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Abstract

We propose a theory to formalize the indefinite features of living systems in the framework of

weak topped
⋂

-structure. This theory contains two notions of indefiniteness, one is called external

indefiniteness and the other is called autonomous indefiniteness. The former is defined as the outside

of fixed points of the closure operator and the latter is defined as the difference between the set of

fixed points of the weakened closure operator and a given set which defines the closure. This theory

is then applied to elementary local cellular automaton (ELCA) in which the time development of its

cell is driven by observing the dynamics of its nearest neighbors at the previous time step, followed

by taking the closure (or the weak closure) in the appropriate space. The behavior of ELCA is

characterized by its algebraic and statistical properties. In particular, we show that Self-Organized

Criticality(SOC)-like behavior appears in ELCA driven by the weakened closure operator.
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1 Introduction

In theoretical studies of living systems such as autopoiesis and (M,R)-systems, the characteristic of

circular organization has been the main focus in the past decades [1, 2, 3]. Circularity means that ev-

ery biochemical processes in a biological network (such as the metabolic network) must be implemented

by biochemical materials within the system itself. On the other hand, by referring to the Aristotelian

categories of causation [4], Rosen pointed out that in general one cannot realize the efficient causality
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(operator) in terms of the material causality (operand). The Gödel’s incompleteness theorem is an exam-

ple of this assertion. Another simple example is the discordance X 6' Hom(X, X) for some set X which

has at least two points, where Hom(X, X) denotes the set of all endomaps on X.

However, if one attempts to describe the functions and relations in living systems, it is necessary

to consider the situation when X ' Hom(X, X) holds, since biochemical processes in a living system

evolve under finite speed of observation propagation [5, 6, 7, 8]. On the other hand, the condition

X ' Hom(X, X) implies contradiction in the naive set theory. In order to resolve this problem, some

attempts have been done in terms of internal perspective. For example, we can consider the self-reference

problem (which corresponds to X ' Hom(X, X)) and the frame problem at the same time. Both of these

problems have no superficial relation to each other, but we can focus on the fact that they invalidate to

each other’s premise [9]. Formulations by alternate change between recursive definition and the domain

equation [10], or by disequilibration process between tree- and loop-program [11, 12] have been proposed.

Such studies address the indefinite boundary of the domain of circularity rather than circularity itself.

Indefiniteness which cannot be controlled from the inside of a system is usually treated as heat bath.

The inside and outside of a system is clearly separated and the heat bath is described by probability

distribution. In other words, the separation of the inside from the outside of a system is characterized

by the difference of their logical status such as deterministic/non-deterministic. As mentioned above, it

has been proposed that the indefinite boundary of living systems is not such kind of indefiniteness, but

is induced from the inseparability between operand and operator resulting from the internal perspective

(such as X ' Hom(X, X)). Therefore, there are two notions of indefiniteness. Indefiniteness resulting

from the separation of the inside and outside is called external while indefiniteness resulting from in-

separability of operand and operator will be called autonomous. The main purpose of this paper is to

formalize these notions of indefiniteness in terms of lattice theory and closure operation. We also discuss

how they work in a local interactive system, elementary local cellular automaton which will be defined

later.

The inside of a system, where all operations are closed and rigorously defined, can be constructed by

collecting fixed points of an appropriate operator of the system (in terms of category theory, this operator

is called a monad [13]). A closure operator defined on a set lattice is a simple example of monad [14].

Given a subset of a set lattice, an algebraic structure can be induced by defining a closure operator on

this set lattice, followed by collecting the fixed points of the closure operator. This algebraic structure is

called topped
⋂

-structure and it is closed under intersection. Therefore such a closure operator divides

the whole world (the set lattice) into two parts definitely. The first part of the world can be reached by

taking the intersection of elements in a given subset. On the other hand, the second part which contains

the rest, cannot be reached by taking the intersection of elements of a given subset. This implies that the

second part is indefinite if one stands inside the given subset. As a result, we can use a closure operator

as a tool to separate the inside from the outside (or definiteness/indefiniteness).

Next we introduce the partial universal quantifier to mix up the two parts of the world separated by
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the closure operator. Originally, the partial universal quantifier is defined to formalize phenomenological

computation [15, 16]. Phenomenological computation is not an ideal computation separated from the

real world (i.e. syntax and semantics are invariant under computation, which are separated from each

other. There also exist some correspondences between them such as completeness). In phenomenological

computation, although syntax is invariant, semantics varies ad hoc (the so-called local semantics) with

some consistency between objects and attributes (in category theory, this is called adjunction) at each

computational step. Moreover, phenomenological computation is based on the notion of weak wholeness

that is formalized in the context of formal concept analysis [17]. A formal concept is defined by a triplet

which consists of a set of objects, a set of attributes and a binary relation between these two sets. Univer-

sal quantifier bounds all elements of a given subset of the set of objects, while partial universal quantifier

only bounds the elements which have at least one extra attribute in addition to the one possessed by all

elements of a given set of objects. Therefore, partial universal quantifier weakens the notion of wholeness.

In addition, if an operation contains the universal quantifier in its definition, we can weaken the op-

erator by replacing it by the partial universal quantifier. The partial universal quantifier interferes with

the operand of the operation. Indeed, in following sections we will show that in general the collection

of fixed points of a weakened closure operator does not contain a given subset of the set lattice which is

used to define the closure operator. In such case, the separation of the definite part (which contains the

given subset) and the indefinite part (which cannot be reached from the definite part) does not hold any

longer. Therefore, we can formalize the inseparability between operand and operator, and this insepara-

bility induces another kind of indefiniteness which we call autonomous indefiniteness.

Finally, we implement the above ideas on elementary local cellular automaton (ELCA) in order to test

the validity of the notion of indefiniteness proposed in this paper. Cellular automaton (CA) is a local

interactive system in which both space and time are discrete [18, 19, 20]. A rule of CA is usually given

in a priori and it is fixed over all cells at all time steps during a single run of CA. However, in this paper

we will adopt different form of local interaction from the original CA in order to implement the closure

operator. Similar to elementary cellular automaton, ELCA consists of many cells that are arranged on

a one-dimensional discrete lattice with periodic (or random) boundary condition. Each cell can have

value 0 or 1 as its state at each time step. The time development of a cell in ELCA is then driven by

observing those of its nearest neighbors at the previous time step, followed by taking the closure (or the

weak closure) in the appropriate space. We will also discuss the algebraic properties which characterize

computations driven by both the ordinary closure operator and the weakened one. Moreover, we will

discuss the statistical quantities of ELCA’s which exhibit the difference between them.
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2 Closure and weak topped
⋂
-structure

2.1 Closure and partial universal quantifier

A closure operator defined on an ordered set is an example of a monad in category theory [13]. A

monad is an endofunctor T on some category C satisfying some commutative diagrams which correspond

to the associative law and the identity law. If a monad is defined on a category C, then an algebraic

structure (such as monoid, module or semi-lattice, etc.) is realized as a T -algebra. Therefore, a monad

can be considered as a tool to construct the mathematical structure which is closed under some definite

operations. Here, we focus on a closure operator on the power set lattice for some set X ordered by the

set inclusion. The general definition of a closure operator is as follows.

