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ABSTRACT

Decomposition of information flow associated with random
threshold network dynamics on random networks with spec-
ified degree distributions is studied by numerical simulation.
Combinatorial Hodge theory enables us to orthogonally de-
compose information flow into gradient (unidirectional a-
cyclic flow), harmonic (global circular flow) and curl (local
circular flow) components. We show that in-degree distri-
butions have little influence on the relative strength of the
circular component (harmonic plus curl) while out-degree
distributions with longer tail suppress it. We discuss an im-
plication of this finding on the topology of real-world gene
regulatory networks.

Categories and Subject Descriptors

G.2.3 [Discrete Mathematics]: Applications; H.1.1 [In-
formation Systems]|: Systems and Information Theory—
general systems theory, information theory

General Terms
Theory

Keywords

Combinatorial Hodge theory, complex networks, random thresh-

old networks, transfer entropy

1. INTRODUCTION

Science of complex networks reveals that real-world net-
works found in nature and society have unique structural
features [2, 10]. Recently, great attention has been paid to
dynamics on complex networks because underlying network
structures may have non-trivial influence on dynamics on
them [5]. Complex dynamics can give rise to information
processing ability to systems represented by networks [9].
We believe that information processing arising from complex
dynamics is important to understand function of real-world
complex systems such as living cells and brains.
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The aim of this paper is to analyze components of in-
formation flow associated with dynamics on complex net-
works in order to reveal intrinsic information processing on
them. We employ combinatorial Hodge theory [8] to decom-
pose it. The combinatorial Hodge decomposition theorem
decomposes any flow on a network into three components:
gradient, harmonic and curl flows. Gradient flows are unidi-
rectional acyclic, while harmonic and curl flows are circular.
The difference between the latter two is in that harmonic
flows are globally circular on the one hand, curl flows are
locally circular on the other hand. As a first step for this
direction of study, here we numerically investigate influence
of a degree distribution on components of information flow
associated with random threshold network dynamics.

Random threshold networks (RTNs) are a simple math-
ematical model of gene regulatory networks or neural net-
works [14]. Since their basic properties are well-studied in
previous work [13], they are a useful testbed to study infor-
mation flow in complex systems consisting of many elements
with nonlinear interactions. For the quantification of infor-
mation flow, here we adopt the transfer entropy [16] which
has been used to detect causal relationships between two ele-
ments in complex systems found in wide range of disciplines
[7].

In the literature, information flow on networks has often
been studied in relation to criticality of underlying dynam-
ics, namely, whether its total magnitude is maximized at the
critical point between ordered and chaotic phases or not [4,
12]. The present work which does not primarily focus on
the total magnitude of information flow but analyzes com-
ponents of information flow will complement the existing
approach.

This paper is organized as follows. In Section 2, we review
RTNs and describe the parameters of numerical simulation
in this paper. In Section 3, we quantify information flow by
the transfer entropy. In Section 4, we review combinatorial
Hodge theory in the language of linear algebra. In Section
5, the result of numerical simulation is presented. In Sec-
tion 6, we discuss the degree distribution of real-world gene
regulatory networks in the light of the result in Section 5.
Finally, in Section 7, conclusions are given.

2. RANDOM THRESHOLD NETWORK DY-
NAMICS

A random threshold network (RTN) [14] consists of N
nodes that are interconnected randomly. Each node can take
two states +1. The state of node i at time t is denoted by
2;(t). It may have inputs from other nodes that determine
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Figure 1: Time evolution of §; for RTNs with Poisson, exponential and truncated power law in-degree

distributions (a) and out-degree distributions (b).

its future state by the following rule:

zi(t + 1) = sgn(fi(t)), (1)

where
N
fit) =Y wigzi(t) + hi, (2)
j=1

and if z > 0, then sgn(x) = 1, otherwise, sgn(z) = —1. wy;
is the weight for inputs from node j to i. If node i receives
inputs from node j, then w;; = +1 or w;; = —1 with equal
probability. Otherwise, w;; = 0. h; is the threshold for node
i. In the following, it is set to O for every node. For the time
evolution of the whole system, we take the classical updating
scheme, namely, all nodes are updated simultaneously.

