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INTRODUCTION

Sequence transformations

Convergent numerical sequences occur quite often in natural science and engineering.

Some of such sequences converge very slowly and their limits are not available without

a suitable convergence acceleration method. This is the raison d’être of the study of the

convergence acceleration method.

A convergence acceleration method is usually represented as a sequence transforma-

tion. Let S and T be sets of real sequences. A mapping T : S → T is called a sequence

transformation, and we write (tn) = T (sn) for (sn) ∈ S . Let T : S → T be a sequence

transformation and (sn) ∈ S . T accelerates (sn) if

lim
n→∞

tn − s

sσ(n) − s
= 0,

where σ(n) is the greatest index used in the computation of tn.

An illustration : the Aitken δ2 process

The most famous sequence transformation is the Aitken δ2 process defined by

tn = sn − (sn+1 − sn)2

sn+2 − 2sn+1 + sn
= sn − (∆sn)2

∆2sn
, (1)

where (sn) is a scalar sequence. As C. Brezinski pointed out1 , the first proposer of the δ2

process was the greatest Japanese mathematician Takakazu Seki 関孝和 (or Kōwa Seki,

1642?-1708). Seki used the δ2 process computing π in Katsuyō Sampō vol. IV 括要算法
巻四, which was edited by his disciple Murahide Araki 荒木村英 in 1712. Let sn be the

perimeter of the polygon with 2n sides inscribed in a circle of diameter one. From

s15 = 3.14159 26487 76985 6708,

s16 = 3.14159 26523 86591 3571,

s17 = 3.14159 26532 88992 7759,

Seki computed

1C. Brezinski, History of continued fractions and Padé approximants, Springer-Verlag, Berlin, 1991. p.90.



t15 = s16 +
(s16 − s15)(s17 − s16)

(s16 − s15) − (s17 − s16)
, (2)

= 3.14159 26535 89793 2476,

and he concluded π = 3.14159 26535 89.2 The formula (2) is nothing but the δ2 process.

Seki obtained seventeen-figure accuracy from s15, s16 and s17 whose figure of accuracy is

less than ten.

Seki did not explain the reason for (2), but Yoshisuke Matsunaga 松永良弼 (1692?-

1744), a disciple of Murahide Araki, explained it in Kigenkai起源解, an annotated edition

of Katsuyō Sampō as follows. Suppose that b = a + ar, c = a + ar + ar2. Then

b +
(b − a)(c − b)

(b − a) − (c − b)
=

a

1 − r
,

the sum of the geometric series a + ar + ar2 + . . . .3

It still remains a mystery how Seki derived the δ2 process, but Seki’s application

can be explained as follows. Generally, if a sequence satisfies

sn ∼ s + c1λ
n
1 + c2λ

n
2 + . . . ,

where 1 > λ1 > λ2 > · · · > 0, then tn in (1) satisfies

tn ∼ s + c2

(
λ1 − λ2

λ1 − 1

)2

λn
2 . (3)

This result was proved by J. W. Schmidt[48] and P. Wynn[61] in 1966 independently.

Since Seki’s sequence (sn) satisfies

sn = 2n sin
π

2n
= π +

∞∑
j=1

(−1)jπ2j+1

(2j + 1)!
(2−2j)n,

(3) implies that

tn ∼ π +
π5

5!

(
1
16

)n+1

.

2A. Hirayama, K. Shimodaira, and H. Hirose(eds.), Takakazu Seki’s collected works, English translation
by J. Sudo, (Osaka Kyoiku Tosho, 1974). pp.57-58.
3M. Fujiwara, History of mathematics in Japan before the Meiji era, vol. II (in Japanese), under the
auspices of the Japan Academy, (Iwanami, 1956) (= 日本学士院編, 藤原松三郎著, 明治前日本数学史, 岩波書店).

p.180.
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In 1926, A. C. Aitken[1] iteratively applied the δ2 process finding the dominant root

of an algebraic equation, and so it is now named after him. He used (1) repeatedly as

follows:

T
(n)
0 = sn, n ∈ N,

T
(n)
k+1 = T

(n)
k −

(T (n+1)
k − T

(n)
k )2

T
(n+2)
k − 2T

(n+1)
k + T

(n)
k

k = 0, 1, . . . ; n ∈ N.

This algorithm is called the iterated Aitken δ2 process.

Derivation of sequence transformations

Many sequence transformations are designed to be exact for sequences of the form

sn = s + c1g1(n) + · · · + ckgk(n), ∀n, (4)

where s, c1, . . . , ck are unknown constants and gj(n) (j = 1, . . . k) are known functions of

n. Since s is the solution of the system of linear equations

sn+i = s + c1g1(n + i) + · · · + ckgk(n + i), i = 0, . . . , k,

the sequence transformation (sn) 7→ (tn) defined by

tn = E
(n)
k =

∣∣∣∣∣∣∣
sn sn+1 · · · sn+k

g1(n) g1(n + 1) · · · g1(n + k)
· · ·

gk(n) gk(n + 1) · · · gk(n + k)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 · · · 1

g1(n) g1(n + 1) · · · g1(n + k)
· · ·

gk(n) gk(n + 1) · · · gk(n + k)

∣∣∣∣∣∣∣
is exact for the model sequence (4). This sequence transformation includes many famous

sequence transformations as follows:

(i) The Aitken δ2 process : k = 1 and g1(n) = ∆sn.

(ii) The Richardson extrapolation : gj(n) = xj
n, where (xn) is an auxiary sequence.

(iii) Shanks’ transformation : gj(n) = ∆sn+j−1.

(iv) The Levin u-transformation : gj(n) = n1−j∆sn−1.

In 1979 and 1980, T. H̊avie[20] and C. Brezinski[10] gave independently a recursive

algorithm for the computation of E
(n)
k , which is called the E-algorithm.

3



By the construction, the E-algorithgm accelerates sequences having the aymptotic

expansion of the form

sn ∼ s +
∞∑

j=1

cjgj(n), (5)

where s, c1, c2, . . . are unknown constants and (gj(n)) is a known asymptotic scale. More

precisely, in 1990, A. Sidi[53] proved that if the E-algorithm is applied to the sequence

(5), then for fixed k,

E
(n)
k − s

E
(n)
k−1 − s

= O

(
gk+1(n)
gk(n)

)
, as n → ∞.

Some sequence transformations are designed to accelerate for sequences having a

certain asymptotic property. For example, suppose (sn) satisfies

lim
n→∞

sn+1 − s

sn − s
= λ. (6)

The Aitken δ2 process is also obtained by solving

sn+2 − s

sn+1 − s
=

sn+1 − s

sn − s

for the unknown s. Such methods for obtaining a sequence transformation from a formula

with limit was proposed by C. Kowalewski[25] in 1981 and is designated as thechnique du

sous-ensemble, or TSE for short. Recently, the TSE has been formulated by N. Osada[40].

When −1 ≤ λ < 1 and λ 6= 0 in (6), the sequence (sn) is said to be linearly

convergent sequence. In 1964, P. Henrici[21] proved that the δ2 process accelerates any

linearly convergent sequence. When |λ| > 1 in (6), the sequence (sn) diverges but (tn)

converges to s. In this case s is called the antilimit of (sn).

For particular asymptotic scales (gj(n)) such as gj(n) = nθ+1−j or gj(n) = λnnθ+1−j

with θ < 0 and −1 ≤ λ < 1, various sequence transformations which cannot be repre-

sented as the E-algorithm are constructed.

A brief history : sequence transformations and asymptotic expansions

Here, we give a history of sequence transformations for a sequence such that

sn ∼ s + nθ
∞∑

j=0

cj

nj
, (7)

4



where θ < 0 and c0(6= 0), c1, . . . are constants independent of n.

According to K. Knopp[24, p.240], the first sequence transformation was indicated

by J. Stirling in 1730. Stirling derived the asymptotic expansion
∑n

i=1 log(1 + ia) and

the recursive procedure of coefficients in its expansion[5, p.156]. The Euler-Maclaurin

summation formula, which was discovered by L. Euler and C. Maclaurin independently in

about 1740, was a quite important contribution to the study of sequence transformations.

In 1755, using this formula, L. Euler found

1 +
1
2

+
1
3

+ · · · + 1
n
∼ log n + γ +

1
2n

−
∞∑

j=1

B2j

2jn2j
, (8)

where γ is the Euler constant and B2j are the Bernoulli numbers. Since the sequence∑n
i=1

1
i − log n satisfies (7), the formula (8) is the earliest acceleration for a logarithmic

sequence satisfying (7).

For the partial sum sn =
∑n

i=1 ai of an infinite series, it is convenient to consider

the asymptotic expansion of an/an−1 = ∆sn−1/∆sn−2. In 1936, W. G. Bickley and J.

C. P. Miller[2] considered an accleration method for a slowly convergent series of positive

terms such that
∆sn−1

∆sn−2
∼ 1 − A1

n
+

A2

n2
+

A3

n3
+ . . . , (9)

where A1(> 1), A2, A3, . . . are constants. We note that an asymptotic expansion (7)

implies (9). They assumed

s − sn ∼ ∆sn−1

(
α−1n + α0 +

α1

n
+

α2

n2
+ . . .

)
,

and determined α−1, α0, α1, . . . by using A1, A2, . . . . The Bickley-Miller method requires

the coefficients A1, A2, . . . in (9), so it is not applicable for a sequence without explicit

form of ∆sn.

In 1952, S. Lubkin[29] studied the δ2 process and proposed the W transformation.

Then he proved that the W transform accelerates any convergent sequence satisfying

∆sn

∆sn−1
∼ α0 +

α1

n
+

α2

n2
+ . . . ,

where α0, α1, . . . are constants, and that the δ2 process accelerates if α0 6= 1.

5



Much earlier, in 1927, L. F. Richardson[44] proposed the deffered approach to the

limit, which is now called the Richardson extrapolation, and he considered sn = ((2n +

1)/(2n − 1))n with

sn − e ∼ c2

n2
+

c4

n4
+ . . . .

He assumed that the errors sn−e are proportional to n−2 and extrapolated s5+ 16
9 (s5−s4),

or equivalently, solved
s5 − e

s4 − e
=

16
25

,

then he obtained e = 2.71817.

In 1966, P. Wynn[61] applied his ε-algorithm to a sequence satisfying

sn ∼ s + n−1
∞∑

j=0

cj

nj
. (10)

The asymptotic expansion (10) is a special case of (7).

It was difficult to accelerate a sequence satisfying (7) until 1950’s. Lubkin’s W

transformation, proposed in 1952, and the θ-algorithm of Brezinski[8], proposed in 1971,

can accelerate such a sequence. And when θ in (7) is negative integer, the ρ-algorithm

of Wynn[60], proposed in 1956, works well on the sequence. These transformations do

not require the knowledge of θ in (7).

In 1981, P. Bjørstad, G. Dahlquist and E. Grosse[4] proposed the modified Aitken

δ2 formula defined by

s
(n)
0 = sn

s
(n)
k+1 = s

(n)
k − 2k + 1 − θ

2k − θ

(s(n+1)
k − s

(n)
k )(s(n)

k − s
(n−1)
k )

s
(n+1)
k − 2s

(n)
k + s

(n−1)
k

,

and proved that if it is applied to a sequence satisfying (7), then for fixed k,

s
(n)
k − s = O(nθ−2k), as n → ∞.

In 1990, N. Osada[37] proposed the generalized ρ-algorithm defined by

ρ
(n)
−1 = 0, ρ

(n)
0 = sn

ρ
(n)
k = ρ

(n+1)
k−2 +

k − 1 − θ

ρ
(n+1)
k−1 − ρ

(n)
k−1

6



and proved that if it is applied to a sequence satisfying (7), then for fixed k,

ρ
(n)
2k − s = O((n + k)θ−2k), as n → ∞.

The modified Aitken δ2 formula and the generalized ρ-algorithm require the knowl-

edge of the exponent θ in (7). But Osada showed that θ can be computed using these

methods as follows. For a given sequence (sn) satisfying (7), θn denotes by

θn = 1 +
1

∆
(

∆sn

∆2sn−1

) ,

then Bjørstad, Dahlquist and Grosse[4] proved that the sequence (θn) has the asymptotic

expansion of the form

θn ∼ θ + n−2
∞∑

j=0

tj
nj

.

Thus by applying these methods with the exponent −2 to (θn), the exponent θ in (7)

can be estimated.

Organization of this paper

In Chapter I, the asymptotic properties of slowly convergent scalar sequences are

dealt, and examples of sequence, which will be taken up in Chapter II as an objective of

application of acceleration methods, are given. In Section 1, asymptotic preliminaries,

i.e., O-symbol, the Euler-Maclaurin summation formula and so on, are introduced. In

Section 2, some terminologies for slowly convergent sequences are given. In Section 3

and 4, partial sums of infinite series, and numerical integration are taken up as slowly

convergent scalar sequences.

In Chapter II, acceleraton methods for scalar sequences are dealt. Taken up methods

are as follows:

(i) Methods added some new results by the author; the ρ-algorithm, the generalized

ρ-algorithm, and the modified Aitken δ2 formula.

(ii) Other important methods; the E-algorithm, the Richardson extrapolation, the

ε-algorithm, Levin’s transforms, the d transform, the Aitken δ2 process, and the Lubkin

W transform.

For these methods, the derivation, convergence theorem or asymptotic behaviour,

and numerical examples are given. For methods mentioned in (i), details are described,

7



but for others only important facts are described. For other information, see Brezinski[9],

Brezinski and Redivo Zaglia[11], Weniger[56][57], and Wimp[58].

In Section 14, these methods are compared using numerical examples of infinite

series. In Section 15, these methods are applied to numerical integration.

For convenience’s sake, FORTRAN subroutines of the automatic generalized ρ-

algorithm and the automatic modified Aitken δ2 formula are appended.

The numerical computations in this paper were carried out on NEC ACOS-610

computer at Computer Science Center of Nagasaki Institute of Applied Science in double

precision with approximately 16 digits unless otherwise stated.

8



I. Slowly convergent sequences

1. Asymptotic preliminaries

P. Henrici said “The study of the asymptotic behaviour frequently reveals informa-

tion which enables one to speed up the convergence of the algorithm.”([21, p.10])

In this section, we prepare for asymptotic methods.

1.1 Order symbols and asymptotic expansions

Let a and δ be a real number and a positive number, respectively. The set {x ∈
R | 0 < |x − a| < δ} is called a deleted neighbourhood of a. The open interval (a, a + δ)

is called a deleted neighbourhood of a + 0. For a positive number M , the open interval

(M, +∞) is called a deleted neighbourhood of +∞.

Let b be one of a, a ± 0, ±∞. Let V be a deleted neighbourhood of b. If a function

f(x) defined on V satisfies limx→b f(x) = 0, f(x) is said to be infinitesimal at b.

Suppose that f(x) and g(x) are infinitesimal at b. We write

f(x) = O(g(x)) as x → b, (1.1)

if there exist a constant C > 0 and a deleted neighbourhood V of b such that

|f(x)| ≤ C|g(x)|, x ∈ V. (1.2)

And we write

f(x) = o(g(x)) as x → b, (1.3)

if for any ε > 0 there exists a deleted neighbourhood Vε of b such that

|f(x)| ≤ ε|g(x)|, x ∈ Vε. (1.4)

In the rest of this subsection b is fixed and the qualifying phrase “as x → b” is omitted.

Let f1(x)−f2(x) and f3(x) be infinitesimal at b. We write f1(x) = f2(x)+O(f3(x)),

if f1(x)−f2(x) = O(f3(x)). Similarly we write f1(x) = f2(x)+o(f3(x)), if f1(x)−f2(x) =

o(f3(x)).

If f(x)/g(x) tends to unity, we write

f(x) ∼ g(x). (1.5)

Then g is called an asymptotic approximation to f .

9



A sequence of functions (fn(x)) defined in a deleted neighbourhood V of b is called

an asymptotic scale or an asymptotic sequence if

fn+1(x) = o(fn(x)), for n = 1, 2, . . . , (1.6)

is valid. Let (fn(x)) be an asymptotic scale defined in V . Let f(x) be a function defined

in V . If there exist constants c1, c2, . . . , such that

f(x) =
n∑

k=1

ckfk(x) + o(fn(x)), (1.7)

is valid for any n ∈ N, then we write

f(x) ∼
∞∑

k=1

ckfk(x), (1.8)

and (1.8) is called an asymptotic expansion of f(x) with respect to (fn(n)). We note that

(1.8) implies f(x) ∼ c1f1(x) in the sense of (1.5).

If f(x) has an asymptotic expansion (1.8), then the coefficients (ck) are unique:

c1 = lim
x→b

f(x)/f1(x), (1.9a)

cn = lim
x→b

(
(f(x) −

n−1∑
k=1

ckfk(x))/fn(x)

)
, n = 2, 3, . . . . (1.9b)

When f(x) − g(x) ∼
∑∞

k=1 ckfk(x), we often write

f(x) ∼ g(x) +
∞∑

k=1

ckfk(x) (1.10)

For asymptotic methods, see Bruijn[12] and Olver[34].

1.2 The Euler-Maclaurin summation formula

The Euler-Maclaurin summation formula is a quite useful theorem not only for

numerical integration but also for sequences and infinite series. In this subsection we

review the Euler-Maclaurin formulæ without proofs, which can be found in Bourbaki[5].

We begin with the Bernoulli numbers.

