
A PROTOBIOLOGICAL CONSIDERATION ON CELLULAR AUTOMATA

Taichi Haruna and Yukio-Pegio Gunji
Graduate School of Science and Technology

Kobe University
Nada, Kobe 657-8501, Japan

cheetha@kcc.zaq.ne.jp

Abstract

We propose a new construction on cellular automata
motivated by protobiology initiated by Koichiro Mat-
suno. His idea of ambiguity of physics in biological
contexts is discussed in the context of ambiguity of
symbols. We construct a formal metaphor for ambi-
guity of state symbols of cellular automata by harness-
ing the ‘up-to-isomorphism ambiguity’ of mathematical
objects. We show that the introduced ambiguity can
enhance the class IV behavior in elementary cellular
automata.
Keywords: protobiology, ambiguity, material, cellular
automata, class IV.

1. INTRODUCTION

In complex systems research, understanding mea-
surement process inherent in a system is an intriguing
problem. Matsuno (1989) studied measurement process
in terms of the physics which makes biology possible.
According to him, a boundary condition in a biologi-
cal system cannot be specified completely since it takes
finite time to complete measurement process of forces
in biological systems like a cell. A physical law that is
relevant to a specification of a boundary condition such
as the Newton’s third law of null-conservation of acting
and reacting forces that can be stated by simple sym-
bols (e.g. Fi,j +Fj,i = 0) have ambiguity in the context
of more complex material processes typically found in
biology than that in physics. The incompleteness of
identification of a boundary condition implies that the
law of motion is not independent of the identification
process of its boundary condition (or measurement).
Thus the law of motion cannot be separated from its
boundary condition. The law of motion becomes a one-
to-many type mapping. One-to-many type mappings
provide richer possibilities for future than one-to-one
or many-to-one mappings, which might facilitate evo-
lution from simpler objects to more complex organiza-
tions. In short, Matsuno presumed that ambiguity of
physics in biological contexts can bridge a gap between

physics and biology.

Cellular automata (CA) are widely used as a tool
for modeling complex systems from physical ones to
biological or social ones. A cellular automaton con-
sists of an arrangement of cells on an ordered lattice
whose states are in a finite or countable set Ω. The
cells interact in parallel with a given local rule f which
is defined on a neighborhood of each cell. The Class
IV behavior is one of the most intriguing behaviors of
one-dimensional cellular automata (Wolfram, 1984). A
class IV pattern consists of an erratic mixture of a peri-
odic pattern (class I or II) and a chaotic pattern (class
III). The significance of the class IV behavior in natural
science can be typically found in modeling the mollusc
shell pigmentation. Roughly, there are two different ap-
proaches to explain a large variety of patterns of mol-
luscan shells. The first approach is modeling by PDEs
(Meinhardt and Klingler, 1987; Meinhardt, 2003). The
second one is using CA (Kusch and Markus, 1996).
The lack of biochemical knowledge about the mollusc
shell pigmentation forces the PDE approach to assume
unknown kinetic terms in reaction-diffusion equations.
Furthermore, in some shell patterns, the PDE aproach
introduces additional independent variables in order to
explain complex patterns like branching processes of
traveling waves or mixture of different patterns (in CA
term, the class IV patterns). In contrast, assumptions
about unknown kinetics are not needed in the CA ap-
proach since a rule of CA expresses logical relation-
ships of biophysical ideas. a complex pattern forma-
tion can be explained by adjusting parameters of CA
with a fixed rule. Thus the existence of the class IV
patterns in one-dimensional CA provides a smaller ex-
planation of complex pattern formations than switching
two mechanisms in PDE approach.

Though the significance of the class IV behavior is
demonstrated in modeling shell pattern formation, pa-
rameter adjustment is needed in order to generate the
class IV patterns. How the class IV behavior arises
is not addressed. In this paper, we concern two sce-
narios how the class IV behavior arises by referring to



Matsuno’s idea in more general point of view. Ambi-
guity of physics in Matsuno is replaced by ambiguity
of symbols. In particular, we propose a protobiological
formalism on cellular automata. We will show that our
formalization of ambiguity of symbols can shed light on
the origin of the class IV behavior in one-dimensional
cellular automata.