Let us draw an arc from node j to node ¢ when w;; #
0. Then, nodes in an RTN form a directed network. The
number of incoming arcs (the number of inputs) to node 7 is
called in-degree of node i and is denoted by k;. The number
of outgoing arcs from node i is called out-degree of node 1%
and is denoted by l;. Let P(k,l) be the probability that a
randomly chosen node has in-degree k£ and out-degree [. In
the following, we only consider the case that the in-degree
and the out-degree are independent. Namely, we assume
that P(k,l) = Pin(k)Pous(l) where Py (k) = 3, P(k,1) is the
in-degree distribution and Pout(l) = >, P(k,[) is the out-
degree distribution. The average in-degree (which is equal
to the average out-degree) is denoted by z.

In the following numerical simulations, we specify either
in-degree or out-degree distributions and let the other half
be constructed randomly. For example, when we specify an
in-degree distribution, first we generate a random number
following the specified in-degree distribution for each node.
Second, we attach arcs of that number to each node so that
their heads are directed to the node. Finally, the source n-
ode of each arc is chosen uniformly at random. In the limit
of large N, the out-degree distribution follows a Poisson dis-
tribution. In turn, if we specify an out-degree distribution,
then we have a Poisson in-degree distribution in the large
system size limit.

It is known that RTN dynamics undergo a continuous
phase transition from ordered phase to chaotic phase. One
can determine the critical condition by considering damage

propagation. Let ps(k) be the damage spreading probabili-
ty. It is defined as the probability that a node with in-degree
k changes its state when the state of one of the input nodes
is changed. The formula for p,(k) for k£ > 1 is known [14]:

pe(k) = 2%V <’“ - 1) 3)

ak

where ap = (k — 1)/2 if k is an odd number and ar = k/2
otherwise. For a given in-degree distribution Pi,(k), the
critical condition calculated from a mean-field theory is [13]

> kP (k)ps(k) = 1. ()

In the following, we consider three discrete probability
distributions for both in-degree and out-degree distributions
of underlying networks of RTNs. The first one is Poisson
distributions P(k) = e"*\*/k!. If the in-degree distribution
is Poissonian, then the critical parameter and the critical
average in-degree are given by A\, = z. &~ 1.85. The second
one is exponential distributions P(k) = (1 — e~ 1/*)e*/%,
If the in-degree distribution is exponential, then we have
Ke = 2.89 and z. = e /"¢ /(1 — e7'/%¢) ~ 2.41. Finally,
the third one is truncated power law distributions P(k) =
Ck™>e™"/# where C is the normalization constant and we
fix the value of 5. For this, we have o, = o0 and z. = 1
for all B > 0. Hence, if an RTN has a truncated power law
in-degree distribution, then it is always in the chaotic phase
in the limit of large V.

In the following, we study the effect of different in- or
out-degree distributions on components of information flow
associated with RTN dynamics. In order to compare results
between RTNs with different in- or out-degree distributions
we fix the average in-degree (or out-degree) z. Since our
primary interest in this paper is components of information
flow, we choose z = 4 to ensure non-trivial information flow
with well-defined average magnitude (We checked that we
can obtain results similar to those in Section 5 for z = 3).
RTNs with z = 4 are expected to reside in the chaotic phase
for all the above three in-degree distributions if N is large.
In Figure 1 we numerically check this in RTNs with N =
400. Let x(0) be a randomly chosen initial state of an RTN.



We flip the state of a randomly chosen node and obtain
a different initial state y(0). We measure how this initial
difference between the two state by the Hamming distance:

ax(0), y(1)) = - Y ol 5

Following [6], we define

b = d(x(t), y(t)) — d(x(0),¥(0)). (6)

Note that d(x(0),y(0)) = 1/N. 6" = lim¢— 00 0: < O indi-
cates that the system resides in the ordered phase. On the
other hand, §* > 0 is an evidence for the chaotic dynamics.
In Figure 1 (a), d:s for RTNs with specified in-degree distri-
butions are shown. It is averaged over 100 randomly chosen
initial states, 100 random weight assignments and 400 ran-
dom networks in each specified in-degree distribution. In
every case, we can see that d; converges to a positive value.
This suggests that the simulated RTN dynamics are in the
chaotic phase. In Figure 2 (b), d:s for RT'Ns with specified
out-degree distributions are shown. As in the case for spec-
ified in-degree distributions, d; converges to a positive value
for every out-degree distribution. Note that they all have
the same Poissonian in-degree distribution. According to
the criticality condition (4) derived from a mean-field theory
which involves only an in-degree distribution, all these cas-
es are expected to have the same critical average in-degree
ze &~ 1.85. However, the value of §* is dependent on out-
degree distributions even in the mean-field theory.

3. INFORMATION FLOW

We measure the amount of information transfered from
one node to another node in an RTN by the transfer entropy
[16].

Suppose that node ¢ receives inputs from node j. Let us
consider a virtual agent sitting on node ¢ who are trying
to predict the future state of node i from its present state.
The amount of average uncertainty associated with his/her
prediction is

H(X3(t+ 1)]Xi(t))

=— Y pi(t+1),@(t) logy plai(t + D]ai(t)),
z; (t+1),z,(t) )

where p(z;(t + 1), x;(t)) is the joint probability that the a-
gent observes x;(t) at time ¢ and x;(t + 1) at time ¢ + 1 and
p(zi(t + 1)|x;(t)) is the conditional probability that the a-
gent observes x;(t + 1) at time ¢ + 1 given he/she observes
z;(t) at time t. Now suppose in addition that the agent
can access the present state of node j. He/she can integrate
this information into his/her prediction of the future state
of node i. The amount of average uncertainty in this case is

H(X:(t+1)[Xi(¢), X;5(t))
=- > p(wi(t+1),z:(t), z;(t))
z; (t+1),24(t),z;(t)
X logy p(wi(t + 1)|w:(t), z; (). (8)

One way to define the amount of information transfered from
node j to node i is to consider the difference

Tjsi = H(X;(t+1)|Xi(t) — H(X (t+ 1) X4 (1), X;(t)) (9)

which is called the transfer entropy. It is the reduction of
average uncertainty for the agent to predict the future s-
tate of node i from its present state when he/she knows the
present state of node j.

In the numerical simulations in this paper, we calculate
Tj—; as follows. Given an RTN and a randomly chosen
initial state, the first 100 transient time steps are disregarded
and next 1000 time steps are used to estimate probabilities
involved in the formula of Tj_,;. We averaged Tj—,; over 100
weight assignments while keeping the underlying network
topology. Note that §; in Figure 1 takes an almost constant
value after 100 initial time steps in every case. This indicates
that 100 transient time steps taken here are enough to settle
the RTN dynamics on the stationary regime.

Let e;j = T;—; — Tj—; where we regard T;_,; = 0 if node
j does not receive inputs from node i. We call matrix e =
(eij) information flow. By the definition of e, it is a skew
symmetric matrix, namely, e;; = —e;;. This is an instance
of edge flow in combinatorial Hodge theory which we review
in the next section.

4. COMBINATORIAL HODGE THEORY

We can decompose an edge flow into three components,
gradient flow, harmonic flow and curl flow by the combina-
torial Hodge decomposition theorem [8]. Here, we review it
in the language of linear algebra.

Let G = (V, E) be an undirected graph *, where V is a
finite set of vertices and E is a set of edges. Namely, E is
a subset of the set of all unordered pairs of elements from
the set V. Let (‘;) be the set of all k-element subsets of V.