The Bernoulli numbers Bn are defined by

x

ex − 1
=

∞∑
n=0

Bn

n!
xn, |x| < 2π, (1.11)

10



where the left-hand side of (1.11) equals 1 when x = 0. The Bernoulli numbers are

computed recursively by

B0 = 1 (1.12a)
n−1∑
k=0

(
n

k

)
Bk = 0 n = 2, 3, . . . . (1.12b)

By the relations (1.12), we have

B0 = 1, B1 = −1
2
, B2 =

1
6
, B3 = 0, B4 = − 1

30
, B5 = 0,

B6 =
1
42

, B7 = 0, B8 = − 1
30

, B9 = 0, B10 =
5
66

, B11 = 0,

B12 = − 691
2730

, B13 = 0, B14 =
7
6
, B15 = 0, B16 = −3617

510
. (1.13)

It is known that

|B2j | ≤
4(2j)!
(2π)2j

for ∀j ∈ N. (1.14)

Theorem 1.1 (The Euler-Maclaurin summation formula)

Let f(x) be a function of C2p+2 class in a closed interval [a, b]. Then the following

asymptotic formula is satisfied.

Tn−
∫ b

a

f(x)dx =
p∑

j=1

B2j

(2j)!
h2j

(
f (2j−1)(b) − f (2j−1)(a)

)
+O(h2p+2), as h → +0, (1.15a)

where

h = (b − a)/n, Tn = h

(
1
2
f(a) +

n−1∑
i=1

f(a + ih) +
1
2
f(b)

)
. (1.15b)

Tn in (1.15b) is called an n-panels compound trapezoidal rule, or a trapezoidal rule,

for short. The following modifications of the Euler-Maclaurin summation formula are

useful for infinite series.

Theorem 1.2

Let f(x) be a function of C2p+1 class in [n, n + m]. Then

m∑
i=0

f(n + i) =
∫ n+m

n

f(x)dx +
1
2

(f(n) + f(n + m))

+
p∑

j=1

B2j

(2j)!

(
f (2j−1)(n + m) − f (2j−1)(n)

)
+ Rp(n, m),

(1.16)
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|Rp(n,m)| ≤ 4e2π

(2π)2p+1

∫ n+m

n

|f (2p+1)(x)|dx. (1.17)

In particular, if f (2p+1)(x) has a definite sign in [n, n + m], then

|Rp(n,m)| ≤ 4e2π

(2π)2p+1
|f (2p)(n + m) − f (2p)(n)|. (1.18)

Theorem 1.3

Let f(x) be a function of C2p+1 class in [n, n + 2m]. Then

2m∑
i=0

(−1)if(n + i) =
1
2

(f(n) + f(n + 2m))

+
p∑

j=1

B2j(22j − 1)
(2j)!

(
f (2j−1)(n + 2m) − f (2j−1)(n)

)
+ Rp(n, m),

(1.19)

|Rp(n,m)| ≤ 4e2π(22p+1 + 1)
(2π)2p+1

∫ n+2m

n

|f (2p+1)(x)|dx. (1.20)

In particular, if f (2p+1)(x) has a definite sign in [n, n + 2m], then

|Rp(n,m)| ≤ 4e2π(22p+1 + 1)
(2π)2p+1

|f (2p)(n + 2m) − f (2p)(n)|. (1.21)

The following theorem gives the asymptotic expansion of the midpoint rule.

Theorem 1.4

Let f(x) be a function of C2p+2 class in a closed interval [a, b]. Then the following

asymptotic formula is satisfied.

Mn −
∫ b

a

f(x)dx =
p∑

j=1

(21−2j − 1)B2j

(2j)!
h2j

(
f (2j−1)(b) − f (2j−1)(a)

)
+ O(h2p+2), as h → +0, (1.22a)

where

h = (b − a)/n, Mn = h
n∑

i=1

f(a + (i − 1
2
)h). (1.22b)

Proof. Since Mn = 2T2n − Tn, it follows from Theorem 1.1. ¤

Mn in (1.22b) is called an n-panels compound midpoint rule, or a midpoint rule, for

short.
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2. Slowly convergent sequences

When one deals with the speed of convergence such as slow convergence and conver-

gence acceleration, it is necessary to quantitatively represent the speed of convergence.

To this end, we use the order of convergence, the rate of contraction and the asymptotic

expansion.

2.1 Order of convergence

Let (sn) be a real sequence converging to a limit s. For p ≥ 1, (sn) is said to have

order p or be p-th order convergence if there exist A, B ∈ R, n0 ∈ N such that 0 < A ≤ B

and

A ≤ |sn+1 − s|
|sn − s|p

≤ B ∀n ≥ n0. (2.1)

“2-nd order convergence” is usually called a quadratic convergence and “3-rd order con-

vergence” is sometimes called a cubic convergence.

If there exist C > 0 and n0 ∈ N such that

|sn+1 − s| ≤ C|sn − s|p ∀n ≥ n0, (2.2)

then (sn) is said to have at least order p or be at least p-th order convergence.

As is well known, under suitable conditions, Newton’s iteration

sn+1 = sn − f(sn)
f ′(sn)

(2.3)

converges at least quadratically to a simple solution of f(x) = 0. Similarly, a sequence

generated by the secant method

sn+1 = sn − f(sn)
sn − sn−1

f(sn) − f(sn−1)
(2.4)

has order at least (1 +
√

5)/2 = 1.618 . . . . This convergence is sufficiently fast.

A p-th order convergent sequence (sn) is said to have the asymptotic error constant

C > 0 if

lim
n→∞

|sn+1 − s|
|sn − s|p

= C. (2.5)

We note that p-th order convergent sequences not necessarily have the asymptotic error

constant. For example, let (sn) be a sequence defined by

sn+1 =
(

1
2

+
1
4
(−1)n

)
(sn − s)p + s. (2.6)

13



If p = 1, or p > 1 and 0 < 31/(1−p2)(3/4)1/(p−1)(s0 − s) < 1, then (sn) converges to s and

satisfies (2.1) with A = 1/4, B = 3/4, but |sn+1 − s|/|sn − s|p does not converge.

If (sn) has order p > 1 and |sn+1 − s|/|sn − s| converges, then

lim
n→∞

sn+1 − s

sn − s
= 0. (2.7)

A sequence (sn) satisfying (2.7) is called a super-linearly convergent sequence.

We note that a super-linearly convergent sequence has not necessarily order p > 1.

For example, let (sn) be a sequence defined by

sn+1 = λn(sn − s) + s, 0 < |λ| < 1. (2.8)

Then (sn) converges super-linearly to s, but has not any order.

2.2 Linearly convergent sequences

When

lim
n→∞

sn+1 − s

sn − s
= λ, −1 ≤ λ < 1, λ 6= 0, (2.9)

(sn) is called a linearly convergent sequence and λ is called the rate of contraction.

In practice, linearly convergent sequences occur in the following situations:

(i) Partial sums sn of alternating series satisfies (2.9) with the rate of contraction

λ = −1.

(ii) Suppose that f(x) has a zero α of multiplicity m > 1 and is of class C2 in a

neighbourhood of α. If s0 is sufficiently close to α, then Newton’s iteration (2.3) converges

linearly to α with the rate of contraction 1 − 1/m.

(iii) Suppose that an equation x = g(x) has a fixed point α, g(x) is of class C2 in

a neighbourhood of α and 0 < |g′(α)| < 1. If s0 is sufficiently close to α, then (sn)

generated by sn+1 = g(sn) converges linearly to α with the rate of contraction g′(α).

The convergence of a linearly convergent sequence whose asymptotic error constant

is close to 1 is so slow that it is necessary to accelerate the convergence. However, it is

easy to accelerate linearly convergent sequences. For example, the Aitken δ2 process can

accelerate any linealy convergent sequence(Henrici[21]).

Some linearly convergent sequences have an asymptotic expansion of the form

sn ∼ s +
∞∑

j=1

cjλ
n
j , as n → ∞, (2.10)
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where c1, c2, . . . and λ1, λ2, . . . are constants independent of n. A sequence (sn) satis-

fying (2.10) with known constants λ1, λ2, . . . can be quite efficiently accelerated by the

Richardson extrapolation. When λ1, λ2, . . . in (2.10) are unknown, the sequence can be

efficiently accelerated by the ε-algorithm.

Other some linearly convergent sequences such as the partial sums of certain alte-

nating series (see Theorem 3.3) have an asymptotic expansion of the form

sn ∼ s + λnnθ
∞∑

j=0

cj

nj
, as n → ∞, (2.11)

where −1 ≤ λ < 1, λ 6= 0, θ < 0 and c0(6= 0), c1, . . . are constants independent of n. A

sequence (sn) satisfying (2.11) can be efficiently accelerated by the Levin transformations.

2.3 Logarithmically convergent sequences

When the equality

lim
n→∞

sn+1 − s

sn − s
= 1 (2.12)

holds (sn) is called a logarithmically convergent sequence(Overholt[42]), or a logarithmic

sequence for short.

A typical example of logarithmically convergent sequences is the partial sums of the

Riemann zeta function ζ(σ):

sn =
n∑

j=1

1
jσ

, σ > 1. (2.13)

As we shall show in Example 3.4, (sn) has the asymptotic expansion

sn ∼ ζ(σ) + n1−σ
∞∑

j=0

cj

nj
, (2.14)

where c0, c1, . . . are constants such as c0 = 1/(1 − σ), c1 = 1/2, c2 = −σ/12, c3 = 0.

Similarly to (2.14), many logarithmic sequences (sn) have the asymptotic expansion

of the form

sn ∼ s + nθ
∞∑

j=0

cj

nj
, (2.15)

where θ < 0 and c0( 6= 0), c1, . . . are constants. Some other logarithmic sequences (sn)

have the asymptotic expansion of the form

sn ∼ s + nθ(log n)τ
∞∑

j=0

∞∑
i=0

ci,j

(log n)inj
, (2.16)
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where θ < 0 or θ = 0 and τ < 0, and c0,0( 6= 0), ci,j , . . . are constants. The asymptotic

formula (2.15) or (2.16) is a special case of the following one

sn = s + O(nθ), as n → ∞, (2.17)

or

sn = s + O(nθ(log n)τ ), as n → ∞, (2.18)

respectively. When θ in (2.17) or (2.18) is close to 0, (sn) converges very slowly to s, but

when −θ is sufficiently large, e.g. −θ > 10, (sn) converges rapidly to s.

Furthermore, logarithmic sequences which have the asymptotic formula

sn = s + O((log(log n))τ ), as n → ∞, (τ < 0) (2.19)

occur in some literatures. Sequences satisfying (2.18) with θ = 0 or (2.19) converge quite

slowly.

According to their origin we can classify practical logarithmic sequences into the

following two categories:

(a) one from continuous problems by applying a discretization method.

(b) one from discrete problems.

There are many numerical problems in the class (a) such as numerical differentia-

tion, numerical integration, ordinary differential equations, partial differential equations,

integral equations and so on. Let s be the true value of such a problem and h a mesh

size. For many cases an approximation T (h) has an asymptotic formula

T (h) = s +
k∑

j=1

cjh
αj + O(hαk+1), (2.20)

where c1, . . . , ck, 0 < α1 < · · · < αk+1 are constants. Setting sn = T (c/n) and dj = cjc
αj

for c > 0, we have

sn = s +
k∑

j=1

djn
−αj + O(n−αk+1), (2.21)

which is a generalization of (2.15). When we put s′n = s2n and λj = 2−αj , we have

s′n = s +
k∑

j=1

djλ
n
j + O(λn

k+1), (2.22)
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therefore the subsequence (s′n) of (sn) converges linealy to s.

For example, let f(x) be a function of class C2p+2 in a closed interval [a, b]. Let Tn

be an approximation of
∫ b

a
f(x)dx by the n-panels compound trapezoidal rule. Then by

the Euler-Maclaurin formula (Theorem 1.1),

Tn =
∫ b

a

f(x)dx +
p∑

j=1

cj(2−2j)n + O((2−2p−2)n), as n → ∞, (2.23)

where c1, . . . , cm are constants independent of n. An application of the Richardson

extrapolation to T2n is called the Romberg integration.

Almost all sequences taken up as examples of logarithmic sequences are of class (b).

For example, a sequence given by analytic function such as sn = (1+1/n)n, partial sums

of infinite series of positive terms, and an iterative sequence of a singular fixed point

problem. Then (sn) satisfies (2.15), (2.16) or more general form

sn = s +
k∑

j=1

cjgj(n) + O(gk+1(n)), (2.24)

such that

lim
n→∞

gj+1(n)
gj(n)

= 0, j = 1, 2, . . . , (2.25)

and

lim
n→∞

gj(n + 1)
gj(n)

= 1, j = 1, 2, . . . . (2.26)

A double sequence (gj(n)) satisfying (2.25) and (2.26) is called an asymptotic loga-

rithmic scale.

2.4 Criterion of linearly or logarithmically convergent sequences

The formulae (2.9) and (2.12) involve the limit s, so that they are of no use in

practice. However, under certain conditions, (2.9) and (2.12) can be replaced sn −s with

∆sn = sn+1−sn. Namely, if lim
n→∞

∆sn+1/∆sn = λ, and if one of the following conditions

(i) (Wimp[58]) 0 < |λ| < 1, or |λ| > 1, (For the divergence case |λ| > 1, s can be

any number.)
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(ii) (Gray and Clark[17]) λ = −1 and

lim
n→∞

1 +
∆sn+1

∆sn

1 +
∆sn

∆sn−1

= −1, (2.27)

is satisfied, then (2.9) holds.

Moreover, if

(iii) (Gray and Clark[17]) (sn) converges and ∆sn have the same sign,

then (2.12) holds. In particular, if a real monotone sequence (sn) with limit s satisfies

lim
n→∞

∆sn+1

∆sn
= 1, (2.28)

then (sn) converges logarithmically to the limit s.
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3 Infinite series

Most popular slowly convergent sequences are alternating series as well as logarith-

mically convergent series. In this section we describe the asymptotic expansions of infinite

series and give examples that will be used as test problems.

3.1 Alternating series*

We begin with the definition of the property (C) that is a special case of Widder’s

completely monotonic functions4.

Let a > 0. A function f(x) has the property (C) in (a,∞), if the following four

conditions are satisfied:

(i) f(x) is of class C∞ in (a,∞),

(ii) (−1)rf (r)(x) > 0 for x > a, r = 0, 1, . . . (completely monotonic),

(iii) f(x) → 0 as x → ∞,

(iv) for r = 0, 1, . . . , f (r+1)(x)/f (r)(x) → 0 as x → ∞.

If f(x) has the property (C), then for r = 0, 1, . . . , f (r)(x) → 0 as x → ∞, thus

(f (r)(x))r=0,1,... is an asymptotic scale.

Theorem 3.1 Suppose that a function f(x) has the property (C) in (a,∞). Then

∞∑
i=0

(−1)if(n + i) ∼ 1
2
f(n) −

∞∑
j=1

B2j(22j − 1)
(2j)!

f (2j−1)(n), as n → ∞, (3.1)

where B2j ’s are the Bernoulli numbers.

Proof. Let m, n, p ∈ N with n > a. By the Euler-Maclaurin formula (Theorem 1.3), we

have

2m∑
i=0

(−1)if(n + i) =
1
2

(f(n) + f(n + 2m))

+
p∑

j=1

B2j(22j − 1)
(2j)!

(
f (2j−1)(n + 2m) − f (2j−1)(n)

)
+ Rp(n, m)

(3.2)

where

|Rp(n,m)| ≤ 4e2π(22p+1 + 1)
(2π)2p+1

∫ n+2m

n

|f (2p+1)(x)|dx. (3.3)

*The material in this subsection is taken from the author’s paper: N. Osada, Asymptotic expansions and
acceleration methods for alternating series (in Japanese), Trans. Inform. Process. Soc. Japan, 28(1987)
No.5, pp.431–436. ( = 長田直樹, 交代級数の漸近展開と加速法, 情報処理学会論文誌)
4See, D. V. Widder, The Laplace transform, (Princeton, 1946), p.145.
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By the assumption (ii), f (2p+1)(x) < 0 for x > a, thus

|Rp(n,m)| ≤ 4e2π(22p+1 + 1)
(2π)2p+1

(
f (2p)(n) − f (2p)(n + 2m)

)
. (3.4)

Letting m → ∞, the series in the left-hand side of (3.2) converges and f (r)(n + 2m) → 0

for r = 0, 1, . . . . So we obtain

∞∑
i=0

(−1)if(n + i) =
1
2
f(n) −

p∑
j=1

B2j(22j − 1)
(2j)!

f (2j−1)(n) + O(f (2p)(n)). (3.5)

Since (3.5) and the assumption (iv), we obtain (3.1). ¤

Theorem 3.2 Suppose that an alternating series is represented as

s =
∞∑

i=1

(−1)i−1f(i), (3.6)

where f(x) has the property (C) in (a,∞) for some a > 0. Let sn be the n-th partial sum

of (3.6). Then the following asymptotic expansion holds:

sn − s ∼ (−1)n−1

1
2
f(n) +

∞∑
j=1

B2j(22j − 1)
(2j)!

f (2j−1)(n)

 , as n → ∞. (3.7)

Proof. Since

sn − s = (−1)n−1f(n) + (−1)n
∞∑

i=1

(−1)i−1f(n + i − 1), (3.8)

by (3.1) we obtain (3.7). ¤

Notation (Levin and Sidi[27]) Let θ < 0. We denote A (θ) by the set of all functions of

class C∞ in (a,∞) for some a > 0 satisfying the following two conditions:

(i) f(x) has the asymptotic expansion

f(x) ∼ xθ
∞∑

j=0

aj

xj
, as x → ∞, (3.9)

(ii) Derivatives of any order of f(x) have asymptotic expansions, which can be

obtained by differentiating that in (3.9) formally term by term.
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Theorem 3.3 Suppose that f(x) ∈ A (θ) has the property (C). Let the asymptotic expan-

sion of f(x) be (3.9). Let sn be the n-th partial sum of the series s =
∑∞

i=1(−1)i−1f(i).

