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Abstract. In this paper we concern an abstract model of self-organizing process called local cellular automata (LCA)
proposed by us recently. The circular organization of living systems is addressed. A consistent circularity is defined by a
closure operation on complete lattice. An inconsistent circularity is defined by a quasi-closure called weak closure implied by
an internal perspective. Each cell in a LCA receives data about the time developments of its neighbors at one step before. It
constructs a (in general incomplete) look-up table by taking closure (or weak closure) of the received data on an appropriate
lattice. It applies obtained rule to its own present state and changes the state. In the former half of the paper, the theory
which is the basis for LCA based on set lattice is reformulated in terms of complete lattice. In the latter half, we restrict
cells’ information receiving ability and define restricted local cellular automata (RLCA). The space-time patterns of RLCA
are estimated by the variance of input-entropy over a span of time steps. The difference between closure driven RLCA and
weak closure driven RLCA is discussed.

Keywords: closure, complete lattice, self-organization, cellular automata, variance of input-entropy
PACS: 87.15.Aa

1 INTRODUCTION

Living systems self-organize [8, 10, 11]. Self-organization means something constructs itself by itself. The former
self can be seen a self as an operand and the latter can be seen a self as an operator. Both self cannot be separated
in living systems. They are dependent on each other. It is a problem to formalize this circular organization of living
systems. One of convincing attempts to address this problem is Rosen’s (M,R) system [12]. An (M,R) system consists
of abstracted three biological functions - metabolism, repair and self-replication. They are mutually dependent on each
other (in Rosen’s term ‘entailed’). (M,R) system is closed under dependency relations in these biological functions. It
is, therefore separated from its environment in terms of the biological functions (Of course, transmissions of materials
and energy from/to the environment are allowed). Although this gives a form of the circular organization of living
systems, such a description of living systems is too static. Real living systems are more dynamic. They interact with
their environments, adapt to changes in the environments and learn from the interactions. Living systems are open
to their changes resulting from interactions with their environments. It is not enough to focus on only the circular
organization of living systems in order to address such dynamic aspects of living systems.

In (M,R) system a inseparability between an operator and an operand (circularity) is constructed consistently.
However, in terms of internal perspective [3, 4, 5], the circularity can imply a kind of indefiniteness. So the circularity
must be inconsistent in some sense. In our previous work [9], we proposed a definition of the indefiniteness and called it
autonomous indefinitened&’e discussed how a complex behavior emerges when each element of a system is subject to
autonomous indefiniteness. The system we proposed is an abstract model of self-organizing process called elementary
local cellular automaton (ELCA). In this model, a ‘consistent’ circularity is defined by a closure operation on set
lattice and an ‘inconsistent’ circularity that can imply indefiniteness is defined by modifying the closure operation by
the partial universal quantifier [6, 7]. The partial universal quantifier defines an incomplete wholeness that can cause an
inconsistent inseparability between the closure operation and the domain of the closure operation. The derived quasi-
closure operation is called weak closure operation. We defined two systems, the one in which each cell possesses only
the consistent circularity and the other in which each cell possesses the inconsistent circularity. The former system
is called closure driven elementary local cellular automaton (CD-ELCA) and the latter is called weak closure driven



elementary local cellular automaton (WCD-ELCA). In both systems, first each cell (which has two possible states, 0
or 1) receives data about the time developments of its nearest neighbors at one step before. For example, if the array of
states of the nearest neighbors at present is (110) and that within the second nearest sites at the last time step is (11010)
then the cell recives three pairs ((110),1), ((101),1) and ((010),0). Next it construct a look-up table for the possible
eight triplets by taking closure (or weak closure) of the received data on a set lattice. This look-up table is incomplete
in general. Finally it applies the obtained (incomplete) rule to the triplet at present time step and changes its state. We
showed that CD-ELCA falls into ordered state under the periodic boundary condition. In contrast, WCD-ELCA shows
generation and destruction of clusters of various sizes and the frequency distribution of cluster size can scale as power
law with exponent -2.0.