Then, £ C (\2/) Note that V = (‘1/)

T = {{i,j k) € (Z) (6.} 4.4 iy € B} (10)

is the set of all triangles in G.
In order to state the combinatorial Hodge decomposition
theorem, we use the following notations: First,

C®={f:V >R} (11)

is a vector space over the real number field R consisting of
all real-valued functions on V. Second,

C'={e:VxV = Rle;j = —ejs,ei; =0 for {i,j} & E}
(12)
is a vector space over R consisting of all edge flows on G.
Finally,

02 :{t VXV XV — R|t¢jk = tjki = trij =
—tikg = —thji = —tji, tijr = 0 for {i,j, k} ¢ T}
(13)
is a vector space over R consisting of all triangular flows

on G. We make C* (k = 0,1,2) inner product spaces by
introducing the Euclidean inner products (—, —)o». Name-

IY7 <f7 f/>CO = ZiGV figi7 <€,€/>C1 = Z{iyj}gE eije{ij and
<t7t/>c2 = Z{i,j,k eT tijkt;jk

Now, we introduce the combinatorial gradient and curl
operators and their duals. The combinatorial gradient op-
erator grad : C° — C! is a linear map defined by

grad(f)i = fj — fi- (14)

'We use the terms network and graph interchangeably.
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Figure 2: The magnitude of information flow ||e||> associated with RTN dynamics with Poisson, exponential
and truncated power law (3 = 32) in-degree distributions (a) and out-degree distributions (b).

The combinatorial curl operator curl : C* — C? is a linear
map defined by

curl(e)ijr = €ij + ek + eri. (15)

Their dual operators are denoted by grad* : C' — C° and
curl® : C? — C*, respectively. It turns out that

grad”(e); = — Z €ij (16)

jst.{i,j}eE

from the adjoint relationship (grad(f), e)c1 = (f, grad*(e))co.

If we introduce the combinatorial divergence operator div :
C' — C° by div(e); = > jet.{ij}em i, then we can write
grad® = —div. Similarly, for curl®, we have

curl®(t);; = Z Lijk. (17)

ks.t.{i,j,k}eT

Note that the following closedness property holds: curl o
grad = 0 and div o curl® = 0.

The combinatorial Hodge decomposition theorem asserts
that C! admits the following orthogonal decomposition:

C' = Im(grad) ® Ker(A1) @ Im(curl®), (18)

where A1 : C' — C! defined by A; = curl® o curl + grad o
grad™ = curl” o curl — grad o div is the one-dimensional com-
binatorial Laplacian (which is called the graph Helmholtzian
in [8]). ? Furthermore, we have

Ker(div) = Ker(A1) @ Im(curl®) (19)
and
Ker(A;) = Ker(div) N Ker(curl). (20)

Im(grad) is the subspace of gradient flows. Any gradient
flow g € Im(grad) can be written as a difference of some
(negative) potential function f € C°: g;; = f; — fi for all
{i,j} € E. It represents an acyclic unidirectional flow on G.

Ker(div) is the subspace of loop flows. Any loop flow I
satisfies div(l) = 0 which means that flow is conserved at any

2Note that the zero-dimensional combinatorial Laplacian
Ag : C° — C° defined by Ag = grad* o grad = —div o grad
is so-called the graph Laplacian.

vertex ¢. This implies that any non-zero loop flow [ contains
a loop such that igc — i1 — --- — i = ip where arc i; —
ij+1 indicates l;;:;,,, > 0 (j = 0,...,k — 1). It represents
circular flows on G. Equation (19) further decomposes the
space of loop flows into two components: One is the space
of harmonic flows Ker(Ai1) and the other is the space of
curl flows Im(curl®). By Equation (20), any harmonic flow
h has no loop of length 3 (namely, triangles) such that i —
j — k — i (namely, h;j;, hjk, hi; > 0). It represents global
circular flows. On the other hand, curl flows ¢ may have
non-zero curls along triangles. They represent local circular
flows.

We measure the magnitude of an edge flow e by the square
of its 1%-norm |le||* = (e,e)c1. Let e=g+1=g+h+cbe
the Hodge decomposition of e where g is the gradient flow
component, [ is the loop flow component, h is the harmonic
flow component and c is the curl flow component. By the
orthogonality of the decomposition, we have

llell* = [lgll* + 112I1* = llgll* + lIRl* + llell*. (21)

The relative strength of each component can be measured
by the following quantities: gradient ratio v = ||g||*/|lel]?,
loop ratio A = ||I||?/|le||?, harmonic ratio n = ||h||*/||e||
and curl ratio x = ||c||?/||e||*. These are characteristics of
an individual edge flow.

We also consider the relative size of each subspace: struc-
tural gradient ratio T' = dim(Im(grad))/dim(C"), structural
loop ratio A = dim(Ker(div))/dim(C"), structural harmonic
ratio H = dim(Ker(A1))/dim(C*) and structural curl ratio
X = dim(Im(curl*))/dim(C"). Note that these quantities
are determined by the structure of the underlying graph G.
In particular, I' and A can be calculated immediately from
the fact that dim(C*) is equal to the number of edges in G
and dim(Im(grad)) is equal to the number of vertices mi-
nus the number of connected components in G. Since the
average relative strength of each component of edge flows
of a fixed {?>-norm chosen uniformly at random is equal to
corresponding structural ratio, structural ratios provide a
reference point for how large each component of an individ-
ual edge flow is biased.

S. RESULT
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We apply the combinatorial Hodge decomposition theo-
rem to information flow on RTNs introduced in Section 3.
In the following, all quantities are averaged over 400 RTNs
and error bars indicate standard deviations.

First, we compare results between RTNs with different
type of in- or out-degree distributions: Poisson, exponential
and truncated power law with 5 = 32. The average in-degree
is fixed at z = 4 for all the distributions. The variances are
4, 20 and 55.11, respectively.

Figure 2 (a) shows the magnitude of information flow ||e||?
when an in-degree distribution is specified. The type of the
in-degree distribution greatly affects the value of ||e[|?>. The
case for the exponential in-degree distribution has the val-
ue of ||e[|® less than half that of the case for the Poisson
in-degree distribution. On the other hand, the case for the
truncated power law in-degree distribution has the value of
lle||* almost three times larger than that of the case for the
Poisson in-degree distribution. These result could be ex-
plained by different critical average in-degrees. However,
the relationship between damage spreading and the magni-
tude of information flow is not so simple because the case
for the Poisson in-degree distribution has the largest value
of 6*.

Figure 2 (b) shows the magnitude of information flow |||
when an out-degree distribution is specified. In contrast to
the cases for specified in-degree distributions, the type of the
out-degree distribution has almost no impact on the value of
le||?. This may reflect the fact that they all have the same
Poisson in-degree distribution.

In Figure 3, the relative strengths of components of infor-
mation flow are shown together with structural ratios when
an in-degree distribution is specified. First note that the
structural gradient ratio I' is approximately 0.25 for every
case. This is due to the fact that almost all of nodes are
included in the largest connected component in the present
numerical simulation condition. If we assume that it has ex-
actly one connected component, then I' = (N — 1)/(zN) =
1/z = 0.25. This implies that A = 1 — T = 0.75. From
Figure 3 (a), we can see that the gradient ratio v has almost
the same value for every case and is significantly less than
the structural gradient ratio I'. Correspondingly, the loop
ratio A has almost the same value for every case and is sig-
nificantly greater than the structural loop ratio A as we can
see from Figure 3 (b). The result of further decomposition
of loop flows is shown in Figure 3 (c) and (d). We can see
that dominant component in loop flows is harmonic flows.
We note that the structural curl ratios converge to 0 as N
goes to co. This is because the expected number of triangles
is constant in the limit of large N for configuration model
random networks [11].

In Figure 4, we show the relative strengths of components
of information flow together with structural ratios when an
out-degree distribution is specified. Note that the structural
ratios have almost the same values as those in the case for
specified in-degree distributions. This is because the under-
lying undirected network does not change when the in-degree
and the out-degree are exchanged at each node. In contrast
to the case for specified in-degree distributions, the gradien-
t ratio «y is significantly larger than the structural gradient
ratio I for exponential and truncated power law out-degree
distributions (Figure 4 (a)) and, correspondingly, the loop
ratio A is significantly smaller than the structural loop ratio
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A in these cases (Figure 4 (b)). Loop flows are suppressed by
out-degree distributions with longer tails. For components
of loop flows, the harmonic counter part is dominant as in
the case for specified in-degree distributions.