Then sn − s has the asymptotic expansion

sn − s ∼ (−1)n−1nθ
∞∑

j=0

cj

nj
, as n → ∞, (3.10)

where

cj =
1
2
aj +

b(j+1)/2c∑
k=1

B2k(22k − 1)
(2k)!

aj+1−2k

2k−1∏
i=1

(θ − j + i) (3.11)

Proof. Since f(x) ∈ A (θ), we have

f (2k−1)(x) ∼
∞∑

m=0

am

(
2k−1∏
i=1

(θ − m + 1 − i)

)
xθ−m−2k+1. (3.12)

Computing the coefficient of (−1)n−1nθ−j ,

cj =
1
2
aj +

∑
k,m

B2k(22k − 1)
(2k)!

am

2k−1∏
i=1

(θ − m + 1 − i), (3.13)

where the summation in the right-hand side of (3.13) is taken all integers k, m such that

k ≥ 1, m ≥ 0, m + 2k − 1 = j. (3.14)

Since the solutions of (3.14) are only k = 1, 2, . . . , b(j + 1)/2c, we obtain the desired

result. ¤
Using Theorem 3.2 and Theorem 3.3, we can obtain the asymptotic expansions of

typical alternating series.

Example 3.1 In order to illustrate Theorem 3.2, we consider first a very simple example,

log 2 =
∞∑

i=1

(−1)i−1

i
. (3.15)

Let f(x) = 1/x and sn be the n-th partial sum of (3.15). Since f (2j−1)(x) = −(2j −
1)!x−2j , by (3.7) we have

sn − log 2 ∼ (−1)n−1

 1
2n

−
∞∑

j=1

B2j(22j − 1)
(2j)n2j

 . (3.16)
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The first 5 terms of the right-hand side of (3.16) are as follows:

sn − log 2 = (−1)n−1 1
n

(
1
2
− 1

4n
+

1
8n3

− 1
4n5

+
17

16n7
+ O(

1
n9

)
)

. (3.17)

Example 3.2 In order to illustrate Theorem 3.3, we next consider the Leibniz series

π

4
=

∞∑
i=1

(−1)i−1

2i − 1
. (3.18)

Since
1

2x − 1
=

1
2x

1 +
∞∑

j=1

1
(2x)j

 , |x| >
1
2
, (3.19)

f(x) = 1/(2x − 1) belongs to A (−1). Using Theorem 3.3, we have

sn − π

4
= (−1)n−1 1

n

(
1
4
− 1

16n2
+

5
64n4

− 61
256n6

+
1385

1024n8
+ O(

1
n10

)
)

, (3.20)

where sn is the n-th partial sum of (3.18).

Example 3.3 Let us consider

(1 − 21−α)ζ(α) =
∞∑

i=1

(−1)i−1

iα
, α > 0, α 6= 1, (3.21)

where ζ(α) is the Riemann zeta function. For 0 < α < 1, (3.21) is justified by analytic

continuation.5 Putting f(x) = 1/xα in Theorem 3.2, we have

sn − (1 − 21−α)ζ(α) ∼ (−1)n−1

1
2
f(n) +

∞∑
j=1

B2j(22j − 1)
(2j)!

f (2j−1)(n)

 , (3.22)

where sn is the n-th partial sum of (3.21). The first 4 terms of the right-hand side of

(3.22) are as follows:

sn − (1 − 21−α)ζ(α)

= (−1)n−1 1
nα

(
1
2
− α

4n
+

α(α + 1)(α + 2)
48n3

− α(α + 1)(α + 2)(α + 3)(α + 4)
480n5

)
+ O(

1
nα+7

). (3.23)

5See, E. C. Titchmarsh, The theory of the Riemann zeta function, 2nd ed. (Clarendon Press, Oxford,

1986), p.21.
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3.2 Logarithmically convergent series**

The following theorem is useful for obtaining the asymptotic expansions of certain

logarithmically convergent series.

Theorem 3.4 Suppose that a function f(x) has the property (C) in (a,∞). Let sn be

the n-th partial sum of the series s =
∑∞

i=1 f(i). Suppose that both the infinite integral∫ ∞
a

f(x)dx and the series s converge. Then

sn − s = −
∫ ∞

n

f(x)dx +
1
2
f(n) +

p∑
j=1

B2j

(2j)!
f (2j−1)(n) + O(f (2p)(n)), as n → ∞, (3.24)

where B2j ’s are the Bernoulli numbers.

Proof. Let m, n, p ∈ N with n > a. By the Euler-Maclaurin formula (Theorem 1.2), we

have

m∑
i=0

f(n + i) =
∫ n+m

n

f(x)dx +
1
2

(f(n) + f(n + m))

+
p∑

j=1

B2j

(2j)!

(
f (2j−1)(n + m) − f (2j−1)(n)

)
+ Rp(n,m)

(3.25)

where

|Rp(n,m)| ≤ 4e2π

(2π)2p+1
|f (2p)(n + m) − f (2p)(n)|. (3.26)

Letting m → ∞, the series in the left-hand side of (3.25) converges and f (r)(n+m) →
0 for r = 0, 1, . . . . So we obtain

s − sn−1 =
∫ ∞

n

f(x)dx +
1
2
f(n) −

p∑
j=1

B2j

(2j)!
f (2j−1)(n) + O(f (2p)(n)). (3.27)

By (3.27), we obtain (3.24). ¤

Theorem 3.5 Let f(x) be a function belonging to A (θ) with θ < −1. Let the asymptotic

expansion of f(x) be

f(x) ∼ xθ
∞∑

j=0

aj

xj
, as x → ∞, (3.28)

**The material in this subsection is taken from the author’s paper: N. Osada, Asymptotic expansions
and acceleration methods for logarithmically convergent series (in Japanese), Trans. Inform. Process. Soc.
Japan, 29(1988) No.3, pp.256–261. ( = 長田直樹, 対数収束級数の漸近展開と加速法, 情報処理学会論文誌)
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where a0 6= 0. Assume that both the series s =
∞∑

i=1

f(i) and the integral
∫ ∞

n

f(x)dx

converge. Then the n-th partial sum sn has the asymptotic expansion of the form

sn − s ∼ nθ+1
∞∑

j=0

cj

nj
, as n → ∞, (3.29)

where

c0 =
a0

θ + 1
, c1 =

a1

θ
+

a0

2

cj =
aj

θ + 1 − j
+

1
2
aj−1 +

bj/2c∑
k=1

B2k

(2k)!
aj−2k

2k−1∏
l=1

(θ − j + 1 + l), (j > 1)
(3.30)

where B2j’s are the Bernoulli numbers.

Proof. By the Theorem 3.4, we have

sn − s ∼ −
∫ ∞

n

f(x)dx +
1
2
f(n) +

∞∑
j=1

B2j

(2j)!
f (2j−1)(n), as n → ∞. (3.31)

Integrating (3.28) term by term, we have∫ ∞

n

f(x)dx ∼
∞∑

k=0

−ak

θ + 1 − k
nθ+1−k, (3.32)

and by the assumption f(x) ∈ A (θ), we have

f (2j−1)(n) ∼
∞∑

k=0

ak

(
2j−1∏
l=1

(θ − k + 1 − l)

)
nθ−k−2j+1. (3.33)

By (3.31),(3.32) and (3.33), the coeficient of nθ+1−j in (3.29) coinsides with cj in (3.30).

This completes the proof. ¤

Using Theorem 3.4, we can obtain the well-known asymptotic expansion of the

Riemann zeta function.

Example 3.4 (The Riemann zeta function) Let us consider

sn =
n∑

i=1

1
iα

, α > 1, (3.34)
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Taking f(x) = x−α and s = ζ(α) in Theorem 3.4, we have

s − sn + n−α +
1

1 − α
n1−α ∼ 1

2
n−α +

∞∑
j=1

B2j

(2j)!

(
2j−1∏
l=1

(α + l − 1)

)
n−α−2j+1, (3.35)

thus we obtain

sn − s ∼ 1
1 − α

n1−α +
1
2
n−α −

∞∑
j=1

B2j

(2j)!
α(α + 1) · · · (α + 2j − 2)n−α−2j+1. (3.36)

In particular, if α = 2 then

sn − π2

6
=

1
n

(
−1 +

1
2n

− 1
6n2

+
1

30n4
− 1

42n6
+

1
30n8

+ O(
1

n10
)
)

, as n → ∞. (3.37)

Next example is more complicated.

Example 3.5 (Gustafson[18]) Consider

s =
∞∑

i=1

(
i + e1/i

)−
√

2

. (3.38)

Let f(x) = (x + e1/x)−
√

2. Using Maclaurin’s expansions of ex and (1 + x)−
√

2, we have

f(n) ∼ n−
√

2

1 +
∞∑

j=1

1
(j − 1)!nj

−
√

2

∼ n−
√

2
∞∑

j=0

aj

nj
, (3.39)

where the coefficients aj in (3.39) are given in Table 3.1. By Theorem 3.5, the n-th

partial sum sn has the asymptotic expansion of the form

sn − s ∼ n1−
√

2
∞∑

j=0

cj

nj
, (3.40)

where s = 1.71379 67355 40301 48654 and the coefficients cj in (3.40) are also given in

Table 3.1.

25



Table 3.1

Coefficients aj in (3.39) and cj in (3.40)

j aj cj

0 1 −1 −
√

2
1 −

√
2 3/2

2 1 − (1/2)
√

2 2 − (25/12)
√

2
3 1 − (1/6)

√
2 −1/2 + (1/2)

√
2

4 1/12 − (5/12)
√

2 227/840 + (71/630)
√

2
5 −(23/120)

√
2 −41/168 − (37/168)

√
2

6 11/45 + (7/60)
√

2 67/4968 + (173/6210)
√

2
7 1/72 − (1/240)

√
2 3367/12240 + (5111/24480)

√
2

8 −19/160 − (221/2520)
√

2 −2924867/14212800 − (106187/676800)
√

2

There are logarithmic terms in the asymptotic expansions of the following series.

Example 3.6 Let us consider

sn =
n∑

i=2

log i

iα
, α > 1. (3.41)

Since d/dα(i−α) = − log i/iα, sn converges to −ζ ′(α), where −ζ ′(s) is the derivative of

the Riemann zeta function. Let f(x) = log x/xα. Then

f ′(x) =
−α log x + 1

xα+1
, (3.42a)

f ′′(x) =
α(α + 1) log x − 2α − 1

xα+2
, (3.42b)

f ′′′(x) =
−α(α + 1)(α + 2) log x + 3α2 + 6α + 2

xα+3
. (3.42c)

By Theorem 3.4,

sn + ζ ′(α) = −
∫ ∞

n

log x

xα
dx +

log n

2nα
+

p∑
j=1

B2j

(2j)!
f (2j−1)(n) + O(f (2p)(n)), (3.43)

thus

sn + ζ ′(α) =
log n

(1 − α)nα−1
− 1

(1 − α)2nα−1

+
log n

2nα
+

−α log n + 1
12nα+1

− −α(α + 1)(α + 2) log n + 3α2 + 6α + 2
720nα+3

+ O(
log n

nα+5
). (3.44)
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In particular, if α = 2,

sn + ζ ′(2) = − log n

n
− 1

n
+

log n

2n2
− log n

6n3
+

1
12n3

+
log n

30n5
− 13

360n5
+ O(

log n

n7
), (3.45)

where −ζ ′(2) = 0.93754 82543 15843.

Example 3.7 Let us consider

sn =
n∑

i=2

1
i(log i)α

, α > 1. (3.46)

Similarly to Example 3.6, we have

sn − s =
1

(1 − α)(log n)α−1
+

1
2n(log n)α

− log n + α

12n2(log n)α+1

+
6(log n)3 + 11α(log n)2 + 6α(α + 1) log n + α(α + 1)(α + 2)

720n4(log n)α+3

+ O(
1

n6(log n)α
). (3.47)

In particular, if α = 2, then s = 2.10974 28012 36891 97448 and

sn − s = − 1
log n

+
1

2n(log n)2
− 1

12n2(log n)2
− 1

6n2(log n)3

+
1

120n4(log n)2
+

11
360n4(log n)3

+
1

20n4(log n)4

+
1

30n4(log n)5
+ O(

1
n6(log n)2

). (3.48)

This series converges quite slowly. When α = 2, by the first 1043 terms, we can

obtain only two exact digits. P. Henrici6 computed this series using the Plana summation

formula. The asymptotic expansion (3.47) is due to Osada[38].

6P. Henrici, Computational analysis with the HP-25 Pocket Calculator, (Wiley, New York, 1977).

27



4 Numerical integration

Infinite integrals and improper integrals usually converge slowly. Such an integral

implies slowly convergent sequence or infinite series by a suitable method. In this section,

we deal with the convergence of numerical integrals and give some examples.

4.1 Semi-infinite integrals with positive monotonically decreasing integrands

Let f(x) be a continuous function defined in [a,∞). If the limit

lim
b→∞

∫ b

a

f(x)dx (4.1)

exists and is finite, then (4.1) is denoted by
∫ ∞

a

f(x)dx and the semi-infinite integral∫ ∞

a

f(x)dx is said to converge.

Suppose that an integral I =
∫ ∞

a

f(x)dx converges. Let (xn) be an increasing

sequence diverging to ∞ with x0 = a. Then I becomes infinite series

I =
∞∑

n=1

∫ xn

xn−1

f(x)dx. (4.2)

Some semi-infinite integrals converge linearly in this sense.

Example 4.1 Let us now consider

Γ(α) =
∫ ∞

0

xα−1e−xdx, α > 0. (4.3)

Let sn be defined by sn =
∫ n

0
xα−1e−xdx. Then

sn − Γ(α) = nα−1e−n

(
−1 − α − 1

n
+ O(

1
n2

)
)

, as n → ∞. (4.4)

In particular, if α ∈ N, then

sn − Γ(α) = −nα−1e−n

1 +
α−1∑
j=1

(α − 1) · · · (α − j)
nj

 . (4.5)

(4.4) or (4.5) shows that (sn) converges linearly to Γ(α) with the contraction ratio 1/e.

Especially when α = 1, the infinite series
∑∞

n=1(sn − sn−1) becomes a geometric series

with the common ratio 1/e.
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Suppose that f(x) has the asymptotic expansion

f(x) ∼ xθ
∞∑

j=0

aj

xj
, as x → ∞, (4.6)

where θ < −1 and a0 6= 0. Suppose also that the integral I =
∫ ∞

a

f(x)dx converges.

Then
∫ x

a

f(t)dt − I has the asymptotic expansion

∫ x

a

f(t)dt − I ∼ xθ+1
∞∑

j=0

aj

(θ − j + 1)xj
, as x → ∞. (4.7)

It follows from (4.7) that
∫ x

a

f(t)dt converges logarithmically to I.

Example 4.2 Let us consider
π

2
=

∫ ∞

0

dx

1 + x2
. (4.8)

Integrating
1

1 + t2
=

∞∑
j=1

(−1)j−1

t2j
, t > 1, (4.9)

term by term, we have ∫ ∞

x

dt

1 + t2
=

∞∑
j=1

(−1)j−1

(2j − 1)x2j−1
, x > 1. (4.10)

We note that the right-hand side of (4.10) converges uniformly to tan−1 1/x = π/2 −
tan−1 x provided that x > 1. The equality (4.10) shows that

∫ x

0
dt/(1 + t2) converges

logarithmically to π/2 as x → ∞.

4.2 Semi-infinite integrals with oscillatory integrands

Let φ(x) be an oscillating function whose zeros in (a,∞) are x1 < x2 < . . . . Set

x0 = a. Let f(x) be a positive continuous function on [a,∞) such that the semi-infinite

integral

I =
∫ ∞

a

f(x)φ(x)dx (4.11)

converges. Let In be defined by

In =
∫ xn

xn−1

f(x)φ(x)dx. (4.12)
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If I converges, then the infinite series

∞∑
n=1

In (4.13)

is an alternating series which converges to I.

Some integrals become geometric series.

Example 4.3 Consider

I =
∫ ∞

0

eαx sin xdx, α < 0, (4.14)

where I = 1/(1 + α2). Then∫ nπ

(n−1)π

eαx sin xdx = (−1)n−1 eαπ + 1
1 + α2

e(n−1)απ. (4.15)

Therefore the infinite series (4.13) is a geometric series with the common ratio −eαπ.

If an integrand is a product of an oscillating function and a rational function con-

verging to 0 as x → ∞, then the infinite series (4.13) usually becomes an alternating

series satisfying In+1/In → −1 as n → ∞.

Example 4.4 Let us consider

I =
∫ ∞

0

sin x

xα
dx, 0 < α < 2, (4.16)

where I = π/(2Γ(α) sin(απ/2)). Set

In =
∫ nπ

(n−1)π

sin x

xα
dx. (4.17)

Substituting t = nπ − x, we have

In =
∫ π

0

sin(nπ − t)
(nπ − t)α

dt = (−1)n−1(nπ)−α

∫ π

0

(
1 − t

nπ

)−α

sin tdt

∼ (−1)n−1(nπ)−α

2 +
∞∑

j=1

α(α + 1) . . . (α + j − 1)
j!(nπ)j

∫ π

0

tj sin tdt

 .
(4.18)

By Theorem 3.3,
n∑

k=1

Ik − I ∼ (−1)n−1n−α
∞∑

j=0

cj

nj
, (4.19)

where cj are constants.
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4.3 Improper integrals with endpoint singularities

Let f(x) be a continuous function in an interval (a, b]. Suppose that limx→a+0 f(x) =

±∞ such that

lim
ε→+0

∫ b

a+ε

f(x)dx (4.20)

exists and is finite. Then the above limit denotes
∫ b

a

f(x)dx. Such an integral is called

an improper integral, and the endpoint a is called an integrable singularity. Similar for

the case limx→b−0 f(x) = ±∞.