In this paper, we concern two distinct ways which extend ELCA. The one enables us to define many-valued local
cellular automata including two-valued ones. The other is a modification on rule construction at each cell in ELCA.
As pointed out in our previous paper, we need to extend the theory of weak closure operation on set lattice to the
framework of complete lattice in order to define many-valued local cellular automata. This can be easily done. We can
translate the theory in set lattice into that in complete lattice directly. We discuss this issue in section 2. For the latter
issue, which is concerned in section 3, we introduce restrictions into the information receiving ability of cells in ELCA.
Given one of 256 look-up tables of elementary cellular automata, each cell can receive only the data that match the
given table. Then we obtain 256 kinds of local cellular automata (LCA) for both closure driven case and weak closure
driven case. We call the obtained LCA restricted local cellular automata (RLCA). The space-time patterns of RLCA
are estimated by the variance of input-entropy over a span of time step [14]. They are classified into ordered, chaotic
and complex ones by plotting the time average of input-entropy against the variance of it. The difference in spectrum
of space-time patterns between closure driven RLCA and weak closure driven RLCA is shown.

2 CLOSURE AND WEAK CLOSURE IN COMPLETE LATTICE

The result in this section is an easy generalization of that in [9]. A proof of any statement is direct translation from
that in set lattice to that in complete lattice. However, we give a proof for each statement in what follows for reader’s
convenience.

2.1 Closure

Let (P, <) be a partially ordered set. Recall a majpom P to P is calleda closure operator on IPL] if it satisfies
following conditions for any,y € P: (i) x < ¢(x), (i) x <y = c(x) < ¢(y), (iii) c(c(x)) = c(x). A pointxin P is called
closedif c(x) = x holds. We denote the set of all closed point®iby P..

Let L be a complete lattice with O(the least element.paind 1(the greatest elementldf That is,L is a poset in
which every subset has both a join(least upper bound) and a meet(greatest lower bound). Wefarritee partial
order onL. In what follows, we treat only meets. We writeT for the meet of a subsét. A subsetSof L is called
a complete meet-semilattiéEevery subsefl of S has its meet irt. Then1l = A0 is an element of any complete
meet-semilattice.

The next theorem 1 is an analog for one in [1](theorem 7.3, p.147).

Theorem 1. Letcbe a closure operator on a complete lattice with 0 and 1. Th&a complete meet-semilatticelof
Conversely, for any complete meet-semilat®mf L if we define a mapsfromL toL by cs(a) = A{s€ Sa< s}
for ae L, thencsis a closure operator dn

Proof. Let c be a closure operator dn Consider a subséf of L. For anyt € T, we haveAT <t. Therefore,
c(AT) <c(t) =t holds. This shows that(AT) is a lower bound foiT. Leta € L satisfya <t for anyt € T.
Then we havea < AT <c(AT). Hencec(AT) is the meet foll and this means(AT) =AT.

Conversely, leSbe a complete meet-semilattice lof By the definition ofcs, it follows thata < cg(a) and if
a<bthencs(a) < cg(b) for anya,b € L. SinceSis a complete meet-semilattices(a) € Sandcs(cs(a)) =
N{s€ Scs(a) < s} <cg(a) foranyae L.y

There exists one-to-one correspondence between the set of all closure operators on a compléteviditizand
1 and the set of all complete meet-semilatticek.chctually, it is a consequence of theorem 1 as we show below.



First we prove that, . = c holds for a closure operateronL. It is enough to show that(a) = A{s€ Lc|a < s} for
anyac L. c(a) is alower bound fofs € L¢|a < s} since ifa < sfor s€ L. thenc(a) < c(s) = sholds. Lett be a lower
bound for{s € L¢|a < s}. We havec(a) € L¢ by c(c(a)) = c(a). Hencet < c(a) holds bya < c(a) and this shows(a)
is the meet.

Second we prove that,; = S holds for a complete meet-semilattiSef L. Since we haves(s) = /\{s’ €9s<
s} =sforse S wegetse Les. HenceS C L¢g holds. On the other hand, since we havecs(t) = A{se St < s}
fort € Le; andSis a complete meet-semilattides Sholds. So we gelte, C S

Next proposition 2 defines the closure of given sulSsafta complete latticé.

Proposition 2. Let L be a complete lattice with 0 and 1 afe a subset of. We define a maps from L to L by
cs(a) = A{se Sa<s} forac L. ThenS:= {ac L|cs(a) = a} is a complete meet-semilattice (therefogds a
closure operator oh).

Proof. For simplicity, we writec instead ofcs. Let T be a subset db. We have to show that T € S. By the definition
of ¢, we haveA T < c(AT). The reverse inequality is shown as follows.
Inthe casd = 0, we havec(\T) =< 1= AT. Supposd # 0. Since we havec Sfor anyt € T, t = c(t) holds.
Sowe ge\ T = Ac(T) = Atet A{s€ St < s}. Onthe other hand, we hagé\T) = A{s€ JAT <s} = A{se
S Ater A{S € St <s} <s}. Foranyse Switht < sfor somet € T, A1 A{S € St < s} < sholds. Hence we
gete(AT) < Ater A{s€St<s} =AT.y
We callSin proposition 2the closure of Sin L
Given a subse$ of a complete latticé with 0 and1, we haveS C S= c5(S) by proposition 2 and the one to one
correspondence between closure operators and meet-semilatticesS &sl&,can be considered to be operands and
Cs andcg are operators. All elements &fare fixed points ots andSis invariant bycs. Thereby, we refer to these
facts asconsistent circularity

2.2 Weak Closure

Let G,M be nonempty sets and | be a binary relation on the pro@uctM, i.e, | is a subset 06 x M. For

any subsef of G, we definev,a c AL ac An((A)°)*, whereA := {me M|vg € A gim}, (A)¢:=M\A and

((A)6)* :={g e G|3me (A)° st. gim}. The symbol,, is calledthe partial universal quantifiefs, 7].

Originally G is a set of objects anM is a set of attributes in terms of formal concept analysis [2]. The triplet
(G,M, 1) defines a formal context. Given a subsaif G, A is the set of all attributes that are common in all objects in
A. (A))¢is the set of attributes which are not possessed by at least one objeétiirally, ((A)°) " is the set of objects

which have at least one attribute which is not possessed by at least one ojethimsa € AN ((A)°)* means that
apossesses at least one attribute that is not commaAnlmother words, those which have only attributes common in
A are discarded by,

Let L be a complete lattice with 0 and 1. We consider the partial universal quantifier in th&cadé¢ = L and
| =<. In this case we can omit the operatiorin the definition ofv/.

Lemma 3. For any subse$of L, we have((S)¢)* = (S)C.

Proof. Lets e ((S)°)*. By the definition, there existse (S )¢ such thats < t. Now suppossc S. Thena < s<t
holds for anya € Ssot is an element 08 . But this is impossible since we have (S )¢. Hences¢ S must hold
and we get the inclusiof(S)¢)*  (S)C. The reverse inclusion immediately follows from the definitipn.

Let L be a complete lattice with 0 and 1 ace a subset of. We define a mawcs from L to L by wes(a) =

Nv,scs, Sfor eachac L, whereS, = {s€ Sa<s}. We callS:= {a e L|wcs(a) = a} the weak closure of Sin L
f’he next theorem 4 determines the relation between the closure and the weak closure.

Theorem 4. Let L be a complete lattice with 0 and 1 aBde a subset df.
(i) If 1€ Sthen we havé&s=S.

(ii) If 1 ¢ Sthen we haveS = S\ M, whereM is the set of all maximal element &with respect to naturally
induced order by..



In order to prove theorem 4, we need some lemmas.

Lemmab. Foreachac L, §; #0andS;N (Sa')C = 0 hold if and only ifS; is a singleton set. If at least one of the two
conditions is satisfied then the unique elemertof a maximal element &.

Proof. Supposes; # 0 andS; N (Sa')C =0. Foranyse S, se Sa' holds sinceS,; C Sa'. Hencet < s for any fixed
st € S, If we interchanges andt, we gett < s. This means thagd =t for anys;t € S;. Since we assume that
S # 0, Sy is a singleton set.
Conversely, suppos® is a singleton set. Since the unique poingirbelogs to the sk, i (Sa')C =0 holds.
The remaining fact we have to show is that the unique elemetisfa maximal element d&. PutS, = {s} and
assume that is not an element db. There exist$ € Ssuch thas <t ands#t. Thent € S, sincea< s<t. But
this is impossibley

Lemma 6. If 1 € SthenS,N (S )¢ =S:\ {1} foranyae S

Proof. Supposel €SleSandle S hold. ThenS, = {1} holde sincel < sfor anys e S . Hence we get
SN (&) =%\{1}a
Lemma7.If 1¢ Sthen

e | S\ {m}, if & hasthe maximum element
SN(&)° = { S, otherwise.

Proof. Assume thafsé1 has the maximum element Thenm gz (S /)C holds sincem e S{. For any othes € S, with

s#£m, se (S )¢ holds sinces< m. Hence we ge&N (S )¢ = S\ {m}.
Next assume thas, has no maximum element. Then there existd HOS, such thats <t for anyse S;. So

SNS. = 0and this mean§, C (Sa,)c. I
Proof of theorem 4. We devide the proof into four parts: @C S. (i) 1 ¢ S= Sc S\ M. (jii) 1€ S=S> S (iv)
1¢S=SDOS\M.
() Letae S We provecg(a) < a. But we have

= /A\'s wcs(a N\ s

€S SESaﬁ(Sal)c

andS; N (S))° C Sa, SO we gets(a) < wes(a) = a.
(i) Let 1 ¢ S Considering the result in case (i), it is enough to show thatif{a) = afor a< L thenais not a
maximal element 0. Suppose € L is maximal inS SN (S{)C = 0 holds by lemma 5. Then we have

a=wes(a)= N s=A0=1
seSn(&)°

But this is impossible sincké ¢ Shy assumption.

(iii) Let 1€ S Supposea € S. We show thaf\ses, S= A
Hence

eSS S We haveS, N (Sy )¢ = S\ {1} by lemma 6.

N s= A s=( A\ 9rl=As

s€SN(&)°  ES\L seS\{1} «S

(iv) Let 1¢ Sanda € S\ M.
If a € Sthena is not a maximal element db Since we assumé ¢ S there existss € S such that
a<sa#ss# 1 Suppose c (Sa) holds. Then we have < a but this is impossible sinca+# s. Hence
we havea ¢ (S,)" and this impliesa € SN (Sy)¢. Sowcs(a) = /\SGSaﬁ(Sa eS=2a
Next we consider the case¢Z S. We prove \g.g, S = /\%Sam(sa/) s. There is nothing to prove in the

caseS; = 0. So we assum&, # 0. Supposes; N (Sa/)c = 0. By lemma 5, There exists € S such that



S. = {s}. Then we haven = cg(a) = s € Shut this is impossible since we assum¢g S. Therefore we have
SN (Sa’)C # 0. WhenS, does not have the maximum eleme®{n (Sa/)C = $ holds by lemma 7. On the
other hand, i, has the maximum element, SN (S; )¢ = S;\ {m} holds. Since we hav@, N (S; )¢ # 0,

A s= A s=( A 9am=As
ESSH

s SS\Mm seS\(m)

In general, the weak closuiof Sis not the closure o8 as one can see by theorem 4. Howe$ss a complete
meet-semilattice of.

Theorem 8. Let L be a complete lattice with 0 and 1. Then the weak cloSiiier any subses of L is a complete
meet-semilattice of.

Proof. If 1 € SthenS=35 by theorem 4 s&is a complete meet-semilattice. Ltz S. We write M for the set of
all maximal elements db. By theorem 4, we have = S\ M. Take a subsef of S SinceSis a complete meet-
semilattice ofL, AT € Sholds. fT =0then\T=A0=1¢ S We show tha\ T € M whenT # 0. We write
mfor AT. Supposen € M. We havem <t for anyt € T. If there existt € T such that € Sthen eithem =t
ort =1 holds by the maximality ofm. m=t must hold by the assumption. But this is impossible since we have
m¢ S Hencet ¢ Sforanyt € T. We have = wcs(t) = /\%Sﬁ(s )Cssince we assume cC S Suppose there exists

t € T such tha N (S')¢ # 0. Then there existse § N (S')° C Ssuch thatm < t < s. By the maximality ofm, it
follows thatm= sandt = m. But this is impossible sindez S. Hence we hav&§ N (S/)C =0Qforanyt € T. This
meand = 1for anyt € T. So we getl = AT = mbut this is impossible sino@ ¢ S. Thereforem¢ M holds.y

!/

In contrast to the closure, we hage7 S=wcg(S) by theorem 4 in genera$ is invariant bywcs on one hand,
there exist some elements $that are not fixed points afics on the other hand. Thereby, we refer to these facts as
inconsistent circularity

Given a function on a subsé&tof a complete lattice, we define the extensions of the functioB, énLet}, M be
complete lattices with 0 and 1 arfdbe a map frons C L to M. The extension of f 08is defined as a mapfrom S
to M which sends eaca € Sto f(a) = Ases, T(9). In the same waythe extension of f oBis a mapf~fr0m StoM
defined byf(a) = Nvpses, f(s) for eacha e S Here we use the term "extension’. However, The valuef @fr ) do

not coincide with those of on Ssince we defind and f so that they become order-preserving maps.

Proposition 9. Let L,M be complete lattices with 0 and 1. Given a sulSef L and a mapf from Sto M. Thenf
andf are order-preserving maps frdandSto M, respectively.

Proof. Leta<be S We haves, C S, s0f(a) = Aseg, () < Ases, f(5) = f(b). We also havs, c S by S, C S.
Therefore we havés, )¢ C (S, )¢ andf(a) = /\se&m(sa/)c f(s) < /\Sesom(sol)c f(s)= f(b).y

Proposition 10. LetL,M be complete lattices with 0 and 1. Given a sut&et L and a mapf from Sto M.
(i) If Le Sthenf(a) = f(a) A f(1) for eachac S=S
(i) If 1 & Sthen

f(a)Anf(m), if S hasthe maximum element
f(a), otherwise.

for eachac Sc S
Proof. (i) follows from lemma 6 and (ii) follows from lemma 7 immediatg]y.

3 RESTRICTED LOCAL CELLULAR AUTOMATA

A local cellular automaton is defined as follows [9]. We concern only one-dimensional and nearest neighbor
interaction case. Each cell in the automaton takes its value in a complete Vatticghis papery is always{0, 1}.
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FIGURE 1. The time developmental procedures at sié@d timet in both CD- and WCD-LCA are shown (Left). Circles filled
in black and white on triplets consisting of 0 and 1 denote 1 and 0, respectively. The fuhdian abbreviation fof!, and so on.

Functionsf, T and f are represented by Hasse diagrams with colored circles(Right).

The state of a cell at timeand sitei is represented bgt € V, wheret is a non-negative integet,<i < N andN is

the size of the one-dimensional lattice. Fix a cell at tinaad sitei. It determines its state at tinte+ 1 (i.e. a}“) by
following procedure. First it receives information about the last time development at its neighbors. That is, three pairs
of triplet and state valug(al ¢ ;,a .8 ¢, 1).a,,) fork=—1,0,1. Put§ = {( af;& e )k=-101}

Next it defines a mag from § C V xV xV toV by ff(al i 1,8l . a . ,) = &, with k= —1,0,1. If there are

two distinct values off! for a triplet then the value of! for the triplet is arbitrarily chosen from the two values. The
map f! is extended t& (or S) written by ff (resp. f‘) Finally, it applies the obtained map (resp. ft) to the triplet
(a&_,,al,al, ;) and get the state value of the cell at $itand time step+ 1 written bya ™. If the triplet(al_,,al,a ;)

is not contained in the s& (resp.S) then the value oé}“ is arbitrarily chosen from the s¥t If the rule construction

of each cell is given by the closure operation, then the local cellular automaton is called closure driven local cellular
automaton (CD-LCA). If the rule construction of each cell is given by the weak closure operation, then the local
cellular automaton is called weak closure driven local cellular automaton (WCD-LCA). For example, if

(al 27a1 1731 7""1+17a1+2) = (1a 1,0, 170)7
@ g.8.8.1) = (1,1,0)
f1(1,1,0) = f1(1,0,1) = 1 and f!(0,1,0) = 0O (figure 1). By proposition 2,
g = {(0,0,0),(0,1,0), (1,0, ,1),(1,1,0),(1,1,1)}. By the definition of ff, ff(0,0,0) = f{(0,1,0) = 0 and
(1,0,0) = f{(1,0,2) 7 1,1,0) = ff(1,1,1) = 1. Thereforea ™ = f{(1,1,0) = 1 in the CD-LCA. On the other
hand, since! ™! = ft(l 1 0) is not defined, the value is chosen from the &t} randomly (in probability 0.5 for
each value 0 and 1) in the WCD-LCA. Actuallﬁ, = {(0,0,0),(0,1,0),(1,0,0),(1,1,1)} by theorem 4 since the set
of all maximal elements i} is {(1,0,1),(1,1,0)}. Thereforeﬁt is not defined orf1, 1,0) thoughft(1,1,0) is defined
asl.
Now we define restricted local cellular automata (RLCA). They are modified LCA in which each cell has restricted

information receiving ability. Given a look-up table of elementary cellular automaton, each cell can receive only
the pairs of triplet and state value which match the given rule table T@ sberefore becomes smaller than that of

ordinary LCA in general. For example, consider the cégley, al 1,8l 1,8 1,8.3) = (1,1,0,1,0),(a_,a.af ;) =
(1,1,0) and the restriction rule table is given by following table ;

000 001 010 011 100 101 110 111
0 1 0 0 1 1 0 0

Then the pairg(1,0,1),1) and((0,1,0),0) match the rule but the paf(1,1,0),1) does not match the rule siné&0

is bound to0 in the table. Therefor& = {(1,0,1),(0,1,0)} in this circumstance. The remaining rule construction
procedure in RLCA is the same as that in ordinary LCA(figure 2). We get 256 closure driven RLCA (CD-RLCA)
and the same number of weak closure driven RLCA (WCD-RLCA). We number the restriction rules as well as
ordinary ECA's rule numbering [13]. The numbers are cattestriction rule number¢éRRN’s). For exampleRRN =

2+ 16+ 32=50for the above example.

thens = {(1,1,0),(1,0,1), (010}
(1,0,0),(1,0
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FIGURE 2. The time developmental procedures at sdad timet in both CD- and WCD-RLCA with RRN=50 are shown (Left).
Coressponding, f and f are also shown(Right).

Now we state some easily derivable facts on RLCA from the definition. If the difference of RRN'’s between two
CD-RLCA is just 128 then the two systems have the same time development rule. This is becauseSvbetitains

(1,1,1) or not (1,1,1) always belongs t&. This fact is not true for WCD-RLCA in general. (&_,,al,al, ) =
(1,1,1) thena*! = 1 for any tuple of five(al_3,al~7,al *,al. 1,4 7) independent on restriction rules in both closure
and weak closure driven systems. So the homogeneous state in which all cells’ stdtes arfixed point of any
RLCA with the periodic boundary condition. If RRN is less than 128 then a cell sitting atagitgtimet in the system

cannot receivé(1,1,1),1). Suppose that the cell receivgd, 1,1),1). Thens does not contairfl, 1,1) andS # §
by theorem 4. So we can expect that the difference between CD-RLCA and WCD-RLCA is strengthen if the RRN is
less than 128.

We estimate the space-time patterns of RLCA with the periodic boundary condition and disordered initial configu-
rations by the variance of input-entropy over a span of time steps. According to Wuensche [14], we can classify the
space-time patterns into ordered, chaotic and complex ones by plotting the time average of input-entropy against the
variance of it. The input-entropy at tintés given by

8 o t
Et= —i;(ﬁ' X Iog%)

whereN is the system size ar@ is the amount ofth triplet at timet. The classification can be described as follows.

Ordered: Lower average entropy and low variance.
Complex: High variance of input-entropy.
Chaotic: Higher average entropy and low variance.

For each RRN both the closure system and the weak closure system are classified into one of the above classes
respectively. So each RRN can be mapped to one of nine possible types in the following table.

c\wc ordered complex chaotic

ordered O O O

complex X O O
chaotic X O O

‘C’ and ‘wc’ are abbreviations of closure system and weak closure system respectively. The circle at first low and
second column means that there exists an example of RRN with which the closure system shows ordered dynamics
and the weak closure system shows complex one. The cross at second low and first column means that there is no
example of RRN with which the closure system shows complex dynamics and the weak closure system shows ordered
one, and so on. Since weak closure systems are less deterministic than closure ones, it is plausible that there is no RRN
such that (c,wc)=(complex, ordered) or (chaotic, ordered).

