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Abstract

The categorical semantics of quantum protocols proposed by
Abramsky and Coecke reveals that a prearranged quantum
entanglement brings a strange quantum information flow in
the quantum teleportation protocol. Their formal argument
leads us to the distinction between an information flow se-
quence and a causal sequence on the same event. If this dis-
tinction is applied to information processing biological net-
works, we can claim that a prearranged biological feedback
can play the same role as the quantum entanglement on the
emergence of a specific local structure of networks. The aim
of this paper is to provide a first step toward formal arguments
on changes in biology without the external time parameter.

Introduction
If something is arranged in advance and if it works well, an
apparently difficult or non-intuitive event can occur. A clear
example of such a phenomenon is the quantum teleportation
(Bennett et al., 1993; Nielsen and Chuang, 2000), in which
a prearranged entangled pair of qubits allows an arbitrary
quantum bit to be transferred from one site to the other site
by a classical communication. In this paper we claim that
biological feedbacks also play a role in the above mentioned
type of phenomena. This paper is an engagement of two re-
cent works. One is categorical semantics of quantum proto-
cols by Abramsky and Coecke (2004), the other is algebraic
study of biological networks by the author (Haruna, 2008;
Haruna and Gunji, 2008), which is also based on category
theory (Mac Lane, 1971).

Abramsky and Coecke (2004) clarifies the nature of quan-
tum information flow by recasting the standard axiomatic
quantum mechanics due to von Neumann (1932). What is
the most relevant to us is that their formalism enables us
to distinguish between an information flow sequence and a
causal sequence on the same event. Our application of their
result to biological networks immediately follows from this
distinction.

The problem of prearrangement is central to changes in
the realm of biology since biological changes including de-
velopment and evolution are in general the process of impos-
ing new constraints on the preceding constraints (Matsuno,

1989; Salthe, 1993; Kauffman et al., 2008). Matsuno (1989)
argues that changes in biology could be described as the
process of equilibration toward tentative final causes. Since
the propagation speed of interactions in biological systems
cannot be regarded as infinite, the tentative final causes can
change as equilibration proceeds. Preceding equilibration
constrains and triggers a new equilibration. Salthe (1993)
considers evolution and development of hierarchical sys-
tems in terms of how the lower and upper levels constrain
the dynamics of the focal level of a given system. Recently
Kauffman et al. (2008) regards constraints as information for
biological organizations to maintain themselves and evolve.
Cascades of constraints lead to changes in biological orga-
nizations.

Biological feedback will be a typical example of prear-
rangement in biological systems. The term ‘feedback’ im-
plies that succeeding events in a system have an impact on
upstream processes in the system. Hence at least a ‘path’ for
the feedback must be prearranged so that the feedback works
effectively. We do not define what is prearrangement in bi-
ological systems in general but involve it with our formal
argument implicitly. In particular we consider a biological
feedback in information processing biological networks.

Our previous study (Haruna, 2008; Haruna and Gunji,
2008) on biological networks considers how to describe net-
work motifs found in information processing biological net-
works. Network motifs are defined as local patterns that are
found in real networks significantly more often than in an
ensemble of suitably prepared random networks (Milo et al.,
2002). They are considered to have certain biological func-
tions (Alon, 2006, 2007). In information processing biolog-
ical networks, each node in a network is considered to be an
information processing unit. The direction of an arrow in a
network indicates the direction of information flow. If a pat-
tern of information processing is specified then we can de-
duce that how the information processing pattern constrains
the local structure of networks (Haruna, 2008; Haruna and
Gunji, 2008). However, it is not yet clear that how informa-
tion flows at the network level is related to a causal sequence
that brings the emergence of a network motif. We show that



a simple application of the category theoretical formalism
of finite-dimensional quantum mechanics by Abramsky and
Coecke (2004) can reveal this problem.

In this paper category theory is the main tool to argue the
formal similarity between quantum entanglement and bio-
logical feedback. We believe that the generality of category
theory is sometimes helpful to reveal unexpected common
structure between different areas. The argument presented
in this paper would provide a concrete example of such use-
fulness of category theory.

This paper is organized as follows. The next section is a
brief overview of the quantum teleportation protocol and its
categorical description by Abramsky and Coecke. In section
III we review our algebraic study of network motifs. Section
IV is the main part of this paper, where we show that how
a causal sequence in an information processing biological
network is reconstructed by a result obtained in the categor-
ical description of quantum mechanics. In section V we give
conclusions.

Categorical description of quantum
teleportation

In this section we briefly review the quantum teleportation
protocol (Bennett et al., 1993) and its category theoretical
description (Abramsky and Coecke, 2004). The presentation
here is minimal enough for the aim of this paper. For further
details see the references. See also Coecke (2004).

The quantum teleportation protocol enables one to trans-
fer an unknown quantum state from a source A to a re-
mote target B by only two bits classical communication
between them. The protocol involves three qubits a, b and
c. Initially qubit a is in a state |ϕ〉 which is a unit vector
in two-dimensional complex Hilbert space H = {α|0〉 +
β|1〉|α, β ∈ C}. Qubits b and c are prearranged as an en-
tangled state, 1√

2
(|00〉+ |11〉), which is a unit vector in the

tensor product H ⊗ H. We abbreviate |i〉 ⊗ |j〉 as |ij〉 for
i, j = 0, 1. Entangled states are defined as states that cannot
be written in the form |φ1〉⊗ |φ2〉 for any choice of |φ1〉 and
|φ2〉. Entangled states play important roles in the field of
quantum information (Nielsen and Chuang, 2000).

We relocate the three qubits so that a and b are at the
source A and c is at the target B. Now we perform so
called Bell-base measurement on a and b. Each projector
Pi(i = 1, 2, 3, 4) associated with Bell-base measurement
projects onto one of the one-dimensional subspaces spanned
by the following vectors:

b1 =
1√
2
(|00〉+ |11〉), b2 =

1√
2
(|01〉+ |10〉),

b3 =
1√
2
(|00〉 − |11〉), b4 =

1√
2
(|01〉 − |10〉).

The four outcomes of the measurement occur with equal
probability, 1

4
. We observe the outcome of the measurement

a b c

|00>+|11>

Pi time
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Figure 1: Quantum information flow in the teleportation pro-
tocol. The dashed arrow represents the quantum information
flow.

and send it from A to B. This requires classical two bits.
Based on this classical information, we ‘correct’ the qubit c
by performing one of the following unitary transformation
on it:

U1 =

(

1 0
0 1

)

, U2 =

(

0 1
1 0

)

,

U3 =

(

1 0
0 −1

)

, U4 =

(

0 −1
1 0

)

.

After the unitary correction, one can see that the state of c is
|ϕ〉.

For each observational branch, the quantum information
flow seems to be ‘acausal’ as shown in Fig.1. Abramsky and
Coecke (2004) proves that such a strange character of the
quantum teleportation protocol can be captured at a more
abstract level independent of the classical information flow
by reformulating the finite-dimensional quantum mechan-
ics from category theoretical point of view. A key point is
that they distinguish two type of measurements appearing in
the quantum teleportation protocol: one is the preparation of
quantum states and the other is the indeterministic observa-
tion. These two type of measurements can be clearly dis-
tinguished by the notion of compact closed category (Kelly
and Laplaza, 1980).

A symmetric monoidal category is a category C equipped
with a tensor product

−⊗− : C × C → C,

a unit object I and natural isomorphisms

lA : A ∼= I ⊗A, rA : A ∼= A⊗ I,

aA,B,C : A⊗ (B ⊗ C) ∼= (A⊗B)⊗ C,

sA,B : A⊗B ∼= B ⊗A



for objects A, B, C in C. These natural isomorphisms are
required to satisfy certain coherence conditions (Mac Lane,
1971).

The definition of compact closed category by Kelly and
Laplaza (1980) is as follows. A category C is a compact
closed category if it is a symmetric monoidal category such
that for each object A there are a dual object A∗, a unit

ηA : I → A∗ ⊗A

and a counit

εA : A⊗A∗ → I.

These data are required to satisfy the commutative diagram

A
rA−−−−→ A⊗ I

1A⊗ηA−−−−−→ A⊗ (A∗ ⊗A)

1A





y

aA,A∗,A





y

A
l
−1

A←−−−− I ⊗A
εA⊗1A←−−−− (A⊗A∗)⊗A

and the dual one for A∗. In other words, if a symmetric
monoidal category C is seen as a bicategory with a single 0-
cell, the 1-cells being the objects of C with the tensor product
as their composition and the 2-cells being the morphisms
of C, the above conditions say that each object A of C has
a right adjoint A∗. The required diagrams are ‘triangular
identities’.

The monoidal category of finite-dimensional vector space
over a field is compact closed. This example corresponds to
finite-dimensional quantum mechanics. The category of sets
and relations with cartesian product (Rel,×) is also com-
pact closed. This example is our main consideration in this
paper. In (Rel,×), a one-point set {∗} is the unit object.
For a set X , its dual X∗ is itself, X∗ = X . The unit for a
set X is ηX ⊆ {∗} × (X ×X) given by

ηX = {(∗, (x, x))|x ∈ X}.

Similarly, the counit for X is

εX = {((x, x), ∗)|x ∈ X}.

The name pfq and coname xfy of a morphism f : A →
B in a compact closed category are defined by the following
diagrams:

A∗ ⊗A
1A∗⊗f−−−−→ A∗ ⊗B

ηA

x





∥

∥

∥

I
pfq−−−−→ A∗ ⊗B

A⊗B∗ xfy−−−−→ I
∥

∥

∥

εB

x





A⊗B∗ f⊗1B∗−−−−→ B ⊗B∗

In particular, we have ηA = p1Aq and εA = x1Ay.
In the following we will see that a name corresponds to

a preparation of an entangled quantum state and a coname
corresponds to an observational branch resulting from the in-
determinism of quantum measurements (Abramsky and Co-
ecke, 2004).

For a morphism ρ : X → Y in (Rel,×) we have

pρq = {(∗, (x, y))|xρy, x ∈ X, y ∈ Y },
xρy = {((x, y), ∗)|xρy, x ∈ X, y ∈ Y }.

The compositionality lemma proved in (Abramsky and
Coecke, 2004) is the most significant for our argument. It
says that the following diagram commutes in any compact
closed category:

A
f−−−−→ B

g−−−−→ C

rA





y
l
−1

C

x





A⊗ I
1A⊗pgq−−−−−→ A⊗B∗ ⊗ C

xfy⊗1C−−−−−→ I ⊗ C

The compositionality lemma captures the quantum infor-
mation flow in the quantum teleportation protocol at an ab-
stract level. The lemma yields the equation

U ◦ (l−1

A ◦ (xfy⊗ 1A)) ◦ ((1A ⊗ pgq) ◦ rA) = U ◦ g ◦ f,

where all morphisms U, g, f have the same domain and
codomain A (Fig.2). The original quantum teleportation
protocol requires U ◦ g ◦ f = 1A, however, any compo-
sition of morphisms in a compact closed category enjoys the
inversion of the order of composition.

The right hand side of the above equation represents the
sequence of quantum information flow on one hand, the left
hand side represents the causal sequence of quantum mea-
surements and a unitary transformation on the other hand.
This distinction between an information flow sequence and
a causal sequence is the essential point of our application
of the compositionality lemma to biological networks in the
following sections.

Algebraic description of network motifs
Network motifs are local patterns in networks that are con-
sidered to have certain biological functions (Milo et al.,
2002; Alon, 2006, 2007). In particular, a four-nodes network
motif called bi-fan (Fig.3) is found ubiquitously in informa-
tion processing biological networks such as gene transcrip-
tion regulation networks, signal transduction networks and
neuronal networks (Milo et al., 2002; Alon, 2006). In this
section we explain how the bi-fan motif emerges from an
information processing pattern in a network (Haruna, 2008;
Haruna and Gunji, 2008).

A node in an information processing network is consid-
ered to have an information processing ability. We assume
that it has a specific internal structure that represents how
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Figure 2: The essential feature of the quantum information
flow can be captured in any compact closed category.

Figure 3: A network motif bi-fan.

it processes information. A simple but non-trivial internal
structure considered here consists of two distinct nodes and
an arrow between the two nodes:

• → •

The source node, the arrow and the target node are consid-
ered to represent reception of information, transformation
of information and sending of information, respectively. For
example, each node in a gene transcription regulation net-
work is a gene or a protein coded by the gene. They together
represent a single node. Hence we can consider information
processing in each node: possible regulations from other
proteins ( reception of information), synthesis of the protein
from the gene via the transcription and translation processes
(transformation of information) and possible regulations of
other genes by the protein (sending of information).

If two nodes with this internal structure are connected by
an arrow in the network, this connection by the arrow in the
network is represented by a pattern shown below, in which
the target in the internal structure of the source node is iden-
tified with the source in the internal structure of the target
node:

• → • → •

Again in gene transcription regulation networks, each arrow
in a network indicates a regulation from the source gene to
the target gene. The protein synthesized by the source gene

f

f g

g

R

Figure 4: An arrow with its source and target nodes in a
network is an image of M by R (See text).

is responsible for the regulation and is included in both send-
ing of information at the source gene and reception of infor-
mation at the target gene. This motivates us to introduce the
above pattern.

We call the pattern information processing pattern, which
is referred to as M in what follows. Thus an arrow with its
source and target nodes in the network can be seen as the
image of M by a graph transformation R defined as follows
(Fig.4).

Let G = (AG, OG, ∂G
0

, ∂G
1

) be a directed graph, where
AG is a set of arrows, OG is a set of nodes and ∂G

0 and
∂G
1

are maps from AG to OG. ∂G
0

sends an arrow to its
source. ∂G

1
sends an arrow to its target. We define RG =

(ARG, ORG, ∂RG
0 , ∂RG

1 ) as

ARG = {(f, g) ∈ A2

G|∂G
1 f = ∂G

0 g}, ORG = AG,

∂RG
0

(f, g) = f, ∂RG
1

(f, g) = g.

The graph transformation R can be seen as a functor from
the category of directed graphs Grph to itself. The directed
graph RG is so called the line graph of G.

In general, we consider the constraint to a local pattern F
in a network imposed by the information processing pattern
M as that the local pattern F is isomorphic to an image of R,
that is, we can write F ∼= RG for some G. It can be shown
that the condition is equivalent to ηF : F ∼= RLF , where
L is a left adjoint to R and η is the unit of the adjunction
(Haruna and Gunji, 2008). It is proved that for any informa-
tion processing pattern M we can construct a corresponding
adjoint pair (L, R) (Haruna, 2008). However, the condition
ηF : F ∼= RLF is not equivalent to the condition F ∼= RG
for some G in general. Here we do not go into the general
argument but directly define the left adjoint L.

For a directed graph G = (AG, OG, ∂G
0 , ∂G

1 ), a directed
graph LG consists of the following data:

ALG = OG, OLG = (OG × {0, 1})/ ∼,

∂LG
0

x = [(x, 0)], ∂LG
1

x = [(x, 1)],

where∼ is an equivalence relation generated by a relation ρ
defined by (x, 1)ρ(y, 0)⇔ x→ y and [(x, i)] is the equiva-
lence class containing (x, i). We write x → y if there is an
arrow from x to y in G.
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Figure 5: Explanation of the necessary condition for ηF :
F ∼= RLF .

Intuitively, L is a structuration of a pattern by the infor-
mation processing pattern M because it replaces nodes with
arrows. On the other hand, R is a de-structuration of a pat-
tern with respect to M because it collapses an arrow to a
node.

The necessary and sufficient condition for ηF : F ∼=
RLF is that F is a binary graph (that is, there is at most
one arrow between two nodes) and if a → b ← c → d then
a→ d in F . We here explain that the latter condition is nec-
essary. Suppose a→ b← c→ d in F (the upper left pattern
in Fig.5). If L is performed on this pattern then we obtain
the pattern at the right-hand side of Fig.5. If R follows then
bi-fan emerges (the lower left pattern in Fig.5) as the dashed
arrow is newly added as the fourth arrow.

One can see that ηF : F ∼= RLF is the condition that
the information processing pattern M is fully developed or
stabilized in a pattern F . What does happen in this devel-
oping process? The key point is what occurs at the central
node in the right-hand side pattern in Fig.5. It is an equiv-
alence class consisting of (a, 1), (b, 0), (c, 1) and (d, 0).
The newly added fourth arrow from a to d appears since
(a, 1) is identified with (d, 0). This identification process
is due to the transitive relation (a, 1)ρ(b, 0)ρ−1(c, 1)ρ(d, 0).
Since (x, 1)ρ(y, 0) means x → y in the network level,
(b, 0)ρ−1(c, 1) indicates the existence of feedback from b
to c, the direction of which is opposite to the direction of the
information flow at the network level.

If we try to interpret the process of emergence of bi-fan
described above in terms of the information flows at the net-
work level then an apparent difficulty arises. Since an arrow
in information processing biological networks represents the
direction of the information flow, it seems that there is no
information flow sequence from a to d at the network level.
Then how is it possible to construct a connection between
a and d? This difficulty arises since the information flows
at the network level only cannot treat the above mentioned
feedback relation. The difficulty in the interpretation can

be resolved when we consider an information flow sequence
including the feedback relation and a causal sequence on it.

Reconstruction of causal sequence in
biological networks

We reconstruct a causal sequence that brings the emergence
of bi-fan through the compositionality lemma by Abramsky
and Coecke (2004). We work in the category of sets and
relations (Rel,×) which is compact closed.

We apply the compositionality lemma to the composition
ρ ◦ ρ−1 ◦ ρ which brings the fourth arrow in bi-fan. We
regard the order of composition represents an information
flow sequence including feedback relation ρ −1 from b to c,
which should be distinguished from the information flows at
the network level.

Given a directed graph F = (AF , OF , ∂F
0

, ∂F
1

), we put
X = {(x, 0)|x ∈ OF } ∪ {(x, 1)|x ∈ OF }. The composi-
tionality lemma applied to the right-hand side composition
of ρ ◦ ρ−1 ◦ ρ gives rise to the following commutative dia-
gram:

X

ρ

x





X
ρ−−−−→ X

ρ−1

−−−−→ X

rX





y
l
−1

X

x





X × {∗} 1X×pρ−1
q−−−−−−−→ X ×X ×X

xρy×1X−−−−−→ {∗} ×X

The sequence of arrows from the upper left X to the upper
right X along the lower side is interpreted as a causal se-
quence. The feedback relation ρ−1 is at the same position
as the preparation of entangled qubits pair in the quantum
teleportation protocol (Fig.6). The feedback relation ρ−1

between b and c is prearranged, so that the information flow
from a to d occurs.

In the quantum teleportation case, the causal sequence
is the sequence of our operations on the quantum system.
A specific causal sequence of our operations enables an
‘acausal’ quantum information flow to occur. However, in
our information processing biological network case, the re-
lation between the information flow sequence and the causal
sequence is reversed. We have to reconstruct a causal se-
quence from a given information flow sequence. Hence
there may be an ambiguity in the reconstruction. Indeed,
we can also reconstruct a causal sequence in a different way
if we apply the compositionality lemma to the left-hand side



ρ

time

ρ

ρ

L L

LL

-1

Figure 6: Reconstruction of a causal sequence on the emer-
gence of bi-fan. The information flow structure is isomor-
phic to that of the quantum teleportation protocol.

composition of ρ ◦ ρ−1 ◦ ρ:

X

ρ





y

X
ρ−1

−−−−→ X
ρ−−−−→ X

rX





y
l
−1

X

x





X × {∗} 1X×pρq−−−−−→ X ×X ×X
xρ−1

y×1X−−−−−−−→ {∗} ×X

Contrary to the first reconstruction, the feedback relation
ρ−1 is at the trail in the corresponding causal sequence
(Fig.7). In order to determine a reconstructed causal se-
quence uniquely, we need a selection rule. Since ρ−1 is re-
garded as a biological feedback, it should appear as early as
possible in the causal sequence. So the first reconstruction
is desired in this respect. If we want to select the first recon-
struction, the following rule is sufficient for this example:

ρ−1 must be transformed into pρ−1
q.

The general argument on how to define a selection rule is
beyond the scope of this paper. It is left as a future work.

The difference between (Rel,×) and the category of
finite-dimensional vector spaces over a field should also be
noted. Both categories can implement full abstract quantum
mechanics with some additional structures on one hand, the
former cannot enjoy the full quantum teleportaion protocol
since it has no Bell-base consisting of four vectors (Abram-
sky and Coecke, 2004). Hence the usage of the term ‘in-
formation flow’ in this paper is different from that in the
references (Abramsky and Coecke, 2004; Coecke, 2004).
They consider information flows including the conservation
of contents of information. However, we never refer to con-
tents of information but consider only the formal structure
among information flows.

ρ time

ρ

ρ

L L

LL -1

Figure 7: Another reconstruction of a causal sequence on
the emergence of bi-fan.

Conclusions
Our argument in this paper is based on a specific example
and has not yet developed with full generality. However, we
can extract a general strategy to describe changes in biolog-
ical systems without the explicit external time parameter:

(i) Make a distinction between information flow sequence
and causal sequence.

(ii) Assume selection rules considering what should be pre-
arranged.

(iii) Reconstruct the causal sequence from the information
flow sequence based on the selection rules.

We hope that our argument presented in this paper will
help to understand the universal role of information process-
ing in natural phenomena ranging from quantum to biologi-
cal regimes.
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Bennett, C. H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., and
Wooters, W. K. (1993). Teleporting an unknown quantum
state via dual classical and einstein-podolsky-rosen channels.
Physical Review Letters, 70:1895–1899.



Coecke, B. (2004). The logic of entanglement. arXiv:quant-
ph/0402014.

Haruna, T. (2008). Algebraic Theory of Biological Organization.
Doctral Dissartation, Kobe University.

Haruna, T. and Gunji, Y. P. (2008). Wholeness and information
processing in biological networks: An algebraic study of
network motifs. In Postceedings of 2nd Internal Workshop
on Natural Computing, Natural Computing 2007: Nagoya.
Springer-Verlag, to appear.

Kauffman, S., K., L. R., Este, R., Goebel, R., Hobill, D., and
Shmulevich, I. (2008). Propagating organization: An enquiry.
Biology and Philosophy, 23:27–45.

Kelly, G. M. and Laplaza, M. L. (1980). Coherence for com-
pact closed categories. Journal of Pure and Applied Algebra,
19:193–213.

Mac Lane, S. (1971). Categories for the Working Mathematician.
Springer-Verlag,New York.

Matsuno, K. (1989). Protobiology: Physical Basis of Biology.
CRC Press, Boca Raton.

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii,
D., and Alon, U. (2002). Metwork motifs: Simple building
blocks of complex networks. Science, 298:824–827.

Nielsen, M. A. and Chuang, L. (2000). Quantum computation and
quantum information. Cambridge University Press.

Salthe, S. N. (1993). Development and Evolution: Complexity and
Change in Biology. MIT Press, Cambridge.

von Neumann, J. (1932). Die Mathematische Grundlagen der
Quantenmechanik. Springer Verlag, Berlin.