The Euler-Maclaurin formula is extended to improper integral
∫ b

a

f(x)dx. Let Mn

be the compound midpoint rule Mn defined by

Mn = h
n∑

i=1

f(a + (i − 1
2
)h), h =

b − a

n
. (4.21)

Theorem 4.1 (Navot[33]) Let f(x) be represented as

f(x) = xαg(x), α > −1, (4.22)

where g(x) is a C2p+1 function in [0, 1]. Then

Mn −
∫ 1

0

f(x)dx

=
p+1∑
j=1

(21−2j − 1)B2j

(2j)!n2j
f (2j−1)(1) +

2p+1∑
k=0

(2−α−k − 1)ζ(−α − k)
k!nα+k+1

g(k)(0)

+ O(n−2p−2), (4.23)

where ζ(−α − k) is the Riemann zeta function.

Example 4.5 We apply Theorem 4.1 to the integral

I =
∫ 1

0

xαdx, −1 < α < 0, (4.24)

where I = 1/(1 + α). By g(x) = 1, g(j)(0) = 0 for j = 1, 2, . . . . Since f (j)(x) =

α(α − 1) . . . (α − j + 1)xα−j , we have

Mn − I

=
(2−α − 1)ζ(−α)

nα+1
+

p+1∑
j=1

(21−2j − 1)B2j

(2j)!n2j
α(α − 1) . . . (α − 2j + 2) + O(n−2p−2).

(4.25)
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Putting h = 1/n, we have the asymptotic expansion

Mn −
∫ 1

0

xαdx ∼ c0h
1+α +

∞∑
j=1

cjh
2j . (4.26)

Theorem 4.2 (Lyness and Ninham[30]) Let f(x) be represented as

f(x) = xα(1 − x)βg(x), α, β > −1, (4.27)

where g(x) is a Cp−1 function in [0, 1]. Let

ψ0(x) = (1 − x)βg(x), ψ1(x) = xαg(x), (4.28)

Then

Mn −
∫ 1

0

f(x)dx =
p−1∑
j=0

ψ
(j)
0 (0)(2−α−j − 1)ζ(−α − j)

j!nα+j+1

+
p−1∑
j=0

(−1)jψ
(j)
1 (1)(2−β−j − 1)ζ(−β − j)

j!nβ+j+1
+ O(n−p).

(4.29)
An integrable singular point in Theorem 4.1 or Theorem 4.2 is called an algebraic

singularity.

Example 4.6 Let us consider the Beta function

B(p, q) =
∫ 1

0

xp−1(1 − x)q−1dx, p, q > 0. (4.30)

Without loss of generality, we assume p ≥ q > 0. Applying Theorem 4.2, we have

Mn − B(p, q) ∼
∞∑

j=0

(
ajn

−p−j + bjn
−q−j

)
, as n → ∞. (4.31)

Theorem 4.3 (Lyness and Ninham[30]) Let f(x) be represented as

f(x) = xα(1 − x)β log xg(x), α, β > −1, (4.32)

where g(x) is a Cp−1 function in [0, 1]. Then

Mn −
∫ 1

0

f(x)dx =
p−1∑
j=0

aj + bj log n

nα+j+1
+

p−1∑
j=0

cj

nβ+j+1
+ O(n−p). (4.33)

An integrable singular point x = 0 in Theorem 4.3 is said to be algebraic-logarithmic.

Example 4.7 Consider

I =
∫ 1

0

xα log xdx, α > −1, (4.34)

where I = −1/(α + 1)2. Applying Theorem 4.3 with β = 0, we have

Mn − I =
p−1∑
j=0

aj + bj log n

nα+j+1
+

p−1∑
j=0

cj

nj+1
+ O(n−p). (4.35)
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II. Acceleration methods for scalar sequences

5. Basic concepts

5.1 A sequence transformation, convergence acceleration, and extrapolation

Let S and T be sets of real sequences. A mapping T : S → T is called a sequence

transformation, and we write (tn) = T (sn) for (sn) ∈ S . Let σ(n) denote the greatest

index used in the computation of tn. For a convergent sequence (sn), T is regular if (tn)

converges to the same limit as (sn). Suppose T is regular for (sn). T accelerates the

convergence of (sn) if

lim
n→∞

tn − s

sσ(n) − s
= 0. (5.1)

When (sn) diverges, s is called the antilimit (Shanks[51]) of (sn).

A sequence transformation can often be implemented by various algorithms. For

example, the Aitken δ2 process

tn = sn − (sn+1 − sn)2

sn+2 − 2sn+1 + sn
(5.2)

can be represented as

= sn+1 −
(sn+1 − sn)(sn+2 − sn+1)

sn+2 − 2sn+1 + sn
, (5.3)

= sn+2 −
(sn+2 − sn+1)2

sn+2 − 2sn+1 + sn
, (5.4)

=
snsn+2 − s2

n+1

sn+2 − 2sn+1 + sn
, (5.5)

=

∣∣∣∣ sn sn+1

∆sn ∆sn+1

∣∣∣∣∣∣∣∣ 1 1
∆sn ∆sn+1

∣∣∣∣ , (5.6)

where ∆ stands for the forward difference, i.e. ∆sn = sn+1 − sn. The algorithm (5.6)

coincides with Shanks’ e1 tansformation. All algorithms (5.2) to (5.6) are equivalent

in theory but are different in numerical computation; e.g., the number of arithmetic

operations or rounding errors.

Let T be a sequence transformation satisfying (5.1). Either T or an algorithm for

T is called a convergence acceleration method, or an acceleration method for short, or a
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speed-up method. A method for estimating the limit or the antilimit of a sequence (sn)

is called an extrapolation method.

The name ‘extrapolation’ is explained as follows. We take an ‘extrapolation function’

f(n) with k + 1 unknown constants. Under suitable conditions, by solving the system of

equations

f(n + i) = sn+i, i = 0, . . . , k, (5.7)

we can determine k + 1 unknown constants. Then, letting n tend to infinity, we obtain

the approximation to s as s = lim
n→∞

f(n). Thus the above process is called extrapolation

to the limit or extrapolation for short.

Usually, ‘a sequence transformation’, ‘convergence acceleration’, and ‘extrapolation’

are not distinguished.

5.2 A classification of convergence acceleration methods

We divide convergence acceleration methods into three cases according to given

knowledge of the sequence.

I. An explicit knowledge of the sequence generator is given. Then we can usually

accelerate the convergence of the sequence using such a knowledge. For example, if the

n-th term of an infinite series is explicitly given as an analytic function f(n), we can

accelerate the series by the Euler-Maclaurin summation formula, the Plana summation

formula, or the Bickley and Miller method mentioned in Introduction.

II. The sequence has the asymptotic expansion with respect to a known asymptotic

scale. Then we can accelerate by using the scale. Typical examples of this case are the

Richardson extrapolation and the E-algorithm. The modified Aitken δ2 process and the

generalized ρ-algorithm are also of this case.

III. Neither an explicit knowledge of the sequence generator nor an asymptotic scale

is known. Then we have to estimate the limit using consecutive terms of the sequence

sn, sn+1, . . . , sn+k. Almost all famous sequence transformations such as the iterated

Aitken δ2 process, the ε-algorithm, Lubkin’s W transformation, and the ρ-algorithm are

of this case.

In this paper we will deal with the above cases II and III.
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6. The E-algorithm

Many sequence transformations can be represented as a ratio of two determinants.

The E-algorithm is a recursive algorithm for such transformations and a quite general

method.

6.1 The derivation of the E-algorithm

Suppose that a sequence (sn) with the limit or the antilimit s satisfies

sn = s +
k∑

j=1

cjgj(n). (6.1)

Here (gj(n)) is a given auxiliary double sequence which can depend on the sequence

(sn) whereas c1, . . . , ck are constants independent of (sn) and n. The auxiliary double

sequence is not necessarily an asymptotic scale.

Solving the system of linear equations

sn+i = T
(n)
k + c1g1(n + i) + · · · + ckgk(n + i), i = 0, . . . , k, (6.2)

for the unknown T
(n)
k by Cramer’s rule, we obtain

T
(n)
k =

∣∣∣∣∣∣∣
sn sn+1 · · · sn+k

g1(n) g1(n + 1) · · · g1(n + k)
· · ·

gk(n) gk(n + 1) · · · gk(n + k)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 · · · 1

g1(n) g1(n + 1) · · · g1(n + k)
· · ·

gk(n) gk(n + 1) · · · gk(n + k)

∣∣∣∣∣∣∣
. (6.3)

If (sn) satisfies

sn ∼ s +
∞∑

j=1

cjgj(n), (6.4)

where (gj(n)) is a given asymptotic scale, then T
(n)
k may be expected to be a good

approximation to s.

Many well known sequence transformations such as the Richardson extrapolation,

the Shanks transformation, Levin’s transformations and so on can be represented as (6.3).

In 1975, C. Schneider[50] gave a recursive algorithm for T
(n)
k in (6.3). Using different
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techniques, the same algorithm was later derived by T. H̊avie[20], published in 1979, and

then by C. Brezinski[10], published in 1980, who called it the E-algorithm.

The two dimensional array E
(n)
k and the auxiliary three dimensional array g

(n)
k,j are

defined as follows7:

E
(n)
0 = sn, n = 0, 1, . . . , (6.5a)

g
(n)
0,j = gj(n), j = 1, 2, . . . ; n = 0, 1, . . . . (6.6a)

For k = 1, 2, . . . and n = 0, 1, . . .

E
(n)
k =

E
(n)
k−1g

(n+1)
k−1,k − E

(n+1)
k−1 g

(n)
k−1,k

g
(n+1)
k−1,k − g

(n)
k−1,k

, (6.5b)

g
(n)
k,j =

g
(n)
k−1,jg

(n+1)
k−1,k − g

(n+1)
k−1,j g

(n)
k−1,k

g
(n+1)
k−1,k − g

(n)
k−1,k

, j = k + 1, k + 2, . . . . (6.6b)

The equality (6.5b) is called the main rule and (6.6b) is called the auxiliary rule.

The following theorem is fundamental.

Theorem 6.1 (Brezinski[10]) Let G
(n)
k,j , N

(n)
k , and D

(n)
k be defined by

G
(n)
k,j =

∣∣∣∣∣∣∣
gj(n) · · · gj(n + k)
g1(n) · · · g1(n + k)

· · ·
gk(n) · · · gk(n + k)

∣∣∣∣∣∣∣ , (6.7)

N
(n)
k =

∣∣∣∣∣∣∣
sn · · · sn+k

g1(n) · · · g1(n + k)
· · ·

gk(n) · · · gk(n + k)

∣∣∣∣∣∣∣ , D
(n)
k =

∣∣∣∣∣∣∣
1 · · · 1

g1(n) · · · g1(n + k)
· · ·

gk(n) · · · gk(n + k)

∣∣∣∣∣∣∣ , (6.8)

respectively. Then for n = 0, 1, . . . ; k = 1, 2, . . . , we have

g
(n)
k,j = G

(n)
k,j /D

(n)
k , j > k, (6.9)

E
(n)
k = N

(n)
k /D

(n)
k , n = 0, 1, . . . ; k = 1, 2, . . . . (6.10)

7When the sequence (sn) is defined in n ≥ 1, substitute ‘n = 1, 2, . . . ’ for ‘n = 0, 1, . . . ’ in the rest of this
chapter.
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Since the expressions (6.5b) and (6.6b) are prone to round-off-error effects, it is

better to compute E
(n)
k and g

(n)
k,j from the following equivalent expressions.

E
(n)
k = E

(n)
k−1 − g

(n)
k−1,k

E
(n+1)
k−1 − E

(n)
k−1

g
(n+1)
k−1,k − g

(n)
k−1,k

, (6.11)

and

g
(n)
k,j = g

(n)
k−1,j − g

(n)
k−1,k

g
(n+1)
k−1,j − g

(n)
k−1,j

g
(n+1)
k−1,k − g

(n)
k−1,k

, (6.12)

respectively.

6.2 The acceleration theorems of the E-algorithm

When (gj(n)) is an asymptotic scale, the following theorem is valid.

Theorem 6.2 (Sidi[53]) Suppose the following four conditions are satisfied.

(i) lim
n→∞

sn = s,

(ii) For any j, there exists bj 6= 1 such that lim
n→∞

gj(n + 1)/gj(n) = bj , and bi 6= bj

if i 6= j.

(iii) For any j, lim
n→∞

gj+1(n + 1)/gj(n) = 0,

(iv) sn has the asymptotic expansion of the form

sn ∼ s +
∞∑

j=1

cjgj(n) as n → ∞. (6.13)

Then, for any k,

E
(n)
k − s ∼ ck+1

 k∏
j=1

bk+1 − bj

1 − bj

 gk+1(n) as n → ∞ (6.14)

and
E

(n)
k − s

E
(n)
k−1 − s

= O

(
gk+1(n)
gk(n)

)
as n → ∞. (6.15)

A logarithmic scale does not satisfy the assumption (ii) of Theorem 6.2, but satisfies

the assumptions of the next theorem.
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Theorem 6.3 (Matos and Prévost[31]) If the conditions (i)(iii)(iv) of theorem 6.2 are

satisfied, and if for any j, p and any n ≥ N ,∣∣∣∣∣∣∣
gj+p(n) · · · gj(n)

...
...

gj+p(n + p) · · · gj(n + p)

∣∣∣∣∣∣∣ ≥ 0, (6.16)

then for any k ≥ 0,

lim
n→∞

E
(n)
k+1 − s

E
(n)
k − s

= 0. (6.17)

The above theorem is important because the following examples satisfy the assump-

tion (6.16). (Brezinski et al.[11, p.69])

(1) Let (g(n)) be a logarithmic totally monotone sequence, i.e. lim
n→∞

g(n+1)/g(n) =

1 and (−1)k∆kg(n) ≥ 0∀k. Let (gj(n)) be defined by g1(n) = g(n), gj(n) = (−1)j∆jg(n)

(j > 1).

(2) gj(n) = x
αj
n with 1 > x1 > x2 > · · · > 0 and 0 < α1 < α2 < . . . .

(3) gj(n) = λn
j with 1 > λ1 > λ2 > · · · > 0.

(4) gj(n) = 1/((n + 1)αj (log(n + 2))βj ) with 0 < α1 ≤ α2 ≤ . . . and βj < βj+1 if

αj = αj+1.
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7. The Richardson extrapolation

The Richardson extrapolation, as well as the Aitken δ2 process, is the most avail-

able extrapolation method in numerical computation. Nowadays, the basic idea of the

Richardson extrapolation eliminating the first several terms in an asymptotic expansion

is used for obtaining various sequence transformations.

7.1 The birth of the Richardson extrapolation

Similar to the Aitken δ2 process, the Richardson extrapolation originated in the

process of computing π.

Let Tn be the perimeter of the regular polygon with n sides inscribed in a circle of

diameter C. Let Un be the perimeter of the regular polygon with n sides circumscribing

a circle of diameter C. C. Huygens proved geometrically8 in his De Circuli Magnitudine

Inventa, published in 1654, that

T2n +
1
3

(T2n − Tn) < C <
2
3
Tn +

1
3
Un. (7.1)

The left-hand side of (7.1) is the Richardson extrapolation.

The iterative application of the Richardson extrapolation was first used by Katahiro

Takebe 建部賢弘 (or Kenkō Takebe, 1664-1739), a disciple of T. Seki. Let sn be the

perimeter of the regular polygon with 2n sides inscribed in a circle of diameter one and

let σn = s2
n. Takebe used the Richardson extrapolation iteratively in Tetsujyutsu Sankei

Chapter 11 Tan’ensū 綴術算経 探圓数 第十一, published in 1722. He presumed that

(σn+2 − σn+1)/(σn+1 − σn) converged to 1/4. By
∑∞

i=1(1/4)i = 1/3, he constructed

σ
(n)
1 = σn+1 +

1
3

(σn+1 − σn) , n = 2, 3, . . . . (7.2)

Then he presumed that (σ(n+2)
1 − σ

(n+1)
1 )/(σ(n+1)

1 − σ
(n)
1 ) converged to 1/16, and he

constructed

σ
(n)
2 = σ

(n+1)
1 +

1
15

(
σ

(n+1)
1 − σ

(n)
1

)
, n = 2, 3, . . . . (7.3)

Similarly, he constructed

σ
(n)
k = σ

(n+1)
k−1 +

1
22k − 1

(
σ

(n+1)
k−1 − σ

(n)
k−1

)
, n = 2, 3, . . . ; k = 2, 3, . . . . (7.4)

8A. Hirayama, History of circle ratio (in Japanese), (Osaka Kyoiku Tosho, 1980), pp.75-76. (=平山諦, 円周
率の歴史 (改訂新版), 大阪教育図書)
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From σ2, . . . , σ10, he obtained π to 41 exact digits,9 i.e.√
σ

(2)
8 = 3.14159 26535 89793 23846 26433 83279 50288 41971 2 (7.5)

7.2 The derivation of the Richardson extrapolation

Let T (h) be an approximation depending on a parameter h > 0 to a fixed value s.

Suppose that T (h) satisfies the asymptotic formula

T (h) = s +
m∑

j=1

cjh
2j + O(h2m+2), as h → +0, (7.6)

where c1, c2, . . . are unknown constants independent of h. For given h0 > h1 > 0, by

computing h2
1T (h0) − h2

0T (h1), we obtain

h2
1T (h0) − h2

0T (h1)
h2

1 − h2
0

= s +
m∑

j=2

cj
h2

1h
2j
0 − h2

0h
2j
1

h2
1 − h2

0

+ O(h2m+2
0 ). (7.7)

We define T1(h0, h1) by the left-hand side of (7.7). Then T1(h0, h1) is a better approxi-

mation to s than T (h1) provided that h0 is sufficiently small. When we set h0 = h and

h1 = h/2, (7.7) becomes

T1(h, h/2) = s +
m∑

j=2

c′jh
2j + O(h2m+2), (7.8)

where

T1(h, h/2) =
T (h) − 22T (h/2)

1 − 22
, (7.9)

and c′j = cj(1 − 22−2j)/(1 − 22).