Definition 2.1.1 Let P = (P,≤) be an ordered set. A map c : P −→ P is called a closure operator

on P if the following conditions are satisfied for all x, y ∈ P .

(i) x ≤ c(x),

(ii) x ≤ y ⇒ c(x) ≤ c(y),

(iii) c(c(x)) = c(x).

We call x ∈ P closed if c(x) = x. We denote the set of all closed elements in P by Pc. When

P = (P(X),⊂) for some set X, we refer to a closure operator on P as a closure operator on X.

A topped
⋂

-structure on a set X is an algebraic structure on P(X) that is closely related to a closure

operator on X. First, we give the definition and discuss the relationship between them later.

Definition 2.1.2 Let X be a set and suppose L ⊂ P(X), where P(X) denotes the power set of X. L is

called a topped
⋂

-structure on X if the following conditions are satisfied.

(i) X ∈ L.

(ii) For all non-empty families {Ai}i∈I ⊂ L,
⋂

i∈I Ai ∈ L.

We can define supremum and infimum in L as follows. L can be regarded as a complete lattice with

the following definitions.

∧
i∈I Ai :=

⋂
i∈I Ai,

∨
i∈I Ai :=

⋂{B ∈ L|⋃i∈I Ai ⊂ B}.

Now we describe the theorem that determine the relationship between a closure operator on a set X and

a topped
⋂

-structure on X.

Theorem 2.1.3 Let C be a closure operator on X, then

LC := {A ∈ P(X)|C(A) = A}.
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is a topped
⋂

-structure on X.

Conversely, for arbitrary topped
⋂

-structure L on X, if we define a map from P(X) to P(X) as

CL(A) :=
⋂
{B ∈ L|A ⊂ B},

then CL is a closure operator on X.

Proof. Omitted. See [14].

From theorem 2.1.3, one can easily see that there exists a bijection between the set of all topped
⋂

-structures on X and the set of all closure operators on X. That is,

C(LC) = C, L(CL) = L.

One can define the closure of a given subset L of P(X) by extending L so that it is closed under

intersection. Precise description is as follows.

Proposition 2.1.4 Let X be a set and suppose L ⊂ P(X) is an ordered set by set inclusion. We define

a map C : P(X) −→ P(X) as

C(A) :=
⋂
{B ∈ L|A ⊂ B},

then

L := {A ∈ P(X)|C(A) = A}

is a topped
⋂

-structure on X(and therefore CL is a closure operator on X). L is called the closure of

L.

Proof. If X ∈ L, then C(X) =
⋂{B ∈ L|X ⊂ B} = X. If X 6∈ L, then C(X) =

⋂ ∅ = X. In both case,

X ∈ L holds.

Next we will show that
⋂

i∈I Ai ∈ L holds for all non-empty families {Ai}i∈I ⊂ L. It is enough to

prove that C(
⋂

i∈I Ai) =
⋂

i∈I Ai. C(
⋂

i∈I Ai) ⊃
⋂

i∈I Ai follows immediately from the definition

of C. The reverse inclusion is shown as follows.

Since Ai ∈ L, we have Ai = C(Ai). So

⋂

i∈I

Ai =
⋂

i∈I

C(Ai)

=
⋂

i∈I

⋂
{Bi ∈ L|Ai ⊂ Bi}.

On the other hand, we have

C(
⋂

i∈I

Ai) =
⋂
{B ∈ L|

⋂

i∈I

Ai ⊂ B}

=
⋂
{B ∈ L|

⋂

i∈I

C(Ai) ⊂ B}

=
⋂
{B ∈ L|

⋂

i∈I

⋂
{Bi ∈ L|Ai ⊂ Bi} ⊂ B}.
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Since

⋂

i′∈I

⋂
{Bi′ ∈ L|Ai′ ⊂ Bi′} ⊂ Bi

holds for all Bi with Ai ⊂ Bi, it follows that

C(
⋂

i∈I

Ai) ⊂
⋂

i∈I

⋂
{Bi ∈ L|Ai ⊂ Bi} =

⋂

i∈I

Ai.

From the above discussion, the characters of the closure operator can be summarized in the following

two aspects.

(i) It constructs a mathematical structure that is closed under some operations by collecting closed

elements (i.e. fixed points of the closure operator).

(ii) It separates the structure from the whole world P(X) in the case of topped
⋂

-structure and ignores

the rest of the world (P(X) \ L) as long as one only concerns the intersection operation.

Therefore, if one only concerns the closure operator, the whole world P(X) can be clearly separated

into the set of fixed points of the closure operator and its compliment. Moreover, if one stands inside the

set of fixed points of the closure operator, the inside then can be regarded as the definite part of the whole

world and the complement is indefinite in the sense that it cannot be reached by taking the intersection

from the inside. We shall call such indefiniteness, which is defined as the outside of the definite part of

the world, external indefiniteness.

Next we introduce the partial universal quantifier. The definition of partial universal quantifier ∀p is

as follows [15].

Definition 2.1.5 Let M, G 6= ∅ be sets and I ⊂ G×M (i.e. I is a binary relation on G×M). For all

A ⊂ G, we define

∀pa ∈ A
def⇔ a ∈ A ∩ ((A

′
)c)+,

where A
′
:= {m ∈ M |∀g ∈ A gIm}, (A

′
)c := M \A

′
and ((A

′
)c)+ := {g ∈ G|∃m ∈ (A

′
)c s.t. gIm}.

Here, G is regarded as a set of objects and M is regarded as a set of attributes. The triplet (G,M, I)

defines a formal context in terms of formal concept analysis [17]. Given A ⊂ G, the operation A
′
collects

all attributes of all objects in A. (A
′
)c collects attributes which are not possessed by at least one object

contained in A. Finally, ((A
′
)c)+ collects objects which have at least one attribute which is not possessed

by at least one object in A. In other words, objects which have no individuality in A cannot be in the

domain where the partial universal quantifier bounds.
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2.2 Weak topped
⋂
-structure

In this section, we consider the partial universal quantifier at (G,M, I) = (P(X),P(X),⊂) for some

set X. In this case, we can omit the operation + in the definition of the partial universal quantifier.

Lemma 2.2.1 We have ((A′
)c)+ = (A′

)c for all A ⊂ P(X).

Proof. Let E ∈ ((A′
)c)+. From the definition, there exists B ∈ (A′

)c such that E ⊂ B. Assume that

E ∈ A′
, then A ⊂ E ⊂ B for all A ∈ A. It follows that B ∈ A′

, but this contradicts B ∈ (A′
)c.

Therefore, E 6∈ A′
and this shows ((A′

)c)+ ⊂ (A′
)c.

The reverse inclusion is trivial.

Now we define the weak closure on P(X) by the partial universal quantifier.

Definition 2.2.2 Let X be a set and L ⊂ P(X). We define a map Cp : P(X) −→ P(X) as follows.

For A ∈ P(X), define BA := {B ∈ L|A ⊂ B} and

Cp(A) :=
⋂

∀pB∈BA

B.

We define weak topped
⋂

-structure relative to L on X (or the weak closure of L) as

L̃ := {A ∈ P(X)|Cp(A) = A}.

Next theorem characterizes the relation between the closure and the weak closure completely.