2. A PROTOBIOLOGICAL FORMALISM
ON CELLULAR AUTOMATA

In this section, we concern an implementation of
Matsuno’s idea on cellular automata. First we discuss
the idea of ambiguity in more wider context. Second
we propose a formalization of the idea.

2.1 Ambiguity of Symbols

Suppose a man performs an addition like 2 + 3 = 5.
He might learn the addition through trial and error
of examples in his elementary school days. Once he
is matured, he can almost always perform the addi-
tion without mistakes. This ‘almost always’ cannot be
replaced by ‘always’. Though the addition performed
by the man can be formally described by axioms (e.g.
by Peano axioms), the real addition performed by a
man is implemented by material processes in his brain
that sometimes makes mistakes. Therefore he is always
exposed to the possibility of mistakes. What is im-
plied by the possibility of mistakes? Let us regard that
the addition symbol ‘+’ represents some material pro-
cesses in one’s brain. Then the possibility of mistakes
means that a symbolization of material processes in-
evitably have some ambiguity. Once a symbol is fixed,
the ambiguity arises as mistakes. Our argument on
ambiguity of the addition depends on the fact that a
symbol can be combined to different material processes
in one’s brain, which can sometimes make mistakes.
However, we shall presume that the ambiguity is in-
trinsic to symbols. This is our strategy to avoid falling
into symbol-matter dichotomy. Then the possibility of
mistakes can be comparable to Matsuno’s one-to-many
type mapping. Ambiguity of physics is replaced by that
of symbols. This replacement enables us to implement
Matsuno’s idea on cellular automata.

Now let us formalize ambiguity of symbols in the
realm of cellular automata. The basic idea is as follows.
A mathematical object can be determined uniquely
only up to isomorphism. Therefore the algebraic struc-
ture of the state space of CA has many isomorphic
realizations. Here we fix a larger set than the state
space and obtain multiple isomorphic realizations of
the algebraic structure by taking appropriate quotients.
We shall harness this ‘up-to-isomorphism ambiguity’ of
mathematical objects to construct a metaphor for am-
biguity of state symbols in cellular automata.

In order to proceed, we need some lattice-theoretic
notions (Davey and Priestley, 2002) since the state
space of CA naturally has lattice structure. A lattice is
a set with two binary operations ∧,∨ that satisfy com-

mutative, associative and absorption laws. Let us con-
cern a cellular state space Ω = {0, 1}. We regard Ω as a
lattice by introducing two binary operations ∧,∨ on Ω.
∧ is defined by the following equations; 0∧0 = 0, 0∧1 =
0, 1∧ 0 = 0 and 1∧ 1 = 1. ∨ is defined by the following
equations; 0∨0 = 0, 0∨1 = 1, 1∨0 = 1 and 1∨1 = 1. Let
K be a positive integer and ΩK be the K-fold Cartesian
product of Ω. We also make ΩK into a lattice as follows.
For any x = (x0, · · · , xK−1), y = (y0, · · · , yK−1) ∈ ΩK ,
we define x∧y := (x0∧y0, · · · , xK−1∧yK−1) and x∨y :=
(x0 ∨ y0, · · · , xK−1 ∨ yK−1). A filter F of a lattice L
is a nonempty subset of L such that for any x, y ∈ F
x∧ y ∈ F and for any x, y ∈ L if x ≤ y and x ∈ F then
y ∈ F . Let Fk(0 ≤ k < K) be a filter of ΩK defined
by Fk :=↑ 1k, where 1k := (x0, · · · , xk, · · · , xK−1) with
xk = 1 and xj = 0(j 6= k), ↑ x := {y ∈ ΩK |x ≤ y}
for x ∈ ΩK and x ≤ y

def⇔ x ∧ y = x for x, y ∈ ΩK .
A congruence θ on a lattice L is an equivalent relation
on L that is compatible with both ∧ and ∨, that is, if
[x]θ = [y]θ and [z]θ = [w]θ for any x, y, z, w ∈ L then
[x ∧ z]θ = [y ∧ w]θ and [x ∨ z]θ = [y ∨ w]θ hold, where
[x]θ is an equivalent class of θ that includes x ∈ L. Let
L,M be lattices. A map f : L → M is called a lattice
isomorphism if it is bijective and it preserves both ∧
and ∨. We have the following lattice isomorphism,

Ω ∼= ΩK/θk

for each 0 ≤ k < K, where θk := θFk
= {(x, y) ∈

ΩK × ΩK |(∃z ∈ Fk)x ∧ z = y ∧ z} is a congruence on
ΩK and ΩK/θk is a quotient lattice induced by the con-
gruence θk. Thus the state space Ω has K alternative
isomorphic representations given a positive integer K.
This ambiguity of the representation of Ω is the key
of the following our construction. We have the natu-
ral projection associated with θk, πk : ΩK → ΩK/θk

that sends each x ∈ ΩK to the equivalent class which
includes x. Since we have the isomorphism (1), we iden-
tify πk with the composition φk ◦ πk, where φk is the
isomorphism φk : ΩK/θk → Ω in (1). One can see that
the map πk is determined by the following property; for
x = (x0, · · · , xK−1) ∈ ΩK , if xk = 1 then πk(x) = 1
otherwise (when xk = 0) πk(x) = 0.

Consider a cell interact with another cell and changes
its state by following a intercellular interaction rule
f : Ω2 → Ω between the two cells. The state of cell
0 is denoted by ω0 ∈ Ω and the state of cell 1 is de-
noted by ω1 ∈ Ω. Suppose K = 2 in equation (1).
There exist two congruences θ0 and θ1 that satisfy (1).
The natural projection associated with θk(k = 0, 1) is a
map πk : Ω2 → Ω2/θk

∼= Ω that projects an element of
Ω2 to its k-th coordinate. In order to define ambiguity
of state symbols ω ∈ Ω, we shall associate an element
xi ∈ Ω2 and a projection πki

such that πki
(xi) = ωi

with ωi for i = 0, 1. Cell 0 receives an input (ω0, ω1) to
it as an distribution of x0, x1 on Ω2. Then it observes
the distribution by π0 or π1 and identifies the input. Let
us see some examples. Suppose ω0 = 0, x0 = (0, 0) with
πk0 = π0 and ω1 = 1, x1 = (0, 1) with πk1 = π1 (Fig.
1). If cell 0 observes x0, x1 on Ω2 by the projection π0
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Fig. 1 A correct identification of an input to a cell
is possible. A projection πi that bridges be-
tween ωi and xi so that πki

(xi) = ωi holds
is indicated by a circle on a coordinate of
xi for each i = 0, 1. Ω2 is represented as
a Hasse diagram consisting of four nodes at
the center of the figure. Ω is also depicted as
a Hasse diagram at the right hand side. If
cell 0 changes its observation from π0 to π1

then it can perform a correct identification
of an input (0, 1).
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Fig. 2 Any correct identification of an input to a
cell is impossible. Cell 0 interprets the input
(0, 1) as (0, 0) or (1, 1).

then it cannot identify the input (ω0, ω1) correctly since
(π0(x0), π0(x1)) = (0, 0) 6= (0, 1) = (ω0, ω1). Hence cell
0 must change its observation in order to perform a
correct observation. In this example, the task can be
done by its changing its observation from π0 to π1. In-
deed, we have π1(x0) = 0 = ω0 and π1(x1) = 1 = ω1.
Can a cell always choose a projection by which a cor-
rect identification of an input is performed? The an-
swer is negative. There exists an example in which
any observation cannot identify an input to a cell cor-
rectly. Suppose ω0 = 0, x0 = (0, 1) with πk0 = π0 and
ω1 = 1, x1 = (0, 1) with πk1 = π1 (Fig. 2). Then we
have (π0(x0), π0(x1)) = (0, 0) 6= (0, 1) = (ω0, ω1) and
(π1(x0), π1(x1)) = (1, 1) 6= (0, 1) = (ω0, ω1). Cell 0 can-
not perform correct identification of the input (ω0, ω1)
with respect to any projection. Thus the ambiguity of
the state space of CA can result in a misidentification
of an input to a cell. If the projection π0 is chosen
for πk0 as a result and the intercellular interaction rule
f satisfies f(0, 0) 6= f(0, 1) then the transition of the
state of cell 0 does not follow the rule f since the input
(ω0, ω1) = (0, 1) is interpreted as (0, 0) by cell 0.

The associated element xi ∈ Ω2 with ωi ∈ Ω is a
virtual factor in terms of an external observer who
describes the state of a cell by introducing the state
space Ω. The factor introduces an ambiguity of the
state. Since we consider that the ambiguity is intrin-
sic to the state space, the factor can be regarded as a

metaphor for that a state symbol is borne by some ma-
terial processes in the same sense that the addition is
implemented by biochemical processes in one’s brains.
Hence we shall call the factor material factor. Our for-
mal definition of protobiological formalism on cellular
automata is given in the next subsection.

2.2 Definition of Material Factor-Associated
Cellular Automata

In what follows we only concern elementary cellular
automata (ECA), that is, one-dimensional binary cel-
lular automata with nearest neighbor interaction (Wol-
fram, 1983). The formalism can be easily generalized to
multi-dimensional multi-valued cellular automata with
arbitrary interaction radius.

Let Ω be a lattice {0, 1} and K be a positive integer.
We define the data of a cell at site i and time t by
the triplet (xt

i, ω
t
i , k

t
i) with πkt

i
(xt

i) = ωt
i , where xt

i ∈
ΩK , ωt

i ∈ Ω and 0 ≤ kt
i < K. xt

i, ωt
i and πkt

i
are called

a material factor, a formal state and an observation
map, respectively.

Next we describe the rule dynamics in our formal-
ism. Suppose one of 256 rules of ECA f : Ω3 → Ω
is given. A cell at site i ant time t receives an input
(ωt

i−1, ω
t
i , ω

t
i+1) ∈ Ω3 to it as a distribution of material

factors xt
i−1, x

t
i, x

t
i+1 on ΩK . The number of possible

observations is K. As we have seen in the previous
subsection, there exists a situation that a cell cannot
perform a correct observation of an input in principle.
Since we external observers describe the behavior of
cells by introducing the state space Ω, the degree of
misidentification of an input should be minimized in
the actual realized observation. Motivated by this con-
sideration, we define the time evolution of cellular data
as follows; define

σt
i,k :=

∑

j=i−1,i,i+1

d(ωt
j , πk(xt

j)),

δt
i := min

0≤k<K
σt

i,k,

and
St

i := {k|σt
i,k = δt

i},
where d is a metric on Ω given by setting d(0, 1) = 1.
The update of the data of a cell at site i and time t is
performed by the following three steps.

(i)Choosing an observation. An element of St
i is

chosen by following the equiprobability distribu-
tion on St

i . We write the chosen element kt+1
i .

(ii)Updating material factor xt
i. For k 6= kt+1

i ,
πk(xt+1

i ) = πk(xt
i). For k = kt+1

i ,

πkt+1
i

(xt+1
i ) = f((πkt+1

i
(xt

j))j=i−1,i,i+1).

These equations determines xt+1
i uniquely since

xt+1
i = (π0(xt+1

i ), · · · , πK−1(xt+1
i )).



(iii)Updating formal state ωt
i .

ωt+1
i = πkt+1

i
(xt+1

i ).

The above three steps defines the time evolution of the
cellular data from (xt

i, ω
t
i , k

t
i) to (xt+1

i , ωt+1
i , kt+1

i ). We
call the time evolutionary system defined above mate-
rial factor-associated cellular automata (MFCA). Note
that if K = 1 then any MFCA is just a usual ECA.

3. BEHAVIORS OF MATERIAL FACTOR-
ASSOCIATED CELLULAR AUTOMATA

In this section first we observe behaviors of some ex-
amples of MFCA in order to find a clue as to how mix-
ture of a periodic pattern and a chaotic pattern (the
class IV behavior) can arise in MFCA. Second we ap-
ply a class discrimination method proposed by Kusch
and Markus (1996) with a modification to MFCA in
order to see how many rules show the class IV behavior
under the MFCA construction.

3.1 Examples of Patterns

We show space-time patterns of four examples of
MFCA compared with those of ECA in Fig. 3. The
number of a rule is specified by following Wolfram
(1984). The system size is 100 with the periodic bound-
ary condition. The cells are arranged along the hor-
izontal line and evolve their state along the vertical
direction from the top to the bottom. The first 150
time steps are shown initiated from the random initial
condition. The random initial condition here means as
follows. For each cell at site i, first its initial formal
state ω0

i is chosen to be 0 or 1 with probability 1
2 . Sec-

ond its initial observation πk0
i

is chosen from the set
of all projections {π0, · · · , πK−1} with equiprobability.
Then a coordinate of its initial material factor πk0

i
(x0

i )
is automatically determined by πk0

i
(x0

i ) := ω0
i . Finally

the value of πk(x0
i ) is chosen to be 0 or 1 with proba-

bility 1
2 for k 6= k0

i . Thus an initial condition for a site
is specified.

For each rule, the left hand side picture shows a usual
ECA time evolution of the rule. Rule 1 (Fig. 3(a)) and
rule 7 (Fig. 3(b)) are class II (periodic patterns) rules.
Rule 22 (Fig. 3(c)) and rule 90 (Fig. 3(d)) are classified
in to class III (chaotic patterns). This corresponds to
the case K = 1 in MFCA. Cells with state 0 and 1 are
represented by white and black squares, respectively.
The picture at the center shows a time evolution of the
rule under the MFCA construction with K = 10 for
rule 1 (Fig. 3(a)), K = 8 for rule 7 (Fig. 3(b)), K = 3
for rule 22 (Fig. 3(c)) and K = 5 for rule 90 (Fig.
3(d)). Space-time patterns in the formal states of the
cells are depicted. Cells with formal state 0 and 1 are
represented by white and black squares, respectively.
They show the class IV behavior which is an erratic
mixture of a periodic pattern and a chaotic pattern. In
the right hand side pictures, if ωt

i 6= f(ωt
i−1, ω

t
i , ω

t
i+1)

holds in the pictures at the center then a cell at site i

(a)

(b)

(c)

(d)

Fig. 3 Space-time patterns of four ECA rules under
the MFCA construction. The system size is
100 with the periodic boundary condition.
The first 150 time steps are shown. The ini-
tial arrangements are given randomly as ex-
plained in the text. Left hand side pictures
are space-time patterns with K = 1 (usual
ECA patterns). Pictures at the center are
space-time patterns under the MFCA con-
struction with some K > 1. The right hand
side picture indicates when and where mis-
calculations of the formal state of a cell oc-
cur. (a)Rule 1 with K = 10. (b)Rule 7 with
K = 8. (c)Rule 22 with K = 3. (d)Rule 90
with K = 5.



and time t is depicted by a black square otherwise the
cell is depicted by a white square.

In Fig. 3 (a) and (b), class II patterns are made into
class IV patterns with erratic miscalculation propaga-
tion by the MFCA construction. In contrast, class III
rules can generate class IV patterns under the MFCA
construction as shown in Fig. 3 (c) and (d). From
these observations, we can suggest two scenarios of how
the class IV behavior can arise in the MFCA construc-
tion. The first scenario is that miscalculations of formal
state values erratically propagate against class II pat-
terns background (Fig. 3 (a) and (b)). The second
scenario is that rare arrangements in typical class III
ECA space-time patterns are generated locally and re-
main certain periods sometimes bounded by walls of
miscalculations (Fig. 3 (c) and (d)). For example, the
periodic arrangement · · · 110110110 · · · is a fix point
of rule 90 (100, 110, 001, 110 → 1 otherwise 0) in in-
finite one-dimensional lattice. However, this periodic
arrangement cannot be observed in typical time evo-
lutions of rule 90 from the random initial conditions.
If a finite repetition of 110 is generated, it disappears
immediately (Fig. 3 (d), the left hand side picture).
In contrast, walls of miscalculations can help a finite
repetition of 110 remain in certain periods in rule 90
under the MFCA construction with K = 5 (Fig. 3 (d),
the pictures at the center and the right hand side).

The intimate analysis of mechanisms of the class IV
behavior in the MFCA construction remains as an open
task. In the next subsection, we observe in what de-
gree the class IV behavior is enforced under the MFCA
construction.

3.2 Discriminating the Different Classes

Kusch and Markus (1996) introduce a new method
to discriminate space-time patterns of CA. Their idea
is to quantify what we observe when we see difference-
patterns (DP). A DP is the difference between a pattern
with a perturbation to a single cell at initial time t = 0
and a pattern without any perturbation. The differ-
ence between class III and class IV appears clearly in
the DPs (Fig. 4). The two borders of a DP for class
III CA propagate with a constant velocity to the right
and a constant velocity to the left (Fig. 4 (c)). On the
other hand, the borders of a DP for class IV CA changes
their propagation velocities erratically (Fig. 4 (b) and
(d)). In order to quantify these characteristics, Kusch
and Markus calculate the standard deviation ∆m of
the slope of a fitted line for each border of a DP for
symmetric CA. Before calculating the standard devia-
tion ∆m, they normalize slope of a fitted line. They
suggest the following classification:
(i) In class I (homogeneous patterns), DPs vanish af-

ter short periods.
(ii) ∆m for class II (periodic patterns) are nearly zero

since the perturbations are confined in a finite
space. Hence the borders can be fitted without
large errors.