Similarly, we define T2(h, h/2, h/4) by

T2(h, h/2, h/4) =
T1(h, h/2) − 24T1(h/2, h/4)

1 − 24
, (7.10)

then we have

T2(h, h/2, h/4) = s +
m∑

j=3

c′′j h2j + O(h2m+2), (7.11)

where c′′j = c′j(1− 24−2j)/(1− 24). By (7.6),(7.8) and (7.11), when h is sufficiently small,

T2(h, h/2, h/4) is better than both T1(h/2, h/4) and T (h/4).

9M. Fujiwara, op. cit., pp.296-298.
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The above process was considered by L. F. Richardson in 1927. The formula

T1(h0, h1) was named h2-extrapolation and T2(h0, h1, h2) was named h4-extrapolation.

Such extrapolations were also called the deffered approach to the limit. Nowadays this

process is called the Richardson extrapolation.

Extending of (7.9) and (7.10), we define the two dimensional array (T (n)
k ) by

T
(n)
0 = T (2−nh) n = 0, 1, . . . , (7.12a)

T
(n)
k =

T
(n)
k−1 − 22kT

(n+1)
k−1

1 − 22k
n = 0, 1, . . . ; k = 1, 2, . . . , (7.12b)

where h is an initial mesh size. The equation (7.12b) becomes

T
(n)
k = T

(n+1)
k−1 +

1
22k − 1

(
T

(n+1)
k−1 − T

(n)
k−1

)
. (7.13)

Takebe’s algorithm (7.4) coincides with (7.13). It is clear that T
(n)
1 = T1(h/2n, h/2n+1)

and T
(n)
2 = T2(h/2n, h/2n+1, h/2n+2). The following table is called the T -table:

T
(0)
0

T
(1)
0 T

(0)
1

T
(2)
0 T

(1)
1 T

(0)
2

T
(3)
0 T

(2)
1 T

(1)
2 T

(0)
3

...
. . .

(7.14)

Using mathematical induction on k, we have

T
(n−k)
k = s +

m∑
j=k+1

cj

(
k∏

i=1

1 − 22i−2j

1 − 22i

)
h2j2−2j(n−k) + O(2−2(m+1)(n−k)), (7.15)

where h is an initial mesh size. In particular, we have an asymptotic approximation to

T
(n−k)
k − s:

T
(n−k)
k − s ∼ ck+1

(
k∏

i=1

1 − 22i−(2k+2)

1 − 22i

)
h2k+22−(n−k)(2k+2). (7.16)

Numerical quadrature — an example. Suppose that a function f(x) is of C∞ in a

closed interval [a, b]. Then the trapezoidal rule

Tn = T (h) = h

(
1
2
f(a) +

n−1∑
i=1

f(a + ih) +
1
2
f(b)

)
, h =

b − a

n
(7.17)
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and the midpoint rule

Mn = T (h) = h
n∑

i=1

f(a + (i − 1
2
)h), h =

b − a

n
(7.18)

have the asymptotic expansion of the form

T (h) −
∫ b

a

f(x)dx ∼
∞∑

j=1

cjh
2j , as h → +0. (7.19)

Thus we can apply the Richardson extrapolation to T (h). This method using the trape-

zoidal rule is called the Romberg quadrature and its algorithm is as follows:

T
(n)
0 = T2n n = 0, 1, . . . , (7.20a)

T
(n)
k =

T
(n)
k−1 − 22kT

(n+1)
k−1

1 − 22k
n = 0, 1, . . . ; k = 1, 2, . . . , (7.20b)

where T2n is the 2n panels trapezoidal rule.

By the Euler-Maclaurin formula and (7.16), we have

T
(n)
k −

∫ b

a

f(x)dx

∼ B2k+2

(2k + 2)!

(
f (2k+1)(b) − f (2k+1)(a)

)
(b − a)2k+22−n(2k+2)

(
k∏

i=1

1 − 22i−2k−2

1 − 22i

)
.

(7.21)

Now we illustrate by a numerical example. Numerical computations in this section

were carried out on the NEC personal computer PC-9801DA in double precision with

approximately 16 digits. Throughout this section, the number of functional evaluations

will be abbreviated to “f.e.”.

Example 7.1 We apply the Romberg quadrature on a proper integral

I =
∫ 1

0

exdx = e − 1 = 1.71828 18284 59045. (7.22)

We give errors of the T -table and the number of functional evaluations in Table 7.1. The

Romberg quadrature is quite efficient for such proper integrals.
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Table 7.1

The errors of the T -table by the Romberg quadrature

n f.e. T
(n)
0 − I T

(n−1)
1 − I T

(n−2)
2 − I T

(n−3)
3 − I T

(n−4)
4 − I

0 2 1.41 × 10−1

1 3 3.56 × 10−2 5.79 × 10−4

2 5 8.94 × 10−3 3.70 × 10−5 8.59 × 10−7

3 9 2.24 × 10−3 2.23 × 10−6 1.38 × 10−8 3.35 × 10−10

4 17 5.59 × 10−4 1.46 × 10−7 2.16 × 10−10 1.34 × 10−12 3.32 × 10−14

By (7.21), the asymptotic error approximation of T
(0)
4 is

B10

10!
1 − 22−10

1 − 22

1 − 24−10

1 − 24

1 − 26−10

1 − 26

1 − 28−10

1 − 28
(e − 1) = 3.42 × 10−14, (7.23)

which is close to T
(0)
4 − I in Table 7.1.

7.3 Generalizations of the Richardson extrapolation

Nowadays, the Richardson extrapolation (7.4) or (7.13) is extended to three types

of sequences as follows:

I. Polynomial extrapolations.

sn ∼ s +
∞∑

j=1

cjx
j
n, (7.24)

where (xn) is a known auxiliary sequence10 whereas cj ’s are unknown constants.

II. Extended polynomial extrapolations.

sn ∼ s +
∞∑

j=1

cjx
αj
n , (7.25)

where αj ’s are known constants, cj ’s are unknown constants, and (xn) is a known par-

ticular auxiliary sequence.

In particular, when xn = λ−n and αj = j, then (7.25) becomes

sn ∼ s +
∞∑

j=1

cj(λ−j)n. (7.26)

10In this paper, xj
i means either j th power of a scalar xi or the i th component of a vector xj . In (7.24),

xj
n = (xn)j .
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This is a special case of

sn ∼ s +
∞∑

j=1

cjλ
n
j , (7.27)

where λj ’s are known constants, cj ’s are unknown constants.

III. General extrapolations.

sn ∼ s +
∞∑

j=1

cjgj(n), (7.28)

where (gj(n)) is a known asymptotic scale whereas cj ’s are unknown constants.

7.3.1 Polynomial extrapolation

Suppose that a sequence (sn) satisfies

sn ∼ s +
∞∑

j=1

cjx
j
n, (7.29)

where (xn) is a known auxiliary sequence and cj ’s are unknown constants. Solving the

system of equations

sn+i = T
(n)
k +

k∑
j=1

cjx
j
n+i, i = 0, . . . , k, (7.30)

for the unknown T
(n)
k by Cramer’s rule, we have

T
(n)
k =

∣∣∣∣∣∣∣
sn sn+1 · · · sn+k

xn xn+1 · · · xn+k

· · ·
xk

n xk
n+1 · · · xk

n+k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 · · · 1
xn xn+1 · · · xn+k

· · ·
xk

n xk
n+1 · · · xk

n+k

∣∣∣∣∣∣∣
. (7.31)

By Theorem 6.1 and using the Vandermonde determinants,

T
(n)
k = T

(n+1)
k−1 +

1
xn/xn+k − 1

(
T

(n+1)
k−1 − T

(n)
k−1

)
, k = 1, 2, . . . ; n = 0, 1, . . . . (7.32)

In Takebe’s algorithm (7.4) or in the Romberg scheme (7.20), xn = 2−2n.

Example 7.2 We apply the Richardson extrapolation (7.32) with xn = 1/n to the

logarithmically convergent series

sn =
n∑

i=1

1
i2

. (7.33)
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As is well known, (sn) converges to s = ζ(2) = π2/6 very slowly. More precisely, by

Example 3.4, we have

sn − π2

6
∼ − 1

n
+

1
2n2

− 1
6n3

+
1

30n5
− 1

42n7
+

1
30n9

− 5
66n11

+ . . . . (7.34)

We give errors of T
(n−k)
k −π2/6 in Table 7.2. By the first 12 terms, we obtain 10 significant

digits. And, between n = 1 to 16, the best result is T
(2)
11 − s = −2.78 × 10−13. This

method tends to be affected by cancellation of significant digits.

Table 7.2

The errors of the T -table by (7.32)

n T
(n)
0 − s T

(n−1)
1 − s T

(n−2)
2 − s T

(n−3)
3 − s T

(n−4)
4 − s

1 −6.45 × 10−1

2 −3.95 × 10−1 −1.45 × 10−1

3 −2.84 × 10−1 −6.16 × 10−2 −1.99 × 10−2

4 −2.21 × 10−1 −3.38 × 10−2 −6.05 × 10−3 −1.42 × 10−3

5 −1.81 × 10−1 −2.13 × 10−2 −2.57 × 10−3 −2.58 × 10−4 3.12 × 10−5

6 −1.54 × 10−1 −1.47 × 10−2 −1.32 × 10−3 −7.30 × 10−5 1.96 × 10−5

7 −1.33 × 10−1 −1.07 × 10−2 −7.67 × 10−4 −2.67 × 10−5 8.06 × 10−6

8 −1.18 × 10−1 −8.14 × 10−3 −4.84 × 10−4 −1.15 × 10−5 3.57 × 10−6

9 −1.05 × 10−1 −6.40 × 10−3 −3.25 × 10−4 −5.64 × 10−6 1.74 × 10−6

10 −9.52 × 10−2 −5.17 × 10−3 −2.28 × 10−4 −3.01 × 10−6 9.24 × 10−7

11 −8.69 × 10−2 −4.26 × 10−3 −1.66 × 10−4 −1.73 × 10−6 5.24 × 10−7

12 −8.00 × 10−2 −3.57 × 10−3 −1.25 × 10−4 −1.05 × 10−6 3.14 × 10−7

n T
(n−5)
5 − s T

(n−6)
6 − s T

(n−7)
7 − s T

(n−8)
8 − s T

(n−9)
9 − s

6 1.73 × 10−5

7 3.43 × 10−6 1.12 × 10−6

8 8.82 × 10−7 3.18 × 10−8 −1.23 × 10−7

9 2.80 × 10−7 −2.14 × 10−8 −3.65 × 10−8 −2.57 × 10−8

10 1.04 × 10−7 −1.33 × 10−8 −9.79 × 10−9 −3.11 × 10−9 −6.01 × 10−10

11 4.36 × 10−8 −6.70 × 10−9 −2.95 × 10−9 −3.86 × 10−10 2.18 × 10−10

12 2.01 × 10−8 −3.38 × 10−9 −1.01 × 10−9 −3.30 × 10−11 8.48 × 10−11

When xn = 1/n, the subsequence s′n = s2n has the asymptotic expansion of the

form

s′n − s ∼
∞∑

j=1

cj(2−n)j . (7.35)
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Then we can apply the Richardson extrapolation with xn = 2−n. This method requires

many terms but usually gives high accuracy.

For a sequence (sn) satisfying (7.27), the Richardson extrapolation is as follows.

T
(n)
0 = sn (7.36a)

T
(n)
k = T

(n+1)
k−1 +

λk

1 − λk

(
T

(n+1)
k−1 − T

(n)
k−1

)
. (7.36b)

Similar to (7.16), we have an asymptotic approximation to T
(n−k)
k − s:

T
(n−k)
k − s ∼ ck+1

(
k∏

i=1

λi+1 − λi

1 − λi

)
λn

k+1. (7.37)

Example 7.3 We apply the Richardson extrapolation with xn = 2−n to ζ(2) once more.

And we give errors of T
(n−k)
k − π2/6 in Table 7.3.

Table 7.3

The errors of the T -table by the Richardson extrapolation with xn = 2−n

n terms T
(n)
0 − s T

(n−1)
1 − s T

(n−2)
2 − s T

(n−3)
3 − s T

(n−4)
4 − s

0 1 −6.45 × 10−1

1 2 −3.95 × 10−1 −1.45 × 10−1

2 4 −2.21 × 10−1 −4.77 × 10−2 −1.53 × 10−2

3 8 −1.18 × 10−1 −1.37 × 10−2 −2.36 × 10−3 −5.16 × 10−4

4 16 −6.06 × 10−2 −3.66 × 10−3 −3.17 × 10−4 −2.46 × 10−5 −8.76 × 10−6

5 32 −3.08 × 10−2 −9.46 × 10−4 −4.04 × 10−5 −8.97 × 10−7 −1.32 × 10−7

6 64 −1.55 × 10−2 −2.40 × 10−4 −5.08 × 10−6 −2.93 × 10−8 −1.34 × 10−9

7 128 −7.78 × 10−3 −6.06 × 10−5 −6.36 × 10−7 −9.28 × 10−10 −1.14 × 10−11

8 256 −3.90 × 10−3 −1.52 × 10−5 −7.95 × 10−8 −2.91 × 10−11 −9.06 × 10−14

n terms T
(n−5)
5 − s T

(n−6)
6 − s T

(n−7)
7 − s T

(n−8)
8 − s

5 32 −6.44 × 10−8

6 64 −3.10 × 10−10 −1.84 × 10−10

7 128 −8.87 × 10−13 −2.82 × 10−13 −1.92 × 10−13

8 256 −1.94 × 10−15 −2.22 × 10−16 −8.33 × 10−17 −5.55 × 10−17

Using 8 partial sums s1, s2, s4, s8, s16, s32, s128, and s256, we obtain 16 significant

digits. This method is hardly affected by rouding errors such as cancellation of significant

digits.
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7.3.2 Extended polynomial extrapolation

Let us consider a sequence satisfying

sn ∼ s +
∞∑

j=1

cjn
−αj , (7.38)

where αj ’s are known constants whereas cj ’s are unknown constants. The Richardson

extrapolation for (7.38) is defined by

T
(n)
0 = s2n n = 0, 1, . . . , (7.39a)

T
(n)
k = T

(n+1)
k−1 +

1
2αk − 1

(
T

(n+1)
k−1 − T

(n)
k−1

)
. n = 0, 1, . . . ; k = 1, 2, . . . .

(7.39b)

If we set h = 1/n and T (h) = sn, then (7.38) becomes

T (h) ∼ s +
∞∑

j=1

cjh
αj . (7.40)

Similar to (7.39), the Richardson extrapolation for (7.40) is defined by

T
(n)
0 = T (2−nh) n = 0, 1, . . . , (7.41a)

T
(n)
k = T

(n+1)
k−1 +

1
2αk − 1

(
T

(n+1)
k−1 − T

(n)
k−1

)
, n = 0, 1, . . . ; k = 1, 2, . . . ,

(7.41b)

where h is an initial mesh size.

Example 7.4 We apply the Richardson extrapolation (7.41) to the improper integral

I =
∫ 1

0

dx√
x

= 2. (7.42)

Let Mn be the n panels midpoint rule for (7.42). By Example 4.5, we have

Mn − 2 ∼ c0h
1/2 +

∞∑
j=1

cjh
2j . (7.43)

We show the T -table in Table 7.4. Using 63 functional evaluations, we obtain T
(0)
5 =

1.99999 99993 25, whose error is −6.75 × 10−10.
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Table 7.4

Applying the Richardson extrapolation (7.41) to
∫ 1

0

dx√
x

n f.e. T
(n)
0 T

(n−1)
1 T

(n−2)
2 T

(n−3)
3 T

(n−4)
4 T

(n−5)
5

0 1 1.41
1 3 1.57 1.971
2 7 1.69 1.9921 1.99914
3 15 1.78 1.9979 1.999930 1.999983
4 31 1.84 1.99949 1.9999952 1.99999957 1.99999983
5 63 1.89 1.99987 1.99999969 1.9999999920 1.9999999986 1.99999999932

Example 7.5 Next we apply the Richardson extrapolation to the Beta function

B(2/3, 1/3) =
∫ 1

0

x−1/3(1 − x)−2/3dx, (7.44)

where B(2/3, 1/3) = 2π/
√

3 = 3.62759 87284 68436. Let Mn be the n-panels midpoint

rule for (7.44). By Example 4.6, we have

Mn − B(2/3, 1/3) ∼
∞∑

j=1

(c2j−1n
−1/3−j+1 + c2jn

−2/3−j+1). (7.45)

We give the T -table in Table 7.5. Using 255 functional evaluations, we obtain T
(0)
7 =

3.62759 69010, whose error is −1.83 × 10−6. This integral converges more slowly than

that in Example 7.4.

Table 7.5

Applying the Richardson extrapolation to B(2/3, 1/3)

n f.e. T
(n)
0 T

(n−1)
1 T

(n−2)
2 T

(n−3)
3 T

(n−4)
4 T

(n−5)
5 T

(n−6)
6 T

(n−7)
7

0 1 2.00
1 3 2.34 3.68
2 7 2.62 3.70 3.74
3 15 2.84 3.691 3.665 3.615
4 31 3.01 3.672 3.639 3.6230 3.6262
5 63 3.14 3.657 3.631 3.6262 3.6277 3.6280
6 127 3.25 3.646 3.6289 3.62720 3.62765 3.62764 3.627563
7 255 3.33 3.639 3.6280 3.62748 3.62761 3.627601 3.6275935 3.6275969
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7.3.3 General extrapolation

The E-algorithm described in the preceding section is the first algorithm for a se-

quence satisfying (7.28). Subsequently, in 1987, W. F. Ford and A. Sidi[16] gave more

efficiently algorithm. See, for details, Sidi[53].
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8. The ε-algorithm

The ε-algorithm is a recursive algorithm for the Shanks transformation and is one

of the most familiar convergence acceleration methods.