Figure 3 shows examples of RLCA corresponding to existing seven types of RRN. The graphs along right hand sides
of space-time patterns are time series of input-entropy at each time step. Note that there are some RRN like RRN=18
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FIGURE 3. Examples of RLCA corresponding to existing seven types of RRN. The system size is 100 and the first 200 time
steps from disordered initial configurations are shown. The graphs along right hand sides of space-time patterns are time series of
input-entropy at each time step. The upper left two are closure system (left) and weak closure system (right) with RRN=217, which
is an example of (c, wc)=(ordered, ordered). (c,wc)=(ordered, complex) for the upper right two with RRN=47, (c,wc)=(ordered,
chaotic) for the left two in the second row with RRN=224, (c,wc)=(complex, complex) for the right two in the second row with
RRN=51, (c,wc)=(complex, chaotic) for the left two in the third row with RRN=179, (c,wc)=(chaotic, complex) for the right two

in the third row with RRN=18 and (c,wc)=(chaotic, chaotic) for the bottom two with RRN=169.

with which closure systems belong to the chaotic class and weak closure systems belong to the complex class though
weak closure systems are less deterministic than corresponding closure systems in terms of time development rules.
The variance of input-entropy is plotted against the average of input-entropy in figure 4. Only a few CD-RLCA
shows higher variance among closure sytems (0.05-0.1) on one hand, many WCD-RLCA shows high variance (more
than 0.1) on the other hand. For example, there are 96 WCD-RLCA in which the variance exceeds 0.1 among weak
closure systems with which RRN is less than 128. They visually show complex space-time patterns with localized
structures as one can see in some examples in figure 3. The positions of examples in figure 3 are also shown in figure
4. We must tune some unknown parameters in order to find complex space-time patterns in CD-RLCA. Contrary to
this, we can easily find complex space-time patterns without any parameter tuning in WCD-RLCA. WCD-RLCA with
lower average entropy (less than around 2.5) are relaxed to the homogeneous state in which all cells are black from
disordered initial configurations. Complex space-time patterns appear in their relaxation process. Thereby the spread
both in variance and average entropy in figure 4 reflects the difference in transient lengths of weak closure systems.
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FIGURE 4. The variance of input-entropy vs the average of input-entropy. Data for all 256 CD-RLCA (squares) and WCD-
RLCA (triangles) are plotted. The system size is 150. First 50 time steps from disordered initial configurations are discarded and
the input-entropy is calculated from next 400 time steps. In the calculation, the 400 steps are divided into 80 windows consisting
of 5 successive time steps and the input-entropy is calculated for each window. The variance and the average of input-entropy are
averaged over 100 different initial disordered configurations. Positions of examples in figure 3 are indicated. For example, ‘wc18’
means WCD-RLCA with RNN=18.
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FIGURE 5. Average transient length vs system size. The transient length are averaged over 500 different initial disordered
configurations. Left: WCD-RLCA with average entrep®.5— 1.5. Middle: WCD-RLCA with average entropy1.5— 2.5. Right:
WCD-RLCA with average entropy 2.5.

The dependency of the transient length on the system size is shown in figure 5 for some complex WCD-ELCA. The
higher the average entropy is, the longer the transient length is. However in lower average entropy range (less than
around 2.5) the transient length increases only the order of logarithm of the system size.

4 CONCLUDING REMARKS

In this paper two ways of extending elementary local cellular automaton are shown. One is the formalization in
complete lattice which enables us to define many-valued LCA. The study of many-valued LCA by computer simulation
is remained for a future work. The other is a modification on the rule construction procedure at each cell in LCA and
define restricted local cellular automata(RLCA). In RLCA a cell’'s information receiving ability is restricted by one
of 256 look-up table of elementary cellular automata. The difference in space-time patterns between CD-RLCA and
WCD-RLCA is addressed in terms of the variance of input-entropy. Only a few CD-RLCA show complex space-time
patterns on one hand, many WCD-RLCA show complex space-time patterns on the other hand. The result suggests
that an inconsistent circularity in the form of the weak closure operation is one of significant factors for the emergence
of complex space-time patterns with localized structures.
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