Theorem 2.2.3 (i) If X ∈ L, then L̃ = L.

(ii) If X 6∈ L, then L̃ = L \M, where M is the set of all maximal elements in L.

In order to prove theorem 2.2.3, we need some lemmas.

Lemma 2.2.4 For A ∈ P(X),

BA 6= ∅ and BA ∩ (B′A)c = ∅ ⇔ BA is a singleton set.

If either side of the above statement holds, then the element of BA is maximal in L.

Proof. (⇒) Assume BA 6= ∅ and BA ∩ (B′A)c = ∅. Since

BA ∩ (B′A)c = ∅ ⇔ BA ⊂ B′A,

B ∈ B′A holds for all B ∈ BA. This implies B∗ ⊂ B holds for all B,B∗ ∈ BA. If we interchange

B with B∗, we have B ⊂ B∗. We then conclude that B = B∗ and that BA is a singleton set

because BA 6= ∅.
Define BA = {B} and assume that B is not maximal in L. Then there exists B∗ ∈ L such

that B ⊂ B∗ and B 6= B∗. Since A ⊂ B, B∗ ∈ BA holds. But this shows that BA has at least

two distinct elements, which contradicts to the fact that BA is a singleton set. Therefore B is

a maximal element in L.
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(⇐) Trivial.

Lemma 2.2.5 If X ∈ L, then BA ∩ (B′A)c = BA \ {X}.

Proof. Let X ∈ L, then we have X ∈ BA and X ∈ B′A. Since X ∈ BA, X ⊂ E for all E ∈ B′A. Therefore

we have B′A = {X}. This implies BA ∩ (B′A)c = BA \ {X}.

Lemma 2.2.6 If X 6∈ L, then

BA ∩ (B′A)c =




BA \ {M}, if BA has the maximum element M .

BA, otherwise.

Proof. First assume that BA has the maximum element M . Since M ∈ B′A, M 6∈ (B′A)c. Since an

element B ∈ BA distinct from M satisfies B ⊂ M and B 6= M , we have B ∈ (B′A)c. Therefore

BA ∩ (B′A)c = BA \ {M}.
If BA has no maximum element, then there exists no M ∈ BA such that B ⊂ M for all B ∈ BA.

Hence BA ∩ B′A = ∅ (i.e. BA ⊂ (B′A)c). Therefore, BA ∩ (B′A)c = BA holds.

Now we prove theorem 2.2.3.

Proof of Theorem 2.2.3 We divide the proof into four parts.

(i) L̃ ⊂ L.

(ii) X 6∈ L ⇒ L̃ ⊂ L \M.

(iii) X ∈ L ⇒ L̃ ⊃ L.

(iv) X 6∈ L ⇒ L̃ ⊃ L \M.

(i) Assume that A ∈ L̃, we will show that C(A) ⊂ A. Since

C(A) =
⋂

B∈BA

B, Cp(A) =
⋂

B∈BA∩(B′
A

)c

B

and BA ⊃ BA ∩ (B′A)c, so A = Cp(A) ⊃ C(A) holds.

(ii) By considering the result of (i), it is enough to show that if Cp(A) = A then A is not maximal

in L. Assume that A is a maximal element in L, then BA = {A} holds. By lemma 2.2.4,

BA ∩ (B′A)c = ∅. Therefore, we have

A = Cp(A) =
⋂

B∈BA∩(B′
A

)c

B =
⋂
∅ = X.

On the other hand, since A ∈ L and X 6∈ L, so we have a contradiction. Hence, A is not

maximal in L.
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(iii) Assume that A ∈ L. To show A ∈ L̃, it is sufficient to show that
⋂

B∈BA
B =

⋂
B∈BA∩(B′

A
)c B.

By lemma 2.2.5, BA ∩ (B′A)c = BA \ {X}. Therefore, we have

⋂

B∈BA∩(B′
A

)c

B =
⋂

B∈BA\{X}
B =

⋂

B∈BA\{X}
B ∩X =

⋂

B∈BA

B

(iv) Assume that A ∈ L \M. We divide the proof into two cases, (a) when A 6∈ L and (b) when

A ∈ L.

(a) To prove A ∈ L̃, it is enough to show that
⋂

B∈BA
B =

⋂
B∈BA∩(B′

A
)c B. The proof is

trivial if BA = ∅, so we assume BA 6= ∅. If BA ∩ (B′A)c = ∅, then BA = {B} holds by

lemma 2.2.4. Therefore, we have A = C(A) = B ∈ L because A ∈ L. But this contradicts

to A 6∈ L. Hence, BA ∩ (B′A)c 6= ∅.
If BA has no maximum element, then BA ∩ (B′A)c = BA by lemma 2.2.6. If BA has the

maximum element M , then BA ∩ (B′A)c = BA \ {M}. Since BA ∩ (B′A)c 6= ∅, we have

⋂

B∈BA∩(B′
A

)c

B =
⋂

B∈BA\{M}
B =

⋂

B∈BA\{M}
B ∩M =

⋂

B∈BA

B.

(b) Since A is not maximal in L and X 6∈ L, there exists A∗ ∈ L such that A ⊂ A∗, A 6= A∗

and A∗ 6= X. Note that A,A∗ ∈ BA. If A ∈ B′A then A∗ ⊂ A and this contradicts to

A ⊂ A∗ and A 6= A∗, so A 6∈ B′A holds. Therefore, we have A ∈ BA ∩ (B′A)c and it follows

that

Cp(A) =
⋂

B∈BA∩(B′
A

)c

B = A.

This implies A ∈ L̃.

From theorem 2.2.3, L̃ is not the closure of L if X 6∈ L, this is because L is not a subset of L̃ in this

case. But we can prove that L̃ is itself a topped
⋂

-structure on X.

Theorem 2.2.7 L̃ is a topped
⋂

-structure on X.

Proof. It is sufficient to prove the case when X 6∈ L since L is a topped
⋂

-structure on X. X ∈ L̃ holds

because L̃ = L \M, X 6∈ M and X ∈ L, where M is the set of all maximal elements in L.

Let ∅ 6= {Ai}i∈I ⊂ L̃. Since L is a topped
⋂

-structure on X and Ai ∈ L̃ ⊂ L for all i ∈ I,
⋂

i∈I Ai ∈ L holds. Therefore it is enough to prove that
⋂

i∈I Ai 6∈ M in order to show that
⋂

i∈I Ai ∈ L̃.

Suppose
⋂

i∈I Ai ∈ M holds. Put M :=
⋂

i∈I Ai. We then have M ⊂ Ai for all i ∈ I. If there

exists some i ∈ I such that Ai ∈ L, then Ai = M or Ai = X by the maximality of M . Since we

assume X 6∈ L, so Ai = M holds. But this contradicts to M 6∈ L̃ and Ai ∈ L̃. So we have Ai 6∈ L
for all i ∈ I. Since Ai ∈ L̃, Ai = Cp(Ai) =

⋂
B∈BAi

∩(B′
Ai

)c B holds. Assume that there exists some

i ∈ I such that BAi
∩ (B′Ai

)c 6= ∅, then there exists B ∈ BAi
∩ (B′Ai

)c ⊂ L such that M ⊂ Ai ⊂ B.
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By the maximality of M , M = B holds and this implies Ai = M . However, this contradicts to

M ∈ L and Ai 6∈ L, and so BAi
∩ (B′Ai

)c = ∅ holds for all i ∈ I. We therefore have Ai = X for

all i ∈ I. However, this implies X =
⋂

i∈I Ai = M and contradicts to M 6∈ L̃. So it follows that
⋂

i∈I Ai 6∈ M.