8.1 The Shanks transformation

Suppose that a sequence (sn) with the limit or the antilimit s satisfies

k∑
i=0

aisn+i =

(
k∑

i=0

ai

)
s, ∀n ∈ N, (8.1a)

k∑
i=0

ai 6= 0, (8.1b)

where ai’s are unknown constants independent of n. Then a0, . . . , ak satisfy the system

of linear equations

a0(sn − s) + a1(sn+1 − s) + · · · + ak(sn+k − s) = 0

a0(sn+1 − s) + a1(sn+2 − s) + · · · + ak(sn+k+1 − s) = 0

· · · (8.2)

a0(sn+k − s) + a1(sn+k+1 − s) + · · · + ak(sn+2k − s) = 0.

By (8.1b) and (8.2), we have∣∣∣∣∣∣∣
sn − s sn+1 − s · · · sn+k − s

sn+1 − s sn+2 − s · · · sn+k+1 − s
· · ·

sn+k − s sn+k+1 − s · · · sn+2k − s

∣∣∣∣∣∣∣ = 0, (8.3)

thus we obtain

s

∣∣∣∣∣∣∣
1 1 · · · 1

∆sn ∆sn+1 · · · ∆sn+k

· · ·
∆sn+k−1 ∆sn+k · · · ∆sn+2k−1

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
sn sn+1 · · · sn+k

∆sn ∆sn+1 · · · ∆sn+k

· · ·
∆sn+k−1 ∆sn+k · · · ∆sn+2k−1

∣∣∣∣∣∣∣ . (8.4)

Therefore,

s =

∣∣∣∣∣∣∣
sn sn+1 · · · sn+k

∆sn ∆sn+1 · · · ∆sn+k

· · ·
∆sn+k−1 ∆sn+k · · · ∆sn+2k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 · · · 1

∆sn ∆sn+1 · · · ∆sn+k

· · ·
∆sn+k−1 ∆sn+k · · · ∆sn+2k−1

∣∣∣∣∣∣∣
. (8.5)
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The right-hand side of (8.5) is denoted ek(sn) by D. Shanks[51]:

ek(sn) =

∣∣∣∣∣∣∣
sn sn+1 · · · sn+k

∆sn ∆sn+1 · · · ∆sn+k

· · ·
∆sn+k−1 ∆sn+k · · · ∆sn+2k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 · · · 1

∆sn ∆sn+1 · · · ∆sn+k

· · ·
∆sn+k−1 ∆sn+k · · · ∆sn+2k−1

∣∣∣∣∣∣∣
. (8.6)

The sequence transformation (sn) 7→ (ek(sn)) is called Shanks’ e-transformation, or the

Shanks transformation. In particular, e1 is the Aitken δ2 process. By construction, ek is

exact on a sequence satisfying (8.1).

If a sequence (sn) satisfies

sn = s +
k∑

j=1

cj(n)λn
j , ∀n ∈ N, (8.7)

where cj(n) are polynomials in n and λj 6= 1 are constants, then (sn) satisfies (8.1).

On concerning the necessary and sufficient condition for (8.1), see Brezinski and Redivo

Zaglia[11, p.79].

The Shanks transformation was first considered by R.J. Schmidt[49] in 1941. He used

this method for solving a system of linear equations by iteration but not for accelerating

the convergence. For that reason his paper was neglected until P. Wynn[59] quoted it

in 1956. The Shanks transformation did not receive much attention until Shanks[51]

published in 1955.

The main drawback of the Shanks transformation is to compute determinants of

large order. This drawback was recovered by the ε-algorithm proposed by Wynn.

8.2 The ε-algorithm

Immediately after Shanks rediscovered the e-transformation, P. Wynn proposed a

recursive algorithm which is named the ε-algorithm. He proved the following theorem by

using determinantal identities.

Theorem 8.1 (Wynn[59]) If

ε
(n)
2k = ek(sn), (8.8a)

ε
(n)
2k+1 =

1
ek(∆sn)

, (8.8b)
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then

ε
(n)
k+1 = ε

(n+1)
k−1 +

1

ε
(n+1)
k − ε

(n)
k

, k = 1, 2, . . . , (8.9)

provided that none of the denominators vanishes.

For a sequence (sn), the ε-algorithm is defined as follows:

ε
(n)
−1 = 0, ε

(n)
0 = sn, n = 0, 1, . . . , (8.10a)

ε
(n)
k+1 = ε

(n+1)
k−1 +

1

ε
(n+1)
k − ε

(n)
k

, k = 0, 1, . . . . (8.10b)

There are many research papers on the ε-algorithm. See, for details, Brezinski[9], Brezin-

ski and Redivo Zaglia[11].

8.3 The asymptotic properties of the ε-algorithm

P. Wynn gave asymptotic estimates for the quantities ε
(n)
2k produced by application

of the ε-algorithm to particular sequences.

Theorem 8.2 (Wynn[61]) If the ε-algorithm is applied to a sequence (sn) satisfying

sn ∼ s +
∞∑

j=1

aj(n + b)−j , a1 6= 0, (8.11)

then for fixed k,

ε
(n)
2k ∼ s +

a1

(k + 1)(n + b)
, as n → ∞. (8.12)

Theorem 8.2 shows that the ε-algorithm cannot accelerate a logarithmically conver-

gent sequence satisfying (8.11). For, by (8.12)

lim
n→∞

ε
(n)
2k − s

sn+2k − s
=

1
k + 1

. (8.13)

Theorem 8.3 (Wynn[61]) If the ε-algorithm is applied to a sequence (sn) satisfying

sn ∼ s + (−1)n
∞∑

j=1

aj(n + b)−j , a1 6= 0, (8.14)

then for fixed k,

ε
(n)
2k ∼ s +

(−1)n(k!)2a1

4k(n + b)2k+1
, as n → ∞. (8.15)
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Theorem 8.3 shows that the ε-algorithm works well on partial sums of altenating

series

sn =
n∑

i=1

(−1)i−1 1
ai + b

, (8.16)

where a 6= 0 and b are constants.

Theorem 8.4 (Wynn[61]) If the ε-algorithm is applied to a sequence (sn) satisfying

sn ∼ s +
∞∑

j=1

ajλ
n
j , (8.17)

where 1 > λ1 > λ2 > · · · > 0, then for fixed k,

ε
(n)
2k ∼ s +

ak+1(λk+1 − λ1)2 . . . (λk+1 − λk)2λn
k+1

(1 − λ1)2 . . . (1 − λk)2
, as n → ∞. (8.18)

Theorem 8.5 (Wynn[61]) If the ε-algorithm is applied to a sequence (sn) satisfying

sn ∼ s + (−1)n
∞∑

j=1

ajλ
n
j , (8.19)

where 1 > λ1 > λ2 > · · · > 0, then for fixed k,

ε
(n)
2k ∼ s + (−1)n ak+1(λk+1 − λ1)2 . . . (λk+1 − λk)2λn

k+1

(1 + λ1)2 . . . (1 + λk)2
, as n → ∞. (8.20)

The above theorems are further extended by J. Wimp. The following theorem is an

extension of Theorem 8.3.

Theorem 8.6 (Wimp[58, p.127]) If the ε-algorithm is applied to a sequence (sn) satisfying

sn ∼ s + λn(n + b)θ
∞∑

j=0

cjn
−j , (8.21)

where c0 6= 0, λ 6= 1, and θ 6= 0, 1, . . . , k − 1, then for fixed k > 0,

ε
(n)
2k ∼ s +

c0λ
n+2k(n + b)θ−2kk!(−θ)k

(λ − 1)2k

[
1 + O(

1
n

)
]

, (8.22)

where (−θ)k = (−θ)(−θ + 1) · · · (−θ + k − 1), which is called the Pochhammer’s symbol.

8.4 Numerical examples of the ε-algorithm

Numerical computations reported in the rest of this paper were carried out on the

NEC ACOS-610 computer in double precision with approximately 16 digits.
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Example 8.1 We apply the ε-algorithm to the partial sums of alternating series

sn =
n∑

i=1

(−1)i−1

2i − 1
. (8.23)

As we described in Example 3.2,

sn =
π

4
+ (−1)n−1 1

n

(
1
4
− 1

16n2
+ O(

1
n4

)
)

. (8.24)

We give sn and ε
(n−2k)
2k in Table 8.1, where k = b(n − 1)/2c. By the first 13 terms, we

obtain 10 exact digits. And by the first 20 terms, we obtain 15 exact digits.

Table 8.1

The ε-algorithm applying to (8.23)

n sn ε
(n−2k)
2k

1 1.000
2 0.666
3 0.866 0.791
4 0.723 0.7833
5 0.834 0.78558
6 0.744 0.78534 7
7 0.820 0.78540 3
8 0.754 0.78539 68
9 0.813 0.78539 832

10 0.760 0.78539 8126
11 0.808 0.78539 81682
12 0.764 0.78539 81623
13 0.804 0.78539 81635 4
14 0.767 0.78539 81633 67
15 0.802 0.78539 81634 01
20 0.772 0.78539 81633 97448
∞ 0.785 0.78539 81633 97448

Example 8.2 Let us consider

sn =
n∑

i=1

(−1)i−1

√
i

. (8.25)

As we described in Example 3.3,

sn = (1 −
√

2)ζ(
1
2
) + (−1)n−1 1√

n

(
1
2
− 1

8n
+

5
128n3

+ O(
1
n5

)
)

, (8.26)
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where (1 −
√

2)ζ( 1
2 ) = 0.60489 86434 21630. Theorem 8.6 and (8.26) show that the

ε-algorithm accelerates the convergence of (sn). We give sn and ε
(n−2k)
2k in Table 8.2,

where k = b(n − 1)/2c. The results are similar to Example 8.1.

Table 8.2

The ε-algorithm applying to (8.25)

n sn ε
(n−2k)
2k

1 1.00
2 0.29
3 0.87 0.6107
4 0.37 0.6022
5 0.81 0.60504
6 0.40 0.60484 9
7 0.78 0.60490 2
8 0.43 0.60489 74
9 0.76 0.60489 875

10 0.45 0.60489 8614
11 0.75 0.60489 86466
12 0.46 0.60489 86426
13 0.74 0.60489 86435 1
14 0.47 0.60489 86433 99
15 0.73 0.60489 86434 243
20 0.49 0.60489 86434 21630
∞ 0.60 0.60489 86434 21630

The ε-algorithm can extrapolate certain divergent series.

Example 8.3 Let us now consider

sn =
n∑

i=1

(−2)i−1

i
. (8.27)

(sn) diverges from 1
2 log 3 = 0.54930 61443 34055, which is the antilimit of (sn). We apply

the ε-algorithm on (8.27). We give sn and ε
(n−2k)
2k in Table 8.3, where k = b(n − 1)/2c.
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Table 8.3

The ε-algorithm applying to (8.27)

n sn ε
(n−2k)
2k

1 1.0
2 0.0
3 1.3 0.571
4 −0.6 0.533
5 2.5 0.5507
6 −2.8 0.5485
7 6.3 0.54940
8 −9.6 0.54926
9 18.7 0.54931 2

10 −32.4 0.54930 32
11 60.6 0.54930 661
12 −109.9 0.54930 595
23 119788.2 0.54930 61443 34119
24 −229737.0 0.54930 61443 34055
∞ 0.5 0.54930 61443 34055
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9. Levin’s transformations

In a favorable influence survey [54], Smith and Ford concluded that the Levin u-

transform is the best available across-the-board method. In this section we deal with

Levin’s transformations.

9.1 The derivation of the Levin T transformation

If a sequence (sn) satisfies

sn = s + Rn

k−1∑
j=0

cj

nj
, (9.1)

where Rn are nonzero functions of n and c0(6= 0), . . . ,ck−1 are constants independent of

n, then the limit or the antilimit s is represented as

s =

∣∣∣∣∣∣∣∣
sn . . . sn+k

Rn . . . Rn+k

...
. . .

...
Rn/nk−1 . . . Rn+k/(n + k)k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 . . . 1

Rn . . . Rn+k

...
. . .

...
Rn/nk−1 . . . Rn+k/(n + k)k−1

∣∣∣∣∣∣∣∣
. (9.2)

Thus, if (sn) satisfies the asymptotic expansion

sn ∼ s + Rn

∞∑
j=0

cj

nj
, (9.3)

then the ratio of determinants

T
(n)
k =

∣∣∣∣∣∣∣∣
sn . . . sn+k

Rn . . . Rn+k

...
. . .

...
Rn/nk−1 . . . Rn+k/(n + k)k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 . . . 1

Rn . . . Rn+k

...
. . .

...
Rn/nk−1 . . . Rn+k/(n + k)k−1

∣∣∣∣∣∣∣∣
(9.4)

may be expected to be a good approximation to s. The transformation of (sn) into a set

of sequences {(T (n)
k )} is called the Levin T transformation.
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By properties of determinants, Rn can be multiplied by any constant without affect-

ing T
(n)
k . Levin[26] proposed three different choices for Rn: Rn = ∆sn, Rn = n∆sn−1

and Rn = ∆sn−1∆sn/(∆sn − ∆sn−1), where ∆sn = sn+1 − sn. These transforma-

tions are called the Levin t-transform, the Levin u-transform and the Levin v-transform,

respectively.

There is no need to compute the determinants in (9.4). Levin himself gave the

following formula:

T
(n)
k =

k∑
j=0

(−1)j

(
k

j

)(
n + j

n + k

)k−1
sn+j

Rn+j

k∑
j=0

(−1)j

(
k

j

)(
n + j

n + k

)k−1 1
Rn+j

. (9.5)

The formula T
(n)
k can be recursively computed by the E-algorithm which was described

in Section 6.

E
(n)
0 = sn, g

(n)
0,j = n1−jRn, n = 1, 2, . . . ; j = 1, 2, . . . , (9.6a)

E
(n)
k = E

(n)
k−1 − g

(n)
k−1,k

∆E
(n)
k−1

∆g
(n)
k−1,k

, n = 1, 2, . . . ; k = 1, 2, . . . , (9.6b)

g
(n)
k,j = g

(n)
k−1,j − g

(n)
k−1,k

∆g
(n)
k−1,j

∆g
(n)
k−1,k

, n = 1, 2, . . . ; k = 1, 2, . . . , j > k,
(9.6c)

where ∆ operates on the upper index n. By Theorem 6.1, we have E
(n)
k = T

(n)
k .

9.2 The convergence theorem of the Levin transformations

We denote by A the set of all functions f defined on [b,∞) for b > 0 that have

asymptotic expansions in inverse powers of x of the form

f(x) ∼
∞∑

j=0

cj

xj
as x → ∞. (9.7)

The next theorem was given by Sidi[52] and Wimp[58], independently.

Theorem 9.1 (Sidi[52];Wimp[58]) Suppose that the sequence (sn) has an asymptotic

expansion of the form

sn − s ∼ λnnϑ
[
c0 +

c1

n
+

c2

n2
+ . . .

]
, (9.8)

where 0 < |λ| ≤ 1, ϑ < 0, and c0(6= 0), c1, . . . are constants independent of n.
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(1) Suppose that λ 6= 1. If we set Rn = ∆sn or Rn = ∆sn−1∆sn/(∆sn − ∆sn−1)

then

T
(n)
k − s = O

(
λnnϑ−2k

)
as n → ∞. (9.9)

(2) Suppose that λ = 1. If we set Rn = n∆sn−1 or Rn = ∆sn−1∆sn/(∆sn−∆sn−1)

then

T
(n)
k − s = O

(
nϑ−k

)
as n → ∞. (9.10)

Theorem 9.1(1) shows that the Levin t- and v-transforms accelerate certain alter-

nating series.

Recently, N. Osada[41] has extended the Levin transforms to vector sequences. These

vector sequence transformations satisfy asymptotic properties similar to Theorem 9.1.

Example 9.1 Let us consider

s0 = 0,

sn =
n∑

i=1

(−1)i−1

√
i

, n = 1, 2, . . . . (9.11)

We apply the Levin u-, v-, and t-transforms on (9.11). For the Levin u-transform, we

take T
(1)
n−1, while T

(1)
n−2 for v- and t-transforms. We give significant digits of sn, defined

by − log10 |sn − s|, and those of T
(1)
n−k in Table 9.1.

Table 9.1

The significant digits of the Levin transforms applying to (9.11)

Levin u Levin v Levin t
n sn T

(1)
n−1 T

(1)
n−2 T

(1)
n−2

1 0.40
2 0.51 0.99
3 0.58 2.30 2.30 2.23
4 0.63 3.69 4.14 3.12
5 0.67 5.93 4.45 4.19
6 0.71 6.33 5.53 5.44
7 0.74 7.52 6.93 6.95
8 0.77 9.46 9.17 8.82
9 0.79 10.14 9.42 9.43

10 0.81 11.27 10.70 10.77
11 0.83 13.06 13.52 12.68
12 0.85 13.94 13.18 13.16
13 0.87 14.89 14.36 14.40
14 0.88 15.56 15.56 15.52
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Theorem 9.1(2) shows that the Levin u- and v-transforms accelerate logarithmically

convergent sequences of the form

sn − s ∼ nϑ
[
c0 +

c1

n
+

c2

n2
+ . . .

]
, (9.12)

where ϑ < 0, and c0(6= 0), c1, . . . are constants.

Example 9.2 Let us now consider partial sums of ζ(1.5):

sn =
n∑

i=1

1
i
√

i
. (9.13)

We apply the Levin u-, v-, and t-transforms on (9.13) with s0 = 0. Similar to the

above example, we show significant digits of sn and T
(1)
n−k in Table 9.2. Both the u- and

v-transforms accelerate but the t-transform cannot.