Second, we show results for truncated power law distribu-
tions when the cutoff parameter g is varied. The average
in-degree is fixed at z = 4. Figure 5 (a) shows the value of
exponent «. The variance o2 of the distribution is shown in
Figure 5 (b). As expected, the larger g is, the larger o? is.

Figure 6 to 8 show the similar tendencies as those found
in Figure 2 to 4, respectively. The following four observa-
tions are noticeable: First, the magnitude of information
flow ||e||*> becomes larger as 3 gets larger when an in-degree
distribution is specified (Figure 6, squares). Second, in con-
trast, it is almost constant when an out-degree distribution
is specified (Figure 6, circles). Third, the variance of in-
degree distributions has little influence on the strength of
gradient flows or loop flows (Figure 7). Fourth, in contrast,
the larger the variance of the out-degree distribution is, the
smaller the loop ratio A is, when an out-degree distribution
is specified (Figure 8).

6. DISCUSSION

In Section 5, we have shown by Hodge decomposing in-
formation flow on RTNs that in-degree distributions con-
tribute little to the balance between gradient flow and loop
flow, while out-degree distributions have significant impact
on the balance. In particular, it is found that having longer-
tailed out-degree distributions makes the strength of loop
flow smaller.

This finding may give a new insight on the fact that real-
world gene regulatory networks have approximately scale-
free out-degree distributions, while their in-degree distribu-
tions are approximately Poissonian [1]. For example, this
holds approximately true of the gene regulatory network of
bacterium E. coli [3].

In order to numerically investigate the balance between
gradient component and loop component of information flow
on E. coli gene regulatory network, we run RTN dynam-
ics on the directed network reconstructed from real-world
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and structural harmonic ratio H. (d) Curl ratio x and structural curl ratio X.
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Figure 8: The relative strengths of components of information flow associated with RTN dynamics with
truncated power law out-degree distributions. Corresponding structural ratios are shown together. (a)
Gradient ratio v and structural gradient ratio I'. (b) Loop ratio A and structural loop ratio A. (¢) Harmonic
ratio n and structural harmonic ratio H. (d) Curl ratio x and structural curl ratio X.



data [15] and construct information flow as the same way
described in Section 3. The E. coli gene regulatory net-
work has the following parameter values: the number of n-
ode N = 1763, the number of arcs A = 3991, average in-(or
out-) degree z = 2.26, variance of in-degree Var(k) = 3.00,
variance of out-degree Var(l) = 326.66 and correlation coef-
ficient between in-degree and out-degree p = —0.015. This
relatively small p value allows us to assume that P(k,l) =
Py, (k) Pout (1), the condition which we introduced in Section
2. However, the variance of out-degree is extremely larger
compared to the one considered in Section 5. Hence, we ex-
pect that the E. coli gene regulatory network has quite small
value of the loop ratio A relative to the structural loop ratio
A. Indeed, we find that it has A = 0.053 and A = 0.550.
This suggests that information flow on the E. coli gene reg-
ulatory network is almost specialized for gradient flow. This
result is consistent with the view that the primary function
of gene regulation networks is to unidirectionally relay envi-
ronmental signals to transcription responses in feed-forward
manner [1] for which circular information flow would be less
useful.

7. CONCLUSIONS

In this paper, we have numerically investigated Hodge de-
composition of information flow associated with RTN dy-
namics on complex networks. In particular, we have studied
influence of underlying network topology on components of
information flow. As a first step for this direction of study,
we have controlled in-degree or out-degree distributions and
leave other features random. It is found that in-degree dis-
tributions have little impact on the balance between gra-
dient component and loop component of information flow,
while long-tailed out-degree distributions suppress loop com-
ponent significantly. We have inferred that this finding shed
a new light on the efficacy of scale-free out-degree distribu-
tions observed in real-world gene regulatory networks.

Real-world complex networks have structural features oth-
er than scale-free degree distribution such as small-world
property, degree correlations, network motifs, community
structure and so on [11]. Investigation of the influence of
these network structures on information flow is left as fu-
ture work.
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