until the amount of chemical stimuli exceeds a certain level,
we can assume that fy < fi when they begin to emit volatiles. On the other
hand, since if carnivores begin to catch herbivores then the number of herbivores
tends to decrease, we assume that fi < fo. Hence the situation fo < fi < fo
appears. In this case if fo/fo is greater than a constant dependent on « then
f1 increases by balancing process. This could be a merit for herbivores. How is
such a consequence possible in reality? We borrow an explanation by Suzuki et
al. (2002). As mentioned above, there is a time-lag between start of eating by
herbivores and emission of volatiles. Therefore a part of herbivores will be able
to move to the other leaves before the arrival of carnivores. Such herbivores
will make a new colony on the other leaves. Thus in some cases, the number of
herbivores could increase.

From the above two examples, one can see that balancing process could
have certain explanatory power. In the next section we present the result of
computer simulation based on balancing process on more general flow networks
and discuss how the distribution of flows develops.

5 Computer Simulation

In this section we discuss balancing process on more general flow networks.
We prepare a random network with N nodes. We assume that the number of
in-degree is the same as the number of out-degree for every node. We denote
the number by m. We also assume that there is no self-loop in the random
network. Such a setting is not realistic, however, the purpose of this section is
to address the properties of balancing process. This setting is adopted in order
to facilitate mathematical analysis. In the computer simulation below, N = 30
and m = 10. So the total number of flows is 300. Furthermore, we assume that
a = 1/2 in this section. The behaviors for different values of « is discussed
in the next section. When a = 1/2 we will show that the flow network has a
self-organizing property in the following.

Time evolution of flows is defined by the following stochastic model. Let €
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Figure 3: Time evolution of mean flow size.

be a uniform random number in [0, 2n]. We define

887,

T ij

— T, +e (BT;

ij 007,
! Tj —€¢ (z7% >0).

The suffix 7 indicates quantities at 7th period. As a control experiment, we also
show results when imbalance is defined by

Ajj = |Tui = Tie| + | Tij — Tjucl-

Initial condition is given by a uniform distribution with mean 20 and width 0.1
in both cases. Moreover, n = 0.1 for both cases. Figure 3 shows time evolution
of mean flow size. FEach point is averaged over 1000 trials. Mean flow size
increases when imbalance is given by d;;. In contrast, it does not increase in the
case of A;j.

Next we calculate ascendency of the system in order to measure degree of
development of flow networks. Ascendency is first defined as a macroscopic ob-
jective of ecosystem organization, afterward re-defined as an orientating function
(Ulanowicz, 1980; Ulanowicz, 1986; Ulanowicz, 1997). It is defined for a flow
network by the multiplication of total throughput 7' and mutual information
I of the network. Total throughput T is an index of growth of the system on
one hand, mutual information I measures how the system is organized. The
re-defined version of ascendency hypothesis says that “any ecosystem has a nat-
ural propensity to increase its ascendency if there is no significant perturbations



from outside of the system” (Ulanowicz, 1997). Note that this statement is de-
rived from empirical observations. From Figure 3, we already know that total
throughput T increases by balancing process with d;;. Hence we focus on mu-
tual information I in the following. Mutual information I to be defined here
is average information gain between incoming flows and outgoing flows at each

node. The a priori probability to find a flow i — j and its uncertainty are
Ti T*j Ti*T*j

RN X [ s

T T T2

respectively. On the other hand, the emprical probability to find a flow i — j
and its uncertainty are

) —lOg

T.. T. -
%7 _logﬁa

respectively. Therefore average information gain (mutual information) I is

T;; T3 Ty, T;; T;; TT;;
Y1 PR (Zog 2HY)) = Yo —H
> (Hlog = — (—log 7)) = >~ log T

(] (2]

Ascendency is defined by

TT;;
A:TxI:ZTijlogT' T“_.
ixL kg

1,7

If a distribution of flows is given by P(t) then mutual information I is ap-
proximately given by the following formula (Ulanowicz and Wolff, 1991).

t t N
I= <®10g®> +logE,

where (---) is average with respect to P, N is the number of nodes and m is
the number of in-degree or out-degree of each node (they are the same num-
ber for every node). Unfortunately, I can increase by isotropic diffusion. We
consider that this effect is a superficial organization of flow networks. In order
to eliminate the effect we subtract it from I. If each flow increases by € with
probability 1/2 and decreases by e with the same probability independently at
each step, where ¢ is a uniform random number in [0, 2], then we can easily
show that the expected value of increase in I per one step is approximately

2 1,
%ﬁ)ﬂ .
We define v by
310) = B(O). 37 +1) = 3(r) + 7= ()

where B(1) = I, —log N/m = ((t/{t),)log(t/(t);))r and (- --), denotes average
with respect to the distribution of flows at 7th period. Note that log N/m is a

10
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constant. Figure 4 shows the result of our computer simulation averaged over
1000 trials. f increases due to the effect of isotropic diffusion even in the case
of A;; (Figure 4(a)). However, if the expected value of increase by the effect
of isotropic diffusion is subtracted from g then g — «y still increases in the case
of d;; as before on one hand, it now decreases in the case of A;; on the other
hand (Figure 4(b)). This result suggests that if balancing process proceeds by
d;; then flow networks really develop to more organized direction.

Let us examine how flow networks are organized by balancing process. Figure
5(a) shows frequency distribution of flow size in 100 steps from 1000th period
accumulated over 1000 trials. In the case of A;; the distribution is bell-shaped.
On the other hand, the distribution corresponding to d;; has a long tail toward
large flow size. Figure 5(b) shows probability of increase at each flow size
estimated from the same data in Figure 5(a). In the case of A;; the smaller
flow size is, the larger the probability of increase is below mean flow size and
the larger flow size is, the smaller the probability of increase is above mean flow
size. On the other hand, in the case of d;; the larger flow size is, the larger
the probability of increase is even above mean flow size. Thus flow networks
developing by balancing process with d;; have a self-organizing property that
larger flows tend to increase more frequently, which could be seen as a primitive
objective. This self-organizing property can generate a distribution of flow size
with longer tail. We note that the distributions of flow size of real ecosystems
are close to power law distributions that have long tails (Ulanowicz and Wolff,
1991).

In the next section we analyze the mechanism how the results in this sec-
tion arises through balancing process. In particular, we will see that the self-
organizing property that larger flows tend to increase more frequently remains
if a is in a sufficiently small neighborhood of 1/2. This implies that the self-
organizing property is robust under small perturbations to o at a = 1/2.

6 Mechanism of Balancing Process

First we see how the behavior of flow networks changes if « is diffrent from
a = 1/2. Figure 6 shows that how mean flow size after 2000 periods depends
on a. All the other conditions in computer simulation are the same as those in
the previous section. It takes maximal values as a function of a at two points
a = 0.4984,0.5016, slightly displaced from a = 1/2. There is a flat region
around a = 1/2 between the two maximal points. As a becomes close to 0 or
1, increase in mean flow size after 2000 periods tends to become 0. Figure 7(a)
shows that flow size distributions for a = 0.5,0.499,0.4984. The distribution for
a = 0.499 is similar to that for & = 0.5 with a long tail toward larger flow size.
On the other hand, the distribution for o = 0.4984 is a bimodal distribution.
Figure 7(b) shows that probability of increase at each flow size. One might
expect that the organizing mechanism at o = 0.4984 is totally different from
that around a = 0.5. In order to explain such behaviors next we investigate the
mechanism of balancing process.

12
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Since the direction of change of Tj; is dependent on four values T;, Tix, Tx;
and T}, we first focus on the relationships between them. We assume that all
the four values have different values and all flows with positive sizes also have
different values. It is enough to consider a < 1/2 by symmetry.

(1) T.; > T; and T*j < Tj*.
In this case we have

Béij _ Ty Tj

=_ -(1- 0.
or, ~ 1z '~ T2~
Thus T;; always increases regardless of a.
(11) T.; < T; and T*j > Tj*.
In this case we have
= 1- 0.
ar, oz T 2

Thus T;; always decreases independent of a.

We can prove that the number of pairs (i, j) that satisfy (i) is the same as
the number of pairs (i, j) that satisfy (ii). Indeed, we can assume that Ty; > Tj.
for 1 <i<mnand Ty < Tj forn+1 < ¢ < N. Suppose the number of
pairs (4,7) with Ty; > Tj, T < Tj« is k. Then the number of pairs (i, j)
with Ty > Ty, Tij > Tjx is nm — k. In order to obtain the number of pairs
(i,7) with Ty < Tj, Ti; > Tj« we subtract the number of pairs (4, j) with
Ty; > Tiw, Tyj > Tjs from the number of pairs (i,j) with Ty; > Tj,.. That is,
the number of pairs (i,7) with Ty < Ty, Tij > Tju is nm — (nm — k) = k.
This implies that if two cases (i) and (ii) are combined together then they do
not contribute to increase of mean flow size.

(111) T.; > T; and T*j > Tj*.

Since

T}
p)

T*j

4 (1-a)

is a summation of a positive number and a negative number, the sign depends
on the relationships between T\;, Tj., Ty, T}« and a.

(iii)- (i) Tﬂ*n,- < a.

Since the condition is equivalent to

! +(1—-a) ! <0
aTi* “ T*j ’
we obtain
06 Ty T; 1
= —a— 1-— J — 1-— 0
aTi]’ aTz?* +( a) Tfj < aTi* +( a) *J <

16
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Figure 8: ((8,7), (r:,7;)) is negative if the angle between the two vectors is
greater than 7.

(iii)- (i) @ < 755

Put r; = T;/Tis,rj = Tji /T4j. By the condition of (iii), r; > 1 and r; < 1.
We also put § = —a /T« and v = (1—a)/Ty;. Then 06;;/0T;; can be represented
as an inner product of two plane vectors (5,7) and (r;,r;):

00
8T:] = Bri +77‘j = <(677)7 (Tiarj»a
where (--- ,---) is the standard inner product in R?. Since 8 < 0, v > 0 and

B+~ > 0 by the condition of (iii)-(ii), (3,7) is in {(z,y) € R2|ly > -z, z <
0, y > 0}. On the other hand, since 0 < r; < 1 < ry, (r;,r;) isin {(z,y) €
R’y <z, = >0, y > 0}. Therefore ((3,7), (r;,7;)) tends to be negative if (a)
the angle between (43,v) and (—1,1) is smaller or (b) the angle between (r;,7;)
and (1,0) is smaller (Figure 8). Note that the two conditions (a) and (b) are
not independent.

First we consider (a). The closer the inner product

1 1
(L), == (B:7) = == (-8 +7)
/62 + 72 /82 + 72
is to v/2, the smaller the angle between (3,7) and (—1,1). In order to see how

the value of the inner product depends on Tj;, let us assume that a = Zk# Tix
and b= 3", ,; Ti; are constant and consider the following function.
1 a 1-«a
fa(@) = (
1— r4+a zx+b
VG + (A58

The differential of f,(x) is
a(l —a)(a—b){(1 —a)a—ab+ (1 —-2a)x}
(1= P +a +a?(z + D23

).

folw) =

17



There is just one point that gives an extreme value of f, if @ # 1/2. We denote
it by

* —

ab— (1 —a)a
1-2a
By the condition of (iii)-(ii), we have

ab— (1 —-a)a
T;: > 1—2a = T,.
Therefore we only consider the range z > .. In this range (1 —a)a—ab+ (1 —
2a)x is always positive. So the sign of f! only depends on a —b. If @ > b which
is equivalent to Tj. > T; then f,(z) is increasing for & > z.. fo(z) converges
to 1/4/a? + (1 — a)? from below as © — co. Note that z, is negative if a > b.
If @ < b which is equivalent to Tj, < Ty; then f,(z) is decreasing for z > x,.
fa(z) converges to 1/4/a? + (1 — a)? from above as ¢ — oo. If & = 1/2 then
fL(z) has no zero point. Since the condition of (iii)-(ii) becomes a > b, fo(z)
is increasing for all z € R. It converges to V2 as x — oo. However, we can
virtually suppose that f,(z) takes a minimal value at —oo and treat both cases
a < 1/2 and o = 1/2 at the same time.
Next we consider (b). The closer the inner product

1 r;
((170)7ﬁ(”77~j)> = 21 >
r; -I-rj r; -I-rj

is to 1, the smaller the angle between (1,0) and (r;,r;) is. Assuming p =
T.i, q =T}, are constants, we define a function

p
z+a

()% + (55)°

g(r) =

Since g(z) can be rewritten as

9(x) is increasing if a > b and converges to 1/, /1 + (£)? from below as z — oo.

If a < b then g(z) is decreasing and converges to 1/,/1 + (£)? from above as
T — 00.

Combining both (a) and (b), we can conclude as follows for given 0 < a <
1/2. If T > Ty; then 06;;/0T;; becomes negative more often for larger T;. If
T;s < Tyj then 00;;/0T;; becomes negative more often for smaller Tj;.

Next we examine how the degrees of the above properties change if a changes.
The partial differential of f, with respect to a is

Ofa _(z+4a)(x+0){(1—-a)a—ab+ (1 —2a)x}

dal (1= )@ +a)?+a2(m+ b3
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By the condition of (iii)-(ii), (1 — @)a — ab+ (1 — 2a)z is always positive hence
Ofa/0a > 0. Therefore if @ becomes smaller then f,(z) decreases for a fixed z,
which implies that 9d;;/0T;; becomes negative less often.

(iv) Ty < Ti and T, < Tjs.

In this case we have
04ij T

T}
= —«
dT;; T2

X
T?,

+(1-a)

So the sign is dependent on Ty, Tix, Twj, Tj« and « as in (iii).

(iv)-(i) o < 75

By the condition, we can obtain 96;;/0T;; < 0 as in (iii)-(i).

. . T,
(iv)-(ii) T < Q-
As in (iii)-(ii), we represent 9d;;/0T;; by an inner product

851” I
BT:] = ((ﬂ )Y )7(Tiarj)>a

where r; = Tyi/Ti, rj = Tj/Ts; and B = a/Ti, v = (1 — a)/Ty;. By a
similar argument, we can see that the inner product tends to be negative if (c)
the angle between (4’,7') and (1, —1) is smaller or (d) the angle between (r;,7;)
and (0,1) is smaller. We can obtain the same function f,(x) as in (iii)-(ii)
for (c). By the condition of (iv)-(ii), we always have a < bif 0 < a < 1/2.
Therefore, again by the condition of (iv)-(ii), the range of x to be considered is
z < z.. In this range f,(z) is increasing.
For (d), we consider the following inner product

((07 1)7 7("“1’77‘]'» =

2 2 2 2
Ty + Ty ri +r3

As in (iii)-(ii), we define a function

R HGR? TeRa Ey

If a < b then h(z) is increasing and converges to 1/, /() + 1 from below.

Thus one can see that 89;;/9T;; becomes negative more often as Tj; becomes
large if (c) and (d) are combined together. Moreover, we have df,/0a < 0 by
the condition of (iv)-(ii). Hence f,(z) becomes larger as o becomes smaller,
which implies that 04;;/0T;; can become negative more often.

19



So far we argue the non-statistical structures of balancing process. In par-
ticular, we find that in the two cases (iii)-(ii) with T;.« > T\; and (iv)-(ii) larger
T;j can increase more often. Figure 9 shows that these structures are effective
to generate longer tail flow size distributions around @ = 0.5 and a bimodal
distribution at o = 0.4984. The distributions in the controlled numerical exper-
iments are generated by as follows. First we estimate the probability of increase
in the case (iii)-(ii) with Tjx > T;, which is denoted by pi, and the probability
of increase in the case (iv)-(ii), which is denoted by p2, from the uncontrolled
numerical experiment for each value of a. Second, in the controlled numerical
experiments, if T;; satisfies the conditions of (iii), (iii)-(ii) and Tj. > T%; (or
the conditions of (iv) and (iv)-(ii)), it increases with probability p; (or ps), re-
gardless of flow size. Thus the structures of balancing process described above
which enable larger flows to increase more often are broken.

If « is sufficiently close to 1/2 then the effect of these structures would not so
different from that for @ = 1/2 by the continuity of conditions with respect to «
appeared in the above argument. This suggests that the self-organizing property
at @ = 1/2 observed in the previous section is robust to small perturbations to
a.

There are also statistical effects. For example, suppose Ty;, T, Tx; and
T;. have values close to mean. If the condition of (iii) Ty; > T and Ti; > T
is satisfied then the greater T;; is apart from mean flow size toward larger flow
size, the smaller Zk# T;r is in order Ty; > Tj« to hold. This implies that
T < T, is satisfied more often if T};; larger than mean flow size is larger. In
addition, the greater T;; is apart from mean flow size toward smaller flow size,
the larger 3, ; Ti; is in order Ti; > Tj. to be satisfied. Hence Tj. < T; is
satisfied more often if 7;; smaller than mean flow size is smaller. Such an effect
would be relevant to frequency distribution of flow size within (iii)-(i) if « < 1/2
is close to 1/2. The same thing can be said for (iv).

There is another statistical effect what we call the effect of threshold. We
see T, /(Tix + T.j) as a function of Tj;. That is, we consider a function

a—2>b

r+a "
2r+a+b

1
k(x)_2m+a+b_§(1

);

where a = Zk# T and b = zk# Ty; are supposed to be constants. If a > b
then k(z) > 1/2 for all x > 0. If a < b then k(z) is increasing for z > 0 and
converges to 1/2 as # — oo. Therefore @ < Tj./(Tys + Tij) will be satisfied
if Tj; is larger than certain threshold value when a < 1/2. If a is too close
to or too far from 1/2 then such an effect would not be relevant. However,
for some values of «a the effect of threshold might be significant. For example,
the bimodal distribution without long tail for a = 0.4984 shown in Figure 7(a)
would be a cooperative effect of the effect of threshold and the mechanism for
(iii)-(ii) with Ty, < T.;.
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Figure 9: Results of controlled numerical experiments in which the structures
of balancing process which enable larger T;; to increase more often are broken.
See text for details. (a)For a = 0.5, p1 = 0.035451 and p, = 0.035566. (b)For
a = 0.4990, p; = 0.008836 and p> = 0.033590. (c)For oo = 0.4984, p; = 0.002520

and ps = 0.004638.
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7 Conclusions

We give up the position where one can assume macroscopic objectives to
which ecosystems organize themselves. At this position we cannot address the
relationship between flow balance and macroscopic objectives. Instead, in this
paper we directly describe a dynamics of balancing process and argue how a self-
organizing property can arise from the balancing process. Balancing process we
proposed is a process of local elimination of imbalances. Since the process of
balancing is local, an effort of eliminating an imbalance can lead to generation
of a new imbalance. As a result of such a process, flow networks can have a
self-organizing property.

Objectives are related to wholeness of biological systems. Apparently objec-
tives are unique to biological systems since they seem not to be in physical or
chemical systems. However, if one can set an objective that can be identified
from the outside of a system then he treats the system as a machine. Any
machine is made for certain objective. If it is broken then it is not a machine
since it does not have functions that are expected. A broken machine is not a
machine, however, it is at least some material. If this material could acquire a
new function by itself then we might recognize it as a new machine. However
one might also feel that it is not appropriate to call it machine anymore. In such
a situation one would not find a machine but a life. At this point we focus on
a system that comes into existence as the system. When a system is recognized
as the system, there is already a wholeness that enable the system to come into
existence. We call such a wholeness intrinsic wholeness, which is distinguished
from a wholeness specified by a macroscopic objective.

In this paper we attempt to represent intrinsic wholeness as balancing pro-
cess toward flow balance. Intrinsic wholeness itself does not imply any macro-
scopic objective, however, balancing process, an effort to maintain intrinsic w-
holeness, can generates a self-organizing property, which could be seen as a
primitive objective.

Our stance in this paper is that of minimalist. We propose a model of
balancing process without any consideration on constraints in real ecosystems.
Such minimalist stance induces a gap between the behavior of our model and
real ecosystems. While our model flow network keeps glowing forever, real
ecosystems senesce in their final stage of developmental process (Salthe, 1993;
Ulanowicz, 1997). However, such an unrealistic result would be resolved if we
introduce constraints to the system from its environment in a suitable manner,
which is left as a future work.

Another link to real ecosystems is an application of the idea in our model
to data analysis (Ulanowicz, 2004). In the definition of balancing process we
consider the flow from node i to node k via node j. The probability that a unit
amount of flow from node i goes into node k via node j is

T, T;
X
T., T

if we assume that the mass action interaction at node j. On the other hand, the
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probability of interaction among node i, node j and node k will be proportional
to

B B B

B B B
if we assume the mass action law on the whole system, where B; is the amount of
stock at node i and B = ), B;. We define the former probability by considering
each node as a collection of relations with other nodes. In contrast, the latter
probability is defined by considering each node as a structure-less element. In
order to quantify the difference between these two perspectives, we can consider
the Kullback-Leibler information of the latter probability ¢;x = B;By/B? from
the former probability p;r = Ti;Tji/Tx;Tj« (Kullback and Leibler, 1951)

Dik
I = E pik log _q:'k
ik

for each node j. Ulanowicz and Abarca-Arenas (1997) considered the Kullback-
Leibler information for the whole system in order to define the ascendency in-
cluding biomass. However, I; here is not defined for the whole system but for
each node j. Hence I; could be used to measure the degree of organization
around node j. The collection of all I; would characterize the heterogeneity of
organization in the whole system. If both flow and stock data are available for
real ecosystems, we can readily calculate the quantity I;. Data analysis on real
ecosystems is also left as a future work.
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