Table 9.2

The significant digits of the Levin transforms applying to ζ(1.5)

Levin u Levin v Levin t

n sn T
(1)
n−1 T

(1)
n−2 T

(1)
n−2

1 −0.21
2 −0.10 0.39
3 −0.03 1.22 1.22 0.08
4 0.03 2.37 2.26 0.18
5 0.07 3.74 2.35 0.27
6 0.11 4.16 3.00 0.35
7 0.14 5.42 3.93 0.42
8 0.16 6.18 5.29 0.48
9 0.19 6.93 6.25 0.53

10 0.21 9.01 7.08 0.58
11 0.23 8.72 8.34 0.62
12 0.25 8.89 8.55 0.66
13 0.26 8.14 7.57 0.70
14 0.28 7.58 6.97 0.73

When the asymptotic expansion of logarithmically convergent sequence has loga-

rithmic terms such as log n/n, the Levin u-, v-transforms do not work effectively.

Example 9.3 Consider a sequence defined by

sn =
n∑

j=2

log j

j2
. (9.14)
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As we described in Example 3.6, the sequence (sn) converges to −ζ ′(2), and has the

asymptotic expansion

sn ∼ −ζ ′(2) − log n

n
− 1

n
+

log n

2n2
− log n

6n3
+

1
12n3

− . . . , (9.15)

where ζ(s) is the Riemann zeta function and ζ ′(s) is its derivative. We apply the Levin

u-, v-, and t-transforms on (9.14) and show significant digits in Table 9.3.

Table 9.3

The significant digits of the Levin transforms applying to (9.14)

Levin u Levin v Levin t

n sn T
(2)
n−2 T

(2)
n−3 T

(2)
n−3

1 0.03
2 0.12
3 0.19 −0.47 0.12 0.45
4 0.26 0.49 0.49 0.47
5 0.31 0.71 0.33 0.58
6 0.36 1.77 1.18 0.69
7 0.40 1.82 1.62 0.79
8 0.43 2.23 3.18 0.87
9 0.47 2.28 2.50 0.95

10 0.50 2.40 2.72 1.02
11 0.52 2.50 2.81 1.09
12 0.55 2.59 2.91 1.15
13 0.57 2.67 3.00 1.21
14 0.60 2.75 3.08 1.26
15 0.62 2.82 3.16 1.31

9.3 The d-transformation

Levin and Sidi[27] extended the Levin T transformation. Suppose that a sequence

(sn) satisfies

sn = s +
m−1∑
i=0

R
(n)
i

k−1∑
j=0

ci,j

nj
, (9.16)

where R
(n)
i (i = 0, . . . , m−1) are nonzero functions of n and ci,j are unknown constants.
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Using Cramer’s rule, s can be represented as the ratio of two determinants.

s =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

sn . . . sn+mk

R
(n)
0 . . . R

(n+mk)
0

R
(n)
1 . . . R

(n+mk)
1

...
...

R
(n)
m−1 . . . R

(n+mk)
m−1

R
(n)
0 /n . . . R

(n+mk)
0 /(n + mk)

...
...

R
(n)
m−1/nk−1 . . . R

(n+mk)
m−1 /(n + mk)k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1
R

(n)
0 . . . R

(n+mk)
0

R
(n)
1 . . . R

(n+mk)
1

...
...

R
(n)
m−1 . . . R

(n+mk)
m−1

R
(n)
0 /n . . . R

(n+mk)
0 /(n + mk)

...
...

R
(n)
m−1/nk−1 . . . R

(n+mk)
m−1 /(n + mk)k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (9.17)

We denote by T
(m)
mk,n the right-hand side of (9.17). The transformation of (sn) into

a set of sequences {(T (m)
mk,n)} is called the d(m)-transformation.

On the analogy of the Levin u-transform, we take R
(n)
q−1 = nq∆qsn−q (q = 1, . . . , m)

for the d(m)-transformation. The d(m)-transform can be computed by the E-algorithm.

For n = 1, 2, . . . ,

E
(n)
0 = sn, (9.18a)

g
(n)
0,pm+q = nq−p∆qsn−q, p = 0, 1, . . . ; q = 1, . . . ,m (9.18b)

E
(n)
k = E

(n)
k−1 − g

(n)
k−1,k

∆E
(n)
k−1

∆g
(n)
k−1,k

, k = 1, 2, . . . , (9.18c)

g
(n)
k,j = g

(n)
k−1,j − g

(n)
k−1,k

∆g
(n)
k−1,j

∆g
(n)
k−1,k

, k = 1, 2, . . . , j > k, (9.18d)

where ∆ operates on the index n. Then E
(n)
mk = T

(m)
mk,n.

Example 9.4 Consider sn =
∑n

j=2 log j/j2 once more. By (9.15), nk∆ksn have asymp-

totic expansion of the form
∞∑

j=1

aj log n + bj

nj
. (9.19)
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Thus (sn) can be represented as

sn ∼ −ζ ′(2) +
∞∑

k=1

nk∆ksn−k

∞∑
j=0

ckjn
−j . (9.20)

This asymptotic expansion suggests that the d-transformation works well on (sn). We

apply the Levin u, which can be regarded as the d(1)-transform, the d(2)-transform, and

the d(3)-transform to (sn) and show significant digits in Table 9.4.

Table 9.4

The significant digits of the d-transforms applying to (9.14)

n sn Levin u d(2) d(3)

1 0.03
2 0.12
3 0.19 −0.47
4 0.26 0.49
5 0.31 0.71 0.67
6 0.36 1.77 0.88
7 0.40 1.82 2.06 1.12
8 0.43 2.23 2.11 1.31
9 0.47 2.28 3.59 1.54

10 0.50 2.40 4.23 2.68
11 0.52 2.50 4.99 3.21
12 0.55 2.59 5.36 3.99
13 0.57 2.67 7.07 5.17
14 0.60 2.75 6.66 5.65
15 0.62 2.82 5.75 5.99
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10. The Aitken δ2 process and its modifications

The Aitken δ2 process is the most famous as well as the oldest nonlinear sequence

transformation. It can accelerate linearly convergent sequences but cannot accelerate

some logarithmically convergent sequences. In this section we make clear the above fact

and describe some modifications of the Aitken δ2 process.

10.1 The acceleration theorem of the Aitken δ2 process

First we define two difference oprators ∆ and ∇. The forward defference operator

∆ is defined by

∆0sn = sn (10.1a)

∆ksn = ∆k−1sn+1 − ∆k−1sn k = 1, 2, . . . . (10.1b)

Similarly, the backward defference operator ∇ is defined by

∇0sn = sn (10.2a)

∇ksn = ∇k−1sn −∇k−1sn−1 k = 1, 2, . . . ; n ≥ k. (10.2b)

Suppose that a sequence (sn) satisfies sn − s = cλn. Then we deduce

sn+2 − s

sn+1 − s
=

sn+1 − s

sn − s
. (10.3)

Solving (10.3) for the unknown s, we have

s =
snsn+2 − s2

n+1

∆2sn
= sn − (∆sn)2

∆2sn
. (10.4)

The Aitken δ2 process is defined by

tn = sn − (∆sn)2

∆2sn
, (10.5)

or equivalently

tn = sn+1 −
∆sn+1∇sn+1

∆sn+1 −∇sn+1
, (10.6)

= sn+2 −
(∇sn+2)2

∇2sn+2
. (10.7)

As is well known, the Aitken δ2 process accelerates any linearly convergent sequence.
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Theorem 10.1 (Henrici[21]) Let (sn) be a sequence satisfying

sn+1 − s = (A + εn)(sn − s), (10.8)

where A is a constant, A 6= 1, and εn → 0 as n → ∞. Let (tn) be defined by (10.5).

Then

lim
n→∞

tn − s

sn+2 − s
= 0. (10.9)

Proof. See [21, p.73]. ¤

The Aitken δ2 process can be applied iteratively as follows. The two dimensional

array (T (n)
k ) is defined by

T
(n)
0 = sn, n = 1, 2, . . . , (10.10a)

T
(n)
k+1 = T

(n)
k −

(T (n+1)
k − T

(n)
k )2

T
(n+2)
k − 2T

(n+1)
k + T

(n)
k

, k = 0, 1, . . . ; n = 1, 2, . . . .
(10.10b)

The algorithm (10.10) is called the iterated Aitken δ2 process. Since T
(n)
1 = ε

(n)
2 for any

n ∈ N, by Theorem 8.6, we have the following theorem.11

Theorem 10.2 Suppose that a sequence (sn) is satisfied

sn ∼ s + λn(n + b)θ
∞∑

j=0

cj(n + b)−j , c0 6= 0, (10.11)

where −1 ≤ λ < 1, and θ 6= 0, 2, . . . , 2k − 2, then

T
(n)
k ∼ s +

c0λ
n+2k(n + b)θ−2k(−θ)(−θ + 2) · · · (−θ + 2k − 2)

(λ − 1)2k

[
1 + O(

1
n + b

)
]

. (10.12)

Proof. By induction on k, the proof follows from Theorem 8.6. ¤

Example 10.1 We apply the iterated Aitken δ2 process to the partial sums of alternating

series

sn =
n∑

i=1

(−1)i−1

2i − 1
. (10.13)

We give sn and T
(n−2k)
k in Table 10.1, where k = b(n − 1)/2c. By the first 11 terms, we

obtain 10 significant digits. For comparison, the significant digits, abbreviated to “SD ”,

11Theorem 10.2 was given by K. Murota and M. Sugihara[32].
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of ε
(n−2k)
2k are also given in Table 10.1. The iterated Aitken δ2 process is better than the

ε-algorithm, because 0 < (−θ)(−θ + 2) . . . (−θ + 2k − 2) < k!(−θ)k.

Table 10.1

The iterated Aitken δ2 process applying to (10.13)

SD of SD of
n sn T

(n−2k)
k Aitken δ2 ε-algorithm

1 1.000
2 0.666
3 0.866 0.791 2.20 2.20
4 0.723 0.7833 2.69 2.69
5 0.834 0.78552 3.89 3.73
6 0.744 0.78536 25 4.45 4.30
7 0.820 0.78539 98 5.78 5.25
8 0.754 0.78539 77 6.35 5.87
9 0.813 0.78539 8178 7.82 6.78

10 0.760 0.78539 8159 8.39 7.43
11 0.808 0.78539 81634 9 8.31 8.31
12 0.764 0.78539 81633 69 10.55 8.98
13 0.804 0.78539 81633 9779 12.46 9.84
14 0.767 0.78539 81633 9731 12.86 10.52
15 0.802 0.78539 81633 97444 14.37 11.37
∞ 0.785 0.78539 81633 97448

10.2 The derivation of the modified Aitken δ2 formula

On the other hand, the Aitken δ2 process cannot accelerate logarithmic sequences.

Thus some modifications of δ2 process have been considered. In order to illustrate we

take up a model sequence (sn) satisfying

sn = s + c0n
θ + c1n

θ−1 + c2n
θ−2 + O(nθ−3), (10.14)

where θ < 0 and c0( 6= 0), c1, c2 are constants.

Lemma 10.3 Suppose that a sequence satisfies (10.14). Then the following asymptotic

formulae hold.

(1) sn − (∆sn)2

∆2sn
= s +

c0

1 − θ
nθ + O(nθ−1).

(2) sn − θ − 1
θ

(∆sn)2

∆2sn
= s + O(nθ−1).
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(3) sn − θ − 1
θ

∆sn∇sn

∆sn −∇sn
= s + O(nθ−2).

Proof. See Appendix A. ¤

A sequence transformation

sn 7−→ sn − θ − 1
θ

(∆sn)2

∆2sn
(10.15)

was considered by Overholt[42]. A sequence transformation

sn 7−→ sn − θ − 1
θ

∆sn∇sn

∆sn −∇sn
(10.16)

was first considered by Drummond[15]. For a sequence satisfying (10.14), Drummond’s

modification (10.16) is better than Overholt’s modification (10.15).

Drummond’s modification has been extended by Bjørstad, Dahlquist and Grosse[4]

as follows:

s
(0)
0 = 0, (10.17a)

s
(n)
0 = sn, n = 1, 2, . . . , (10.17b)

s
(n)
k+1 = s

(n)
k − 2k + 1 − θ

2k − θ

∆s
(n)
k ∇s

(n)
k

∆s
(n)
k −∇s

(n)
k

, k = 0, 1, . . . ; n ≥ k + 1,
(10.17c)

where ∆ and ∇ operate on the upper indexes.12 The formula (10.17) is called the modified

Aitken δ2 formula. The following two theorems are fundamental.

Theorem 10.4 (Bjørstad, Dahlquist and Grosse[3, p.7]) If s
(n)
k is represented as

s
(n)
k − s = nθ−2k

[
c
(k)
0 +

c
(k)
1

n
+

c
(k)
2

n2
+ O(

1
n3

)

]
, c

(k)
0 6= 0, (10.18)

then

s
(n)
k+1 − s = nθ−2k−2

[
c
(k+1)
0 + O(

1
n

)
]

, (10.19)

where

c
(k+1)
0 =

c
(k)
0

12
(1 + θ − 2k) − (c(k)

1 )2

c
(k)
0 (2k − θ)2

+
2c

(k)
2

(2k − θ)(2k + 1 − θ)
. (10.20)

12sk
n defined by Bjørstad, Dahlquist and Grosse agrees with s

(n)
k

in (10.17).
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Theorem 10.5 (Bjørstad, Dahlquist and Grosse) With the above notation, if c
(j)
0 6= 0

for j = 0, . . . , k − 1, then

s
(n)
k − s = O(nθ−2k) as n → ∞. (10.21)

Poof. By induction on k, the proof follows from Theorem 10.4. ¤

Example 10.2 We apply the iterated Aitken δ2 process and modified Aitken δ2 process

to the partial sums of ζ(1.5). We give sn, T
(n−2k)
k and s

(n−l)
l in Table 10.2, where

k = b(n − 1)/2c and l = bn/2c. By the first 11 terms, we obtain 10 exact digits by the

modified Aitken δ2 formula.

Table 10.2

The iterated Aitken δ2 process and

the modified Aitken δ2 formula applying to ζ(1.5)

n sn T
(n−2k)
k s

(n−l)
l

1 1.00
2 1.35 2.640
3 1.54 1.77 2.6205
4 1.67 1.90 2.6159
5 1.76 2.14 2.61232 9
6 1.82 2.19 2.61237 657
7 1.88 2.33 2.61237 560
8 1.92 2.36 2.61237 53431
9 1.96 2.44 2.61237 53475 5

10 1.99 2.46 2.61237 53487 16
11 2.02 2.539 2.61237 53487 10
12 2.04 2.524 2.61237 53487 17
13 2.06 2.525 2.61237 53486 04
14 2.08 2.522 2.61237 53486 13
∞ 2.61 2.612 2.61237 53486 85

10.3 The automatic modified Aitken δ2 formula

The main drawback of the modified Aitken δ2 process is that it need the explicit

knowledge of the exponent θ such that

sn ∼ s + nθ
∞∑

j=0

cj

nj
, (10.22)
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where θ < 0 and c0(6= 0), c1, . . . are constants. Drummond[15] commented that for a

sequence satisfying (10.22),

θ ; 1

∆
(

∆sn

∆2sn−1

) + 1, (10.23)

where the sign ; denotes approximate equality. Moreover Bjørstad et al.[4] show that

θn ∼ θ + n−2
∞∑

j=0

tj
nj

, (10.24)

where θn is defined by the right-hand side of (10.23) and t0(6= 0), t1, . . . are constants.

Thus the sequence (θn) itself can be accelerated by the modified Aitken δ2 process

with θ = −2 in (10.17c).

Suppose that the first n terms s1, . . . , sn of a sequence satisfying (10.22) are given.

Then we define (t(m)
k ) as follows:

Initialization. t
(0)
0 = 0.

For m = 1, . . . , n − 2,

t
(m)
0 =

1

∆
(

∆sm

∆2sm−1

) + 1, (10.25a)

t
(m)
k+1 = t

(m)
k − 2k + 3

2k + 2
∆t

(m)
k ∇t

(m)
k

∆t
(m)
k −∇t

(m)
k

, (10.25b)

k = 0, . . . , bm/2c − 1,

where ∆t
(m)
k = t

(m+1)
k − t

(m)
k and ∇t

(m)
k = t

(m)
k − t

(m−1)
k . Then we put

αn =

{
t
(k)
k−1 if n is odd,

t
(k)
k if n is even,

(10.26)

where k = b(n− 1)/2c. Substituting αn for θ in the definition of the modified Aitken δ2

formula (10.17), we can obtain the followings:

Initialization. s
(0)
n,0 = 0.

For m = 1, . . . , n,

s
(m)
n,0 = sm, (10.27a)

s
(m)
n,k+1 = s

(m)
n,k − 2k + 1 − αn

2k − αn

∆s
(m)
n,k ∇s

(m)
n,k

∆s
(m)
n,k −∇s

(m)
n,k

, (10.27b)

k = 0, . . . , bn/2c − 1,
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where ∆s
(m)
n,k = s

(m+1)
n,k − s

(m)
n,k and ∇s

(m)
n,k = s

(m)
n,k − s

(m−1)
n,k .

This scheme is called the automatic modified Aitken δ2-formula. The data flow of

this scheme is as follows (case n = 4):

s1

s2 ↘ 0 = t
(0)
0

↘
s3 → θ1 = t

(1)
0 ↘

↘ ↘
s4 → θ2 = t

(2)
0 → t

(1)
1 = α4

s1 = s
(1)
4,0

↘
s2 = s

(2)
4,0 → s

(1)
4,1

↘
s3 = s

(3)
4,0 → s

(2)
4,1 ↘

↘ ↘
s4 = s

(4)
4,0 → s

(3)
4,1 → s

(2)
4,2

For a given tolerance ε, this scheme is stopped if n is even and

|s(k)
n,k − s

(k)
n,k−1| < ε, (10.28a)

or if n is odd and

|s(k+1)
n,k − s

(k)
n,k| < ε, (10.28b)

where k = bn/2c.
A FORTRAN subroutine of the automatic modified Aitken δ2 formula is given in

Appendix.