(a)

(b)

(c)

(d)

Fig. 4 Examples of difference-patterns (DP). Two
run of a CA is performed in parallel from the
same initial arrangement except the cell at
the center. We perturb the material factor
of the cell at the center by flipping its all co-
ordinates. (a)Rule 1 with K = 1 (class II).
(b)Rule 1 with K = 10 (class IV). (c)Rule
22 with K = 1 (class III). (d)Rule 22 with
K = 3 (class IV).

(iii) For class III (chaotic patterns), ∆m is small rela-
tive to that of class IV since perturbations propa-
gate with constant velocities with small-scale fluc-
tuations.

(iv) Since class IV (co-existing of both periodic and
chaotic patterns) DPs have erratic mixture of
oblique line borders and vertical line borders, ∆m
is larger than the other classes.

Since Kusch and Markus treat only symmetric rules,
they need not to distinguish ∆m for the left border
from that for the right border. However, there are many
asymmetric rules in all 256 ECA rules. Hence we make
a distinction between ∆ml for the left border and ∆mr

for the right border.
The pair (∆mr,∆ml) for each ECA rule is plotted in

Fig. 5. The rules that shows the class IV behavior are
clustered around (0.004, 0.004). The rules that can be
classified into the other classes have smaller ∆m values
(. 0.002) than those in class IV. A small fraction of
rules have large ∆mr or ∆ml if K = 1 (Fig. 5 (a)). In
contrast, much larger number of rules show large ∆m
values (Fig. 5 (b), (c) and (d)). Note that this plot con-
tains some exceptional rules. DPs for some rules (e.g.
rule 43) show zigzag lines. These rules are depicted
with considerably high ∆m values (& 0.008) or with
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Fig. 5 (∆mr,∆ml) plots for all 256 ECA rules.
For each rule, ∆mr and ∆ml are averaged
over 100 different DPs. The system size is
501 with the periodic boundary condition.
DPs are determined by first 250 time steps.
(a)K = 1. (b)K = 3. (c)K = 5. (d)K = 10.
The number of rules with high ∆m values
under the MFCA construction with K > 1
is much larger than with K = 1.

large displacement from the diagonal line. Though they
cannot be classified into class IV, they have large ∆m
values. In spite of the existence of such small number
of exceptions, the (∆mr,∆ml) plots for all ECA rules
suggest that the MFCA construction can enhance the
class IV behavior for K > 1.

4. CONCLUDING REMARKS

In this paper, we propose a formalization of the idea
of ambiguity of symbols in cellular automata. The ‘up-
to-isomorphism ambiguity’ ΩK/θk

∼= Ω of the cellular
state space serves as our MFCA construction. We pre-
sume that the ambiguity is intrinsic to the state space Ω
so that we can use the ambiguity as a metaphor for ma-
terial. An element of the lattice ΩK is called material
factor. Material factors can lead to a miscalculation of
a cellular state transition that facilitate the emergence
of the class IV behavior in ECA under the MFCA con-
struction.

We only concern finite K in this paper. However,
one can construct MFCA with K = ∞ as with the
finite K case. That is, we turn our eyes to the iso-
morphisms ΩN/θk

∼= Ω, where N is the set of natural
numbers. Then the time evolutions of the formal states
in the obtained MFCA from the random initial condi-
tions contain no miscalculation since at any site and
any time there exist infinitely many correct observa-
tions of any input to a cell. The finiteness of ΩK is the
essential factor in order that the material factor can
work explicitly.

One can give the necessary and sufficient condition
for the existence of a miscalculation when K > 1. In
the realm of ECA, there exist ω,ω′ ∈ Ω3 such that
f(ω) = 0 and f(ω′) = 1 if and only if we can find
formal states, material factors and observations such
that a miscalculation can occur. The proof will be given
elsewhere in more general form.
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