We note that both the closure and weak closure construct algebraic structures that are closed under

intersection, but the latter destroys the closure relation between L̃ and L if X 6∈ L. In taking the weak

closure, the maximal elements of L are dropped from L̃ if X 6∈ L. However, these dropped elements of

L are necessary to construct L̃ in general. This exhibits the inseparability between the operator and the

operand. If one stands in L̃, one cannot reach the dropped elements by taking the intersection of elements

in L̃ because L̃ is closed under intersection, so the dropped elements seem to be indefinite from the inside

of L̃. Nevertheless, these are elements of L, and therefore such indefiniteness can be clearly distinguished

from external indefiniteness since L̃ ⊂ L and external indefiniteness is defined by the set P(X) \ L. As

a result, the inseparability between operator and operand yields another kind of indefiniteness that is

different from external indefiniteness. We call such indefiniteness autonomous indefiniteness.

Next we define the extension of a map on L to L (or L̃).

Definition 2.2.8 Let X, Y be sets and L ⊂ P(X). For each map f : L −→ P(Y ), we define the extension

of f on L (or L̃) as follows.

(i) The extension of f on L is a map f : L −→ P(Y ) such that for A ∈ L,

f(A) :=
⋂

B∈BA

f(B).

Note that A = C(A) =
⋂

B∈BA
B for A ∈ L.

(ii) The extension of f on L̃ is a map f̃ : L̃ −→ P(Y ) such that for A ∈ L̃,

f̃(A) :=
⋂

∀pB∈BA

f(B).

Note that A = Cp(A) =
⋂
∀pB∈BA

B for A ∈ L̃.

Here we use the term “extension” but in general f does not coincide with f (or f̃) on L since we

define f and f̃ so that they are order-preserving.

Proposition 2.2.9 f and f̃ are order-preserving maps on L and L̃, respectively.

Proof. First we consider f . Let A1 ⊂ A2 ∈ L, then we have BA1 ⊃ BA2 . Therefore,

f(A1) =
⋂

B1∈BA1

f(B1) ⊂
⋂

B2∈BA2

f(B2) = f(A2).
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Next we consider f̃ . Assume A1 ⊂ A2 ∈ L̃, then BA1 ⊃ BA2 , B
′
A1
⊂ B′A2

and (B′A1
)c ⊃ (B′A2

)c

hold. Therefore,

f̃(A1) =
⋂

B1∈BA1∩(B′
A1

)c

f(B1) ⊂
⋂

B2∈BA2∩(B′
A2

)c

f(B2) = f̃(A2).

Finally the relation between f and f̃ is characterized as follows.

Proposition 2.2.10 (i) If X ∈ L, then for A ∈ L = L̃, f(A) = f̃(A) ∩ f(X).

(ii) If X 6∈ L, then for A ∈ L̃ ⊂ L

f(A) =





f̃(A) ∩ f(M), if BA has maximum element M ,

f̃(A), otherwise.

Proof. (i) immediately follows by lemma 2.2.5 and (ii) also follows by lemma 2.2.6.

In this section, we define external indefiniteness as the outside of the set of fixed points of the closure

operator. We also define autonomous indefiniteness as the set in which its elements are fixed points of

the closure operator but are not fixed points of the weakened closure operator.

In the next section, in order to examine the validity of the notion of external and autonomous indefi-

niteness, we implement such a formulation on elementary local cellular automaton (ELCA) whose rules

are locally constructed by the closure (or the weak closure) operator. We also discuss how the dynamics

of ELCA are different between the cases above rule construction is driven by the ordinary closure and by

the weak closure, both algebraically and statistically.

3 An application to elementary local cellular automaton

3.1 Definitions and algebraic properties

Usually, a rule of ECA is fixed during one run of ECA. But here, we adopt the formulation in which the

rule is locally constructed site by site and step by step. We call such a cellular automaton as local cellular

automaton (LCA). In elementary local cellular automaton (ELCA), the rule at a cell is constructed by the

closure (or the weak closure) based on the time developments of the cell itself and its nearest neighbors

at the previous time step. At first, the time development at each cell is defined as follows.

Definition 3.1.1 Let Ω = {0, 1} and suppose (u∗,b) ∈ Ω5 × Ω3 is given. Here, Ωn denotes the n-fold

product Ω× · · · × Ω. We also use the notation

u∗ = (u1, u2, u3, u4, u5) ∈ Ω5,

ui = (ui, ui+1, ui+2) ∈ Ω3, i = 1, 2, 3,

b = (b1, b2, b3) ∈ Ω3,
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where b2 denotes the state of a cell considered at the present time step and b1 and b3 are the states of the

nearest cells of b2. u3 denotes the state of the cell at the previous time step, u2 and u4 are the state of

the nearest cells of u3. u1 and u5 are the states of the second-nearest cells of u3.

We regard Ω as an ordered set by 0 ≤ 1. Also Ω3 can be regarded as an ordered set by imposing

the coordinate-wise order. We introduce the naturally induced lattice structures into Ω and Ω3 from the

partial orders. Since Ω3 ' P(X) holds as a lattice for any three points set X = {a, b, c} and the infimum

∧ is equivalent to the intersection ∩, we can define L, L̃ for L := {u1,u2,u3} ⊂ Ω3 by proposition 2.1.4

and definition 2.2.2.

In addition, we define a map f : L −→ Ω by

f(ui) = bi, i = 1, 2, 3,

where Ω ' {∅, Y } and {∅, Y } denotes the power set of the singleton set Y . If there exists i 6= j such that

ui = uj , bi 6= bj, we choose 0 or 1 arbitrarily as the value of f(ui). We will show later in this section

that this choice does not affect the actual time development of cellular automaton (see proposition 3.1.4

below). Let f and f̃ be extensions of f on L and L̃, respectively. In order to construct a rule for the cell

at the present time step, we choose maps g, g̃ : Ω3 −→ Ω which satisfy for

g|L = f, g̃|L̃ = f̃ .

Also we define s := g(b) (or s := g̃(b)) as the state of the cell at the next time step.

The time development of whole system is described as follows.

Definition 3.1.2 Let N be a natural number that represents the system size, we define a map τ t :

ΩN+4 × ΩN+2 −→ ΩN as follows:

We take any (at−1
i )N+4

i=1 ×(at
i)

N+2
i=1 ∈ ΩN+4×ΩN+2 (where t and i represents the time and the coordinate

of the cell, respectively) with 1 ≤ i ≤ N . By using the notation in definition 3.1.1, we put

u∗ = (at−1
i , at−1

i+1, a
t−1
i+2, a

t−1
i+3, a

t−1
i+4) ∈ Ω5, b = (at

i, a
t
i+1, a

t
i+2) ∈ Ω3, s = at+1

i .

We also define

τ t((at−1
i )N+4

i=1 × (at
i)

N+2
i=1 ) := (at+1

i )N
i=1.

If s = g(b) for all i, then we define τ t := τ t and if s = g̃(b) for all i, then we define τ̃ t := τ t. τ t and

τ̃ t are called the closure driven elementary local cellular automaton (CD-ELCA) and the weak

closure driven elementary local cellular automaton (WCD-ELCA), respectively.

It is easy to see that the value of s can be determined by the pair (u∗,b), so we assign a number to

each pair (u∗,b). Given u∗ = (u1, u2, u3, u4, u5) ∈ Ω5 and b = (b1, b2, b3) ∈ Ω3, the table

u1 u2 u3 u4 u5

b1 b2 b3
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is called the local arrangement and the local arrangement number is defined as follows,

RAN(u∗,b) :=
5∑

k=1

uk2k−1 +
3∑

k=1

bk2k+4.

From the above definition one can show that there exists 256 different local arrangements.

Now we give some examples of the local time development of ELCA.

Example 1. RAN(u∗,b) = 0. The local arrangement is

0 0 0 0 0

0 0 0.

Thus L = {(0, 0, 0)} and f : L −→ Ω is defined as f((0, 0, 0)) = 0. Moreover, we have L =

{(0, 0, 0), (1, 1, 1)}, f((0, 0, 0)) = 0 and f((1, 1, 1)) = 0. Since b = (0, 0, 0), we have s = f̃(b) = 0.

On the other hand, (0, 0, 0) is a maximal element in L, so we have L̃ = {(1, 1, 1)} and f̃((1, 1, 1)) = 0.

Since b = (0, 0, 0) is not in the domain of f̃ and f̃(b) is indefinite, s = g̃(b) can be chosen from Ω

arbitrarily.

Example 2. RAN(u∗,b) = 43. The local arrangement is

1 1 0 1 0

1 0 0.

Thus, L = {(1, 1, 0), (1, 0, 1), (0, 1, 0)} and f : L −→ Ω is defined by f((1, 1, 0)) = 1, f((1, 0, 1)) = 0

and f((0, 1, 0)) = 0. L is equal to the set of all intersections of an arbitrary subset of L according

to proposition 2.1.4. On the other hand, (1, 1, 1) is the intersection of ∅(⊂ L) and each element of

L is the intersection of itself. Therefore, we have L ∪ {(1, 1, 1)} ⊂ L. The remaining subsets of L
just contains two points and L itself. Since

(1, 1, 0) ∧ (1, 0, 1) = (1, 0, 0),

(1, 0, 1) ∧ (0, 1, 0) = (0, 0, 0),

(0, 1, 0) ∧ (1, 1, 0) = (0, 1, 0),

and (1, 1, 0) ∧ (1, 0, 1) ∧ (0, 1, 0) = (0, 0, 0), so (1, 0, 0) and (0, 0, 0) are also in L. Hence we have

L = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}. Since the set of all maximal elements of

L is {(1, 1, 0), (1, 0, 1)}, we have L̃ = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1)}.
Next we calculate the values of f(b) and f̃(b). We have b = (1, 0, 0) and Bb := {u ∈ L|b ≤

u} = {(1, 1, 0), (1, 0, 1)}, so

f(b) =
∧

u∈Bb

f(u) = f((1, 1, 0)) ∧ f((1, 0, 1)) = 1 ∧ 0 = 0.

On the other hand, since (1, 1, 1) 6∈ L and Bb does not have the maximum element, we have

Bb ∩ (B′b)c = Bb by lemma 2.2.6. Thus (see figure 1a),

f̃(b) =
∧

u∈Bb∩(B′
b
)c

f(u) =
∧

u∈Bb

f(u) = 0.
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Example 3. RAN(u∗,b) = 71. The local arrangement is

1 1 1 0 0

0 1 0.

Since L = {(1, 1, 1), (1, 1, 0), (1, 0, 0)} is closed under intersection, b = (0, 1, 0) 6∈ L. Hence both

f(b) and f̃(b) are indefinite.

Example 4. RAN(u∗,b) = 107. The local arrangement is

1 1 0 1 0

1 1 0.

In this case, f(b) = 1 but f̃(b) is indefinite because b = (1, 1, 0) is a maximal element in L =

{(1, 1, 0), (1, 0, 1), (0, 1, 0)} (see figure 1b).

As we have seen in the above examples, there are three types of local time development,

(i) definite by both the closure and the weak closure,

(ii) definite by the closure and indefinite by the weak closure, and

(iii) indefinite by both the closure and the weak closure.

In all 256 local arrangements, the number of type (i), type (ii) and type (iii) are 93, 49 and 114,

respectively. Note that type (ii) is a realization of autonomous indefiniteness and type (iii) is a realization

of external indefiniteness.

Next we prove a series of algebraic properties which characterize the dynamics of ELCA.

Lemma 3.1.3 By using the notation in definition 3.1.1, if b ∈ L then for all i ∈ {1, 2, 3},

ui = (1, 1, 1) ⇒ bi = 1.

Proof. Since (b1, b2, b3) = b =
∧

b≤uj∈L uj = (∧b≤uj∈Luj ,∧b≤uj∈Luj+1,∧b≤uj∈Luj+2), we have 1 =

ui ∧ ui+1 ∧ ui+2 ≤ bi.

The next proposition guarantees that the conflict in the definition of f (see definition 3.1.1) does not

affect the actual time development of ELCA.

Proposition 3.1.4 If there exists i 6= j ∈ {1, 2, 3} such that bi 6= bj and ui = uj, then b 6∈ L.

Proof. The proof is too long to describe here, so we move it to the appendix.

Proposition 3.1.5 If b = (1, 1, 1) then f(b) = f̃(b) = 1.
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Proof. If (1, 1, 1) ∈ L then,

f(b) = f̃(b) =
∧

b≤u∈L
f(u) = f(b) = 1.

On the other hand, if (1, 1, 1) 6∈ L, there exists no u ∈ L such that b = (1, 1, 1) ≤ u. Thus

f(b) = f̃(b) = ∧∅ = 1.

From proposition 3.1.5, it is expected that both CD-ELCA and WCD-ELCA are inclined to form

space-time clusters in which all cells have value 1. Indeed, the actual time developments of both CD-

ELCA and WCD-ELCA show such a feature (see figure 2 and 3). With the periodic boundary condition,

the behavior of CD-ELCA is simple and similar to that of the ordinary class 2 ECA (see figure 2a). After

short transient time development, almost all runs converge to fixed points which are not homogeneous

except the one which falls into the periodic orbits. The periods of these periodic orbits depend on the

system size. Moreover, all local time developments are definite at the fixed points. On the other hand, the

behavior of WCD-ELCA with periodic boundary condition seems to be highly complex (see figure 3a).

One can see the creation and destruction of value 1 clusters of various sizes. Local time developments

in the clusters and on their boundaries are definite, while those in the other regions are mixture of

definite and indefinite zones. Thus the co-existence of definite and indefinite local time developments is

an important factor for the creation and destruction of clusters.

In figure 2b and 3b, we show the time development of CD-ELCA and WCD-ELCA with the random

boundary condition. The behavior of CD-ELCA differs from that with the periodic boundary. The

perturbations at the boundary propagate through the whole space at maximum speed (one site per time

step). If the perturbations flowing from both the left and right side of the boundary collide with each

other, they disappear at the same time. Therefore the behavior of CD-ELCA is originally stable similar

to the class 2 ECA. However, this stability is so fragile since perturbations flowing from the boundary

propagate throughout the whole space. On the other hand, the behavior of WCD-ELCA with the random

boundary is very similar to that with periodic boundary. This can be explained by the fact that some of

the local arrangements which transmit perturbation flows become indefinite by the weak closure.

Proposition 3.1.6 Let b ∈ L be maximal in L, then there exists i ∈ {1, 2, 3} such that u2i−1 = bi = s,

where s = f(b).

Proof. Since b ∈ L, there exists i ∈ {1, 2, 3} such that b = ui. That is, (b1, b2, b3) = (ui, ui+1, ui+2).

Then we have bj = ui+j−1, hence bi = u2i−1 holds. On the other hand, f(b) =
∧

b≤u∈L f(u) and

so b is maximal in L. Therefore, we have f(b) = f(b) = f(ui) = bi.

We refer the property of local arrangements in proposition 3.1.6 as flow retaining property. For

example, the local arrangement with RAN(u∗,b) = 43 in Example 2 has flow retaining property both

in CD-ELCA and in WCD-ELCA because u5 = b3 = f(b) = f̃(b) = 0. On the other hand, the local

arrangement with RAN(u∗,b) = 107 in Example 4 has flow retaining property in CD-ELCA but it is
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broken in WCD-ELCA because we have u1 = b1 = f(b) = 1 while f̃(b) is indefinite. Since maximal

elements in L become indefinite by the weak closure, this proposition says that some of the flow retaining

local arrangements are indefinite in WCD-ELCA even though they are definite in CD-ELCA. On the

relation between the flow retaining property of a local arrangement and the order-preserving property

of f on L, we can prove the following proposition and theorem. Since proposition 3.1.7 and theorem

3.1.8 below are less related to the main discussion in this paper, so the proofs of them are given in the

appendix.

Proposition 3.1.7 Let b ∈ L and assume that f is an order-preserving map on L. Then there exists

i ∈ {1, 2, 3} such that u2i−1 = bi = s, where s = f(b).

Theorem 3.1.8 If b ∈ L, then f is an order-preserving map on L.

Corollary 3.1.9 Let b ∈ L, then the following statements are equivalent.

(i) f is an order-preserving map on L.

(ii) there exists i ∈ {1, 2, 3} such that u2i−1 = bi = s, where s = f(b).

Proof. This follows immediately from proposition 3.1.7 and theorem 3.1.8.

Thus, whether f can have algebraically favorable property (order-preserving) is closely related to the

flow retaining property of its local arrangements.

Finally we turn to the question if f̃(b) is equal to f(b) when b ∈ L and b is not maximal in L. We

will show that the answer to this question is true.

Proposition 3.1.10 Assume that b is not maximal in L and b ∈ L, then b ∈ L̃ holds by theorem 2.2.3.

Also we have f(b) = f̃(b).

Proof. Define Bb := {u ∈ L|b ≤ u}, then we have

f(b) =
∧

u∈Bb

f(u), f̃(b) =
∧

u∈Bb∩(B′
b
)c

f(u).

If Bb does not have the maximum element, then Bb∩ (B′b)c = Bb and f(b) = f̃(b) by lemma 2.2.6.

If Bb has the maximum element m, then Bb ∩ (B′b)c = Bb \ {m} by lemma 2.2.6. Therefore, we

have f(b) = f̃(b) ∧ f(m). When f̃(b) = 0, there is nothing to be proved. For f̃(b) = 1, it is

enough to show that f(m) = 1.

Suppose Bb = {m}, then b =
∧

u∈Bb\{m} u =
∧ ∅ = (1, 1, 1) since b ∈ L̃. Because m ∈ L,

there exists some i ∈ {1, 2, 3} such that m = ui. Since f(ui) = bi = 1 for all i ∈ {1, 2, 3}, we have

f(m) = 1.

Let Bb ⊃ {m}, Bb 6= {m} and assume that f(m) = 0. Since u ≤ m for all u ∈ Bb \ {m},
we have f(u) ≤ f(m) = 0 by theorem 3.1.8. Hence, f̃(b) =

∧
u∈Bb\{m} f(u) = 0. However this

contradicts to f̃(b) = 1, so f(m) = 1 holds.
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Therefore, the difference between CD-ELCA and WCD-ELCA only appears in the type (ii) 49 local

arrangements, in which the time developments are definite in CD-ELCA but indefinite in WCD-ELCA.

We have shown that the difference between the behavior of WCD-ELCA and CD-ELCA, which depends

on whether some of the flow retaining local arrangements become indefinite or not. The case of CD-ELCA

is easily affected by the perturbations at the boundary because the flow retaining local arrangements

preserve perturbation flows. In the case of WCD-ELCA, the flow retaining property becomes indefinite

at some local arrangements by autonomous indefiniteness. On the other hand, the perturbations at the

boundary are negated by indefinite time developments. Such mechanism leads to similarity in behaviors

between the periodic and random boundary condition.

3.2 Some statistical properties

We have seen that the behavior of WCD-ELCA is characterized by creation and destruction of value

1 clusters of various sizes. Figure 4 shows that the frequency distribution of cluster size scales as power

law with exponent -2.0. Thus, the behavior of WCD-ELCA shows SOC-like behavior [21, 22, 23] in the

sense that the critical state is realized without any parameter adjustment.

Figure 5 shows the frequency distribution of the rank of local arrangements with random boundary

condition. In CD-ELCA, the time developments of the local arrangements are indefinite (i.e. those of

type (iii)). They appears only in ranks lower than 68. Figure 3a and figure 5a suggest that the frequency

distribution of high ranks and low ranks follows different exponential distribution laws, and the latter is

mainly generated by the random boundary condition. Hence the role of external indefiniteness (which

is realized by the type (iii) local arrangements) in CD-ELCA is random noise. On the other hand, in

the case of WCD-ELCA, all type (i), type (ii) and type (iii) local arrangements appear in high ranks

(there are 10 type (iii) local arrangements at ranks higher than 68) and they seem to follow the same

distribution law over wide range (from 1 to around 200 in rank). This distribution law also scales as power

law and its exponent is equal to -1.0. This suggests that both autonomous and external indefiniteness in

WCD-ELCA have different meaning from the random noise.

4 Concluding remarks

The theory proposed in section 2 can be applied not only to ELCA but also to LCA which has more

neighbors, higher dimension with more states in its cells. For many-valued LCA, the theory in section

2.2 should be described in the language of complete lattice. However their behaviors are expected to

be different from that of ELCA. For example, consider the case of two dimensional, five-neighbor and

two-valued LCA (we refer to this LCA as the (2,5,2)-type LCA). Figure 6 shows its behaviors driven

by the closure and the weak closure. In contrast to ELCA, even in the case when time development is

driven by the closure with periodic boundary, the behavior of the (2,5,2)-type LCA is highly changeable
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and complex. However, in the case of the weak closure, the behavior of the (2,5,2)-type LCA seems to

be highly random. The reason of such difference can be understood as follows: The power set lattice

on which the closure or the weak closure are taken is Ω5 with 32 elements. If all elements in the set

corresponding to L in ELCA (we also define this set to be L) are coatoms of Ω5 (elements with only one

coordinate equals to 0. There are 5 coatoms in Ω5) and they are different from each other, the closure

of L is then Ω5 itself. Hence the number of coatoms of Ω5 in L is an important factor to determine the

size of the closure of L. For simplicity, we consider here the case when the set of all coatoms is equal to

L. The set L is constructed by observing its 18 neighbors in the (2,5,2)-type LCA. Therefore there are

totally 218 patterns in constructing L. In these 218 patterns, it can be shown easily that only 65 patterns

make L equal to the set of all coatoms of Ω5. Here we call the ratio like 65/218 coatom ratio. On the

other hand, the coatom ratio of ELCA is 9/28, which is approximately one hundred times greater than

that of the (2,5,2)-type LCA. For other types of LCA, for example, the coatom ratio of the (1,5,2)-type

LCA is 25/214, which is approximately one twentieth of that of LCA. The behavoir of the (1,5,2)-type

LCA is shown in figure 7, which is more regular than the (2,5,2)-type LCA but more random than ELCA.

These results suggest that coatom ratio somehow reflects the stability of LCA.

The above argument also suggests that the SOC-like behavior does not necessarily characterize the

behavior of LCA driven by the weak closure because there exists LCA driven by the closure whose

coatom ratio is extremely small. However, if we restrict our concern to ELCA, then we can show that the

weak closure drives local interactions in the system and results in behaviors which seems to be SOC-like.

In this case, both external and autonomous indefiniteness have different meaning from random noise if

only the statistical properties of usage of local arrangements are considered.

In traditional quantitative modeling approaches to life such as those based on cellular automaton

[20, 24], coupled nonlinear oscillators [25] and network models [26], conceptual thoughts on life have

been given mainly on the level of interpretation of analytical results and computer experiments, and

a conceptual approach on the level of constructing models is still absent at this moment. In contrast,

our modeling is based on formal conceptual construction on indefiniteness, and the resulting computer

experiments show similar features to those derived from traditional approaches. The results in this paper

are simple and primitive, but these results provide a foothold to conceptual approaches to life with

quantitative estimation.

Finally, we derive the relation between the theory proposed here and the notion of open limit, which is

recently proposed by Gunji and Haruna [27]. Open limit is a key concept of internal perspective. It is well

known that scientific theories are usually described by using different kinds of limit such as universal and

existential quantifiers. However, the notion of life conflicts with the notion of limit (e.g. Taking the limit

of life with respect to time results in death since all living systems have finite time lifespan, however, one

of the most essential features of life is anticipation like thinking what will happen tomorrow). Therefore

a mathematical tool that can describe life with both the notion of finiteness and infinity is necessary,

and such tool is called open limit. Open limit is formally defined in lattice theory but here we list the
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informal conditions which must be satisfied by open limit. Finally we examine whether the weak closure

L̃ of L satisfies the following conditions or not.

(i) Open limit is a meaningless symbol satisfying the structure of limit for any meaningful symbols.

(ii) Open limit can be replaced by meaningful symbols.

(iii) If consistency among meaningful symbols is lost, open limit as meaningless symbol is introduced

again in order to recover consistency.

First note that the closure operation is a limit operation because it constructs closed structure alge-

braically by collecting its fixed points. We have seen that L̃ is a topped
⋂

-structure, so the weak closure

L̃ has the structure of limit but is not a closure of L in general. This implies L̃ does not have the meaning

of limit of L. Therefore, we see that condition (i) is satisfied by the weak closure. However, conditions

(ii) and (iii) are ignored in the general theory of weak closure because we do not define the operations

that correspond to the replacement mentioned in (ii) and the recovery of consistency mentioned in (iii).

On the other hand, in their application to ELCA, these two conditions (ii) and (iii) are realized by ar-

bitrary determination of values on the autonomous indefinite elements in P(X). Hence the weak closure

exemplifies some aspects of the notion of open limit.
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6 Appendix

Proof of theorem 3.1.4. Assume that i 6= j, bi 6= bj and ui = uj . By symmetry, it is sufficient to prove

the following two cases. (i): i = 1, j = 2 and (ii): i = 1, j = 3.

(i) Suppose b ∈ L. Since u1 = u2, u1 = u2 = u3 = u4 holds. Define u := u1. Then the local

arrangement is identified as

u u u u u5

b1 b2 b3.

The case u = 1 contradicts to lemma 3.1.3 because either b1 or b2 is equal to 0. So u = 0

holds. Then we have b 6≤ ui for i = 1, 2, 3. Since b ∈ L, we have

b =
∧

b≤u∈L
u =

∧
∅ = (1, 1, 1).

But this contradicts to b1 6= b2. Hence b 6∈ L holds.
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(ii) Suppose b ∈ L. Since u1 = u3, u1 = u3 = u5 and u2 = u4 hold. Define u := u1 and v := u2.

Then the local arrangement identified as

u v u v u

b1 b2 b3.

Now we divide the proof into the following four parts. (a): u = 1, v = 1, (b): u = 1, v = 0,

(c): u = 0, v = 1 and (d): u = 0, v = 0.

(a) This case contradicts to lemma 3.1.3 since either b1 or b3 is equal to 0.

(b) The local arrangement is identified as

1 0 1 0 1

b1 b2 b3.

Since either b1 or b3 is equal to 1, b 6≤ u2 = (0, 1, 0). If b2 = 1 holds, then b = (b1, 1, b3) 6≤
(1, 0, 1) = u1 = u3. This implies b =

∧
b≤u∈L u = ∧∅ = (1, 1, 1) and contradicts to

b1 6= b3. Therefore, b2 = 0 holds. Thus b = (b1, 0, b3) ≤ (1, 0, 1) = u1 = u3 and

b =
∧

b≤u∈L u = u1 ∧ u3. That is, (b1, b2, b3) = (u1 ∧ u3, u2 ∧ u4, u3 ∧ u5). Since

u1 = u3 = u5 = 1, b1 = b3 = 1 holds. But this contradicts to b1 6= b3.

(c) The local arrangement is identified as

0 1 0 1 0

b1 b2 b3.

Since either b1 or b3 is equal to 1, b 6≤ u1 and b 6≤ u3 hold. If b2 = 1, then b = (b1, 1, b3) 6≤
(1, 0, 1) = u2. Therefore, b =

∧
b≤u∈L u =

∧ ∅ = (1, 1, 1). But this contradicts to b1 6= b3.

Thus b2 = 0 must hold. Then b = (b1, 0, b3) ≤ (1, 0, 1) = u2 and b =
∧

b≤u∈L u = u2.

That is, (b1, b2, b3) = (1, 0, 1). But this contradicts to b1 6= b3.

(d) The local arrangement is identified as

0 0 0 0 0

b1 b2 b3.

Because either b1 or b3 is equal to 1, b 6≤ ui for i = 1, 2, 3. Therefore, b =
∧

b≤u∈L u =
∧ ∅ = (1, 1, 1). But this contradicts to b1 6= b3.

Proof of proposition 3.1.7. When b ∈ L, it can be proved that there exists i ∈ {1, 2, 3} such that

b = ui and u2i−1 = bi by the same manner in the proof of proposition 3.1.6. By assumption, f

is an order-preserving map on L, so for u ∈ L if b ≤ u then f(b) ≤ f(u). Therefore, f(b) =
∧

b≤u∈L f(u) = f(b) = f(ui) = bi.

Proof of theorem 3.1.8. By symmetry, it is enough to prove the following three cases.

(i) If u1 ≤ u2 and u1 6= u2, then f(u1) ≤ f(u2) i.e. b1 ≤ b2.
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(ii) If u1 ≥ u2 and u1 6= u2, then f(u1) ≥ f(u2) i.e. b1 ≥ b2.

(iii) If u1 ≤ u3 and u1 6= u3, then f(u1) ≤ f(u3) i.e. b1 ≤ b3.

(i) Suppose that u1 ≤ u2 and u1 6= u2. Then u1 ≤ u2 ≤ u3 ≤ u4 and at least one inequality holds

strictly. Assume that b1 > b2. That is, b1 = 1, b2 = 0. Suppose b 6≤ ui for all i ∈ {1, 2, 3},
then b =

∧
b≤u∈L u =

∧ ∅ = (1, 1, 1). But this contradicts to b2 = 0. Therefore, there exists

some i ∈ {1, 2, 3} such that b ≤ ui.

Assume that b ≤ u1. That is (b1, b2, b3) ≤ (u1, u2, u3), then we have b1 ≤ u1 ≤ u2 ≤ u3 ≤ u4

because b1 = 1, u1 = u2 = u3 = u4 = 1. But this contradicts the fact that at least one

inequality must hold strictly.

Next assume that b ≤ u2. That is, (b1, b2, b3) ≤ (u1, u2, u3). Then 1 = b1 ≤ u2 ≤ u3 ≤ u4.

So u2 = (1, 1, 1) and it follows that b2 = 1 by lemma 3.1.3. This contradicts to b2 = 0.

Finally, assume that b ≤ u3. That is (b1, b2, b3) ≤ (u3, u4, u5), then we have 1 = b1 ≤ u3 ≤
u4. Therefore, b =

∧
b≤u∈L u = u3 (i.e. (1, 0, b3) = (1, 1, u5)) since b 6≤ u1 and b 6≤ u2. This

is a contradiction.

Hence, b1 ≤ b2 holds.

(ii) Similar to case (i).

(iii) Suppose that u1 ≤ u3 and u1 6= u3. Then u1 ≤ u3, u2 ≤ u4, u3 ≤ u5 and at least one inequality

holds strictly. Assume that b1 > b3, that is, b1 = 1, b3 = 0. With the same reason as in the

beginning of part (i), there exists some i ∈ {1, 2, 3} such that b ≤ ui.

First assume that b ≤ u1 (i.e. (b1, b2, b3) ≤ (u1, u2, u3)), then 1 = b1 ≤ u1 ≤ u3 ≤ u5 and

the local arrangement is identified as

1 u2 1 u4 1

1 b2 0.

If u4 = 1, then u3 = (1, 1, 1). By lemma 3.1.3, it follows that b3 = 1. However this contradicts

to b3 = 0. Therefore we have u4 = 0. u2 is also equal to 0 since u2 ≤ u4. Thus the local

arrangement is identified as

1 0 1 0 1

1 b2 0.

Then we get b 6∈ L by proposition 3.1.4. But this contradicts to b ∈ L.

Next suppose that b ≤ u3. That is (b1, b2, b3) ≤ (u3, u4, u5), then 1 = b1 ≤ u3 ≤ u5. Now

the local arrangement can be identified as

u1 u2 1 u4 1

1 b2 0.

We also have u4 = 0 by the same reason in the proof of b 6≤ u1. Consider u2 ≤ u4, we identify
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the local arrangement as

u1 0 1 0 1

1 b2 0,

then b = (1, b2, 0) 6≤ (0, 1, 0) = u2. On the other hand, since b 6≤ u1, b =
∧

b≤u∈L u = u3

(i.e. (1, b2, 0) = (1, 0, 1)). This is a contradiction.

Finally, Assume that b ≤ u2, that is, (b1, b2, b3) ≤ (u2, u3, u4). Then we have 1 = b1 ≤
u2 ≤ u4 and so u2 = (1, u3, 1). Since both b 6≤ u1 and b 6≤ u3 hold, b =

∧
b≤u∈L u = u2 (i.e.

(1, b2, 0) = (1, u3, 1)). This is a contradiction.

Thus, b1 ≤ b3 must hold.
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Figure captions

Figure 1. Construction of L, L̃, f and f̃ from L and f . All ordered sets are expressed as Hasse diagrams.

Circles filled in black and white on elements of Ω3 denote 1 and 0, respectively. Banished nodes are

indefinite elements. (a) RAN(u∗,b) = 43. (b) RAN(u∗,b) = 107.

Figure 2. The time developments of CD-ELCA. The system size is equal to 100. Here we show the

initial 200 time steps. The left side pictures are shown by the state of cells. Black and white cells

correspond to 1 and 0 as their values, respectively. The right side pictures are shown by whether

the time development of the cell is definite or not. In here, black denotes definite time development

and white denotes indefinite one. (a) With the periodic boundary condition. (b) With the random

boundary condition.

Figure 3. The time developments of WCD-ELCA. The experimental conditions are the same as one of

CD-ELCA. (a) With the periodic boundary condition. (b) With the random boundary condition.

Figure 4. Log-log plot of the frequency distribution of sizes for time-space value 1 clusters. The fre-

quency of each cluster size is calculated from 200 runs of 5000 time steps from different random

initial conditions, where system size is equal to 200.

Figure 5. Log-log plots of the frequency distributions of ranks of local arrangements in CD-ELCA and

in WCD-ELCA with the random boundary condition. The frequency of each local arrangement

is calculated from one run of 50500 time steps from random initial condition and initial 500 time

steps are thrown out. The system size is equal to 200. (a) The CD-ELCA case. It seems that the

distribution can be divided into two parts which scales as different exponential laws. The border

seems to be around rank 70. Type (iii) local arrangements appear only at ranks lower than the

border. (b) The WCD-ELCA case. The distribution can scale as power law with exponent -1.0

over wide range from 1 to around 200 in rank. All types of local arrangement appear in the range.

The part of graph from 30 to 100 in rank is enlarged in the small picture.

Figure 6. The time developments of the (2,5,2)-type LCA from random initial conditions. The system

size is 50 × 50. The boundary conditions are periodic. Time steps from 70 to 91 per three steps

are shown. The pictures are shown by state of cells, black and white cells correspond to 1 and 0 as

their values, respectively. (a) Driven by the closure. (b) Driven by the weak closure.

Figure 7. The time developments of the (1,5,2)-type LCA from random initial conditions. The system

size equals to 101. The boundary conditions of left side pictures are periodic and those of right side

ones are random. Initial 200 time steps are shown. The pictures are shown by state of cells, black

and white cells correspond to 1 and 0 as their values, respectively. (a) Driven by the closure. (b)

Driven by the weak closure.
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