Example 10.3 We apply the automatic modified Aitken δ2 formula to the partial sums

of ζ(1.5). We give sn, αn in (10.26) and s
(n−k)
n,k in Table 10.3, where k = bn/2c. By the

first 11 terms, we obtain 11 exact digits by the automatic modified Aitken δ2 formula.
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Table 10.3

The automatic modified Aitken δ2 formula

applying to ζ(1.5)

n sn αn s
(n−k)
n,k

1 1.00
2 1.35
3 1.54 −0.544 2.55
4 1.67 −0.5071 2.604
5 1.76 −0.50015 2.61218
6 1.82 −0.50001 3 2.61236 00
7 1.88 −0.49999 9938 2.61235 4
8 1.92 −0.49999 9967 2.61237 541
9 1.96 −0.50000 017 2.61237 525

10 1.99 −0.50000 0068 2.61237 5314
11 2.02 −0.50000 00001 3 2.61237 53486 35
12 2.04 −0.49999 99992 3 2.61237 53488 2
13 2.06 −0.49999 99999 23 2.61237 53487 2
14 2.08 −0.50000 00000 79 2.61237 53486 20
∞ 2.61 −0.50000 00000 00 2.61237 53486 8549
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11. Lubkin’s W transformation

Lubkin’s W transformation is the first nonlinear sequence transformation that can

accelerate not only linear sequences but also some logarithmic sequences.

11.1 The derivation of Lubkin’s W transformation

Almost all logarithmically convergent sequences that occur in practice satisfy

lim
n→∞

sn+1 − s

sn − s
= lim

n→∞

∆sn+1

∆sn
= 1. (11.1)

Suppose that a sequence (sn) satisfies

lim
n→∞

1 − sn+2 − s

sn+1 − s

1 − ∆sn+1

∆sn

= σ, (11.2)

where σ( 6= 0), s ∈ R. As Kowalewski[25, p.268] proved, 0 < σ ≤ 1. The equality (11.2)

is equivalent to

lim
n→∞

∆sn+1∆sn

(sn+1 − s)∆2sn
= σ. (11.3)

If σ in (11.3) is known, solving the equation

∆sn+1∆sn

(sn+1 − s)∆2sn
= σ, (11.4)

for the unknown s, we have

s = sn+1 −
1
σ

∆sn∆sn+1

∆2sn
. (11.5)

When σ = 1, the right-hand side of (11.5) coincides with the Aitken δ2 process. When

0 < σ < 1, that of (11.5) coincides with the modified Aitken δ2 formula.

If σ in (11.3) is unknown, solving the equation

∆sn+2∆sn+1

(sn+2 − s)∆2sn+1
=

∆sn+1∆sn

(sn+1 − s)∆2sn
(11.6)

for the unknown s, we obtain

s = sn+1 −
∆sn+1∆sn∆2sn+1

∆sn+2∆2sn − ∆sn∆2sn+1
. (11.7)
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A sequence transformation

W : sn 7−→ sn+1 −
∆sn+1∆sn∆2sn+1

∆sn+2∆2sn − ∆sn∆2sn+1
(11.8)

is called Lubkin’s W transformation[29], or the W transform for short. The relation

between the W transform and the modified Aitken δ2 process will be treated in subsection

11.3.

For a sequence (sn), we define Wn by13

Wn = sn+1 −
∆sn+1∆sn∆2sn+1

∆sn+2∆2sn − ∆sn∆2sn+1
. (11.9)

Wn can be represented as various forms.

Wn = sn+2 −
∆sn+1∆sn+2∆2sn

∆sn+2∆2sn − ∆sn∆2sn+1
(11.10)

=
∆2

(
sn

∆sn

)
∆2

(
1

∆sn

) (11.11)

= sn+2 −
1 − ∆sn+1

∆sn

1
∆sn+2

− 2
∆sn+1

+
1

∆sn

. (11.12)

Since the Aitken δ2 process can be represented as

tn =
∆

(
sn

∆sn

)
∆

(
1

∆sn

) , (11.13)

the formula (11.11) means that the W transform is a modification of the Aitken δ2

process. Lubkin[29], Tucker[55] and Wimp[58] studied the relationship between the ac-

celerativeness for the W transform and the Aitken δ2 process.

We remark that Wn is also represented as

Wn =

∣∣∣∣ sn+1 sn+2

∆sn∆sn+1/∆2sn ∆sn+1∆sn+2/∆2sn+1

∣∣∣∣∣∣∣∣ 1 1
∆sn∆sn+1/∆2sn ∆sn+1∆sn+2/∆2sn+1

∣∣∣∣ , (11.14)

13Wn in (11.9) coincides with Lubkin’s original Wn+2.
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which is the Levin v-transform T
(n+1)
1 with Rn = ∆sn−1∆sn/∆2sn−1 in (9.5).

11.2 The exact and acceleration theorems of the W transformation

By construction, the W transform is exact on (sn) satisfying (11.6). More precisely,

the following theorem holds.

Theorem 11.1 (Cordellier[13]) Suppose that ∆sn+2∆2sn 6= ∆sn∆2sn+1 for ∀n ∈ N0.

Then the W transform is exact on (sn) if and only if sn can be represented as

sn = s + K

n−1∏
j=1

ja + b + 1
ja + b

, (11.15)

where K is a nonzero real, a ≤ 0 and{
b < −1

2 and b 6= −1 if a = 0,

ja + b 6= 0,−1 for j ∈ N, if a < 0.

Proof. See [13, p.391] or Osada[40, Theorem 2]. ¤

Example 11.2 Let K be a nonzero real.

(1) (Wimp[58]) Setting a = 0 in (11.15), the W transform is exact on sn = s+K(1+

1/b)n−1, even if (sn) deverges.

(2) Setting a = −1 and b = −1 in (11.15), the W transform is exact on sn = s+K/n.

We cite two theorems that were proved by Lubkin.

Theorem 11.3 (Lubkin[29, Theorem 10]) Suppose that a sequence (sn) converges and

lim
n→∞

∆sn+1/∆sn = ρ. Suppose that one of the following three conditions holds:

(i) ρ 6= 0,±1,

(ii) ρ = 0 and ∆sn+1/∆sn is of constant sign for sufficiently large n,

(iii) ρ = −1 and (1 + ∆sn+2/∆sn+1)/(1 + ∆sn+1/∆sn) > 1.

Then the W transform accelerates (sn).

Theorem 11.4 (Lubkin[29, Theorem 12]) Suppose that a sequence (sn) converges and

∆sn+1/∆sn has an asymptotic expansion of the form

∆sn/∆sn−1 ∼ c0 +
c1

n
+

c2

n2
+ . . . , (11.16)

where c0, c1, . . . are constants. Then the W transform accelerates (sn).

The preceding theorems show that the W transform accelerates not only linear

sequences (Theorem 11.3 (i)(iii)) but also a large class of logarithmic sequences (the case

c0 = 1 in Theorem 11.4). However, the Aitken δ2 process has not this property.
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11.3 The iteratation of the W transformation

The W transform can be applied iteratively as follows14 : For n = 0, 1, . . . ,15

W
(n)
0 = sn, (11.17a)

W
(n)
k+1 = W

(n+1)
k −

∆W
(n+1)
k ∆W

(n)
k ∆2W

(n+1)
k

∆W
(n+2)
k ∆2W

(n)
k − ∆W

(n)
k ∆2W

(n+1)
k

, k = 0, 1, . . . ,
(11.17b)

where ∆W
(n)
k = W

(n+1)
k − W

(n)
k . The algorithm (11.17) is called the iterated W trans-

formation.

In order to give an asymptotic formula of the iterated W transform, we define the

δα transformation (Sablonnière[47]). For a sequence (sn), the δα transform is defined by

δα(sn) = sn+1 −
α + 1

α

∆sn∆sn+1

∆2sn
, (11.18)

where α is a positive parameter. For a sequence (sn) satisfying

sn ∼ s + nθ
∞∑

j=0

cj

nj
, (11.19)

δ−θ(sn) = s
(n+1)
1 in (10.17).

Lemma 11.5 (Sablonnière) Under the above notation,

Wn = sn+1 −
∆sn+1(sn+1 − δα(sn))

∆sn+1 − ∆(δαsn)
, ∀α > 0. (11.20)

Proof. By the definition of δα, we have

sn+1 − δα(sn) =
α + 1

α

∆sn∆sn+1

∆2sn
, (11.21)

and

∆sn+1 − ∆(δαsn) =
α + 1

α

(
∆sn+2∆sn+1

∆2sn+1
− ∆sn∆sn+1

∆2sn

)
. (11.22)

Thus we can obtain the result (11.20). ¤

14W
(n)
k

in (11.17) coincides with T (n)
k

of Weniger[57] and Wn+3k,k of Osada[39,p.363].
15When the sequence sn is defined in n ≥ 1, substitute ‘n = 1, 2, . . . ’ for ‘n = 0, 1, . . . ’.
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Using the above lemma and the asymptotic formula of the modified Aitken δ2 formula

(Theorem 10.4), Sablonnière has proved the following theorem.

Theorem 11.6 (Sablonnière[47]) Suppose that a sequence (sn) satisfies (11.19). If W
(n)
k

is represented as

W
(n)
k − s = nθ−2k

[
c
(k)
0 +

c
(k)
1

n
+

c
(k)
2

n2
+ O(

1
n3

)

]
, c

(k)
0 6= 0, (11.23)

then

W
(n)
k+1 − s = nθ−2k−2

[
c
(k+1)
0 + O(

1
n

)
]

, (11.24)

where

c
(k+1)
0 =

c
(k)
0 (1 + θ − 2k)

6(θ − 2k)
− 2(c(k)

0 k(θ − 2k) − c
(k)
1 )2

c
(k)
0 (θ − 2k)3

+
c
(k)
0 k2(θ − 2k)(θ − 2k − 1) − 4c

(k)
1 k(θ − 2k − 1) + 4c

(k)
2

(θ − 2k)2(θ − 2k − 1) (11.25)

Proof. See Appendix B. ¤

Theorem 11.7 (Sablonnière[47]) With the above notation, if c
(j)
0 6= 0 for j = 0, 1, . . . , k−

1, then

W
(n)
k − s = O(nθ−2k) as n → ∞ (11.26)

Proof. By induction on k, the proof follows from Theorem 11.6. ¤

Sablonnière has also given an asymptotic formula of the W transform applying to a

sequence satisfying

sn ∼ s + nθ
∞∑

j=0

cj

nj/2
, (11.27)

where θ < 0 and c0(6= 0), c1(6= 0), c2, . . . are constants.

Theorem 11.8 (Sablonnière[47]) Suppose that a sequence (sn) satisfies (11.27). If W
(n)
k

has an asymptotic formula of the form

W
(n)
k − s = c

(k)
0 nθ−k/2 + c

(k)
1 nθ−k/2−1/2 + O(nθ−k/2−1), c

(k)
0 6= 0, (11.28)

then

W
(n)
k+1 − s = c

(k+1)
0 nθ−k/2−1/2 + c

(k+1)
1 nθ−k/2−1 + O(nθ−k/2−3/2), (11.29)
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where

c
(k+1)
0 =

c
(k)
1

(k − 2θ)2(k + 2 − 2θ)
(11.30)

and

c
(k+1)
1 =

(c(k)
1 )2(k − 1 − 2θ)(k + 1 − 2θ)2

c
(k)
0 (k − 2θ)4(k + 2 − 2θ)2

. (11.31)

Recently, Osada[39] has extended the iterated W transform to vector sequences; the

Euclidean W transform and the vector W transform. A similar property to Theorem

11.7 holds for both transforms.

11.4 Numerical examples of the iterated W transformation

For linearly convergent sequences the W transform works well.

Example 11.1 Let us consider

sn =
n∑

i=1

(−1)i−1 1√
i
. (11.32)

We apply the iterated W transform to (11.32). We give sn, W
(n−3k)
k in Table 11.1, where

k = b(n − 1)/3c. By the first 17 terms, we obtain 15 exact digits.

Table 11.1

The iterated W transform applying to (11.32)

n sn W
(n−3k)
k

1 1.00
2 0.29
3 0.87
4 0.37 0.6061
5 0.81 0.60442
6 0.40 0.60511
7 0.78 0.60490 0
8 0.43 0.60489 79
9 0.76 0.60489 888

10 0.45 0.60489 86446
11 0.75 0.60489 86430 6
12 0.46 0.60489 86435 4
13 0.74 0.60489 86432 2192
14 0.47 0.60489 86432 2155
17 0.72 0.60489 86432 21630
∞ 0.60 0.60489 86432 21630
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Example 11.2 We apply the iterated W transform to the partial sums of ζ(1.5). We

give sn, W
(n−3k)
k in Table 11.2, where k = b(n − 1)/3c. By the first 15 terms, we obtain

9 exact digits. For this series, the iterated Aitken δ2 process cannot accelerate but the

iterated W transform can do. However, the W transform is inferior to the automatic

modified Aitken δ2 formula.

Table 11.2

The iterated W transform applying to ζ(1.5)

n sn W
(n−3k)
k

1 2.0
2 1.35
3 1.54
4 1.67 2.590
5 1.76 2.6019
6 1.82 2.6063
7 1.88 2.61234 3
8 1.92 2.61236 2
9 1.96 2.61236 90

10 1.99 2.61237 527
11 2.02 2.61237 5326
12 2.04 2.61237 5337
13 2.06 2.61237 5330
14 2.08 2.61237 5365
15 2.10 2.61237 53440
∞ 2.61 2.61237 53486

Example 11.3 We apply the iterated W transform to the partial sums of ζ(1.5)+ζ(2) =

4.25730 94155 33714:

sn =
n∑

i=1

√
i + 1
i2

. (11.33)

We give sn, W
(n−3k)
k in Table 11.3, where k = b(n − 1)/3c. By the first 20 terms,

we obtain 4 exact digits. For comparison, we show Levin v-transform T
(1)
n−2. The W

transform is slightly better than the Levin v-transform.
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Table 11.3

The iterated W transform applying to ζ(1.5) + ζ(2)

n sn W
(n−3k)
k T

(1)
n−2

1 1.0
2 2.6
3 2.9 4.05
4 3.09 4.14 4.18
5 3.22 4.17 4.212
6 3.31 4.19 4.226
7 3.39 4.2568 4.234
8 3.45 4.2590 4.240
9 3.50 4.2596 4.243

10 3.54 4.2596 4.246
11 3.58 4.2596 4.248
12 3.61 4.2596 4.249
13 3.63 4.2596 4.2509
14 3.66 4.2596 4.2518
15 3.70 4.2591 4.2525
20 3.77 4.25727 2 4.2546
∞ 4.25 4.25730 9 4.25730
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12. The ρ-algorithm

As Smith and Ford[54] pointed out, the ρ-algorithm of Wynn works well on some

logarithmic sequences but fails on another logarithmic sequences. In this section we make

clear this fact.

12.1 The reciprocal differences and the ρ-algorithm

Since the ρ-algorgithm is a special case of reciprocal differences, we begin with the

definition of reciprocal differences. Let f(x) be a function. The reciprocal differences of

f(x) with arguments x0, x1, . . . are defined recursively by

ρ0(x0) = f(x0), (12.1a)

ρ1(x0, x1) =
x0 − x1

ρ0(x0) − ρ0(x1)
, (12.1b)

ρk(x0, . . . , xk) = ρk−2(x1, . . . , xk−1)

+
x0 − xk

ρk−1(x0, . . . , xk−1) − ρk−1(x1, . . . , xk)
, k = 2, 3, . . . .

(12.1c)

Substituting x for x0 in (12.1), we have the following continued fraction.

f(x) = f(x1) +
x − x1

ρ1(x1, x2) +
x − x2

ρ2(x1, x2, x3) − ρ0(x1) +
x − x3

. . . .

(12.2a)

The last two constituent partial fractions are as follows:

x − xl−1

ρl−1(x1, . . . , xl) − ρl−3(x1, . . . , xl−2) +
x − xl

ρl(x, x1, . . . , xl) − ρl−2(x1, . . . , xl−1).

(12.2b)

The equality of (12.2) holds for x = x1, . . . , xl. The right-hand side of (12.2) is called

Thiele’s interpolation formula.

The ρ-algorithm of Wynn[60] is defined by substituting sn for f(xn) and ρ
(n)
k for

ρk(xn, . . . , xn+k) in the reciprocal difference:

ρ
(n)
0 = sn, (12.3a)

ρ
(n)
1 =

1

ρ
(n+1)
0 − ρ

(n)
0

, (12.3b)

ρ
(n)
k = ρ

(n+1)
k−2 +

k

ρ
(n+1)
k−1 − ρ

(n)
k−1

, k = 2, 3, . . . . (12.3c)
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Thiele’s interpolation formula implies the continued fraction.

sn = sm +
n − m

ρ
(m)
1 +

n − m − 1

ρ
(m)
2 − ρ

(m)
0 +

n − m − 2

ρ
(m)
3 − ρ

(m)
1 + .. .

.

(12.4)

Neglecting the term
n − m − 2k

ρ
(m)
2k+1 − ρ

(m)
2k−1 +

n − m − 2k − 1
. . .

, (12.5)

we obtain

sn ; ρ
(m)
2k nk + a1n

k−1 + · · · + ak

nk + b1nk−1 + · · · + bk
, (12.6)

where a1, . . . , ak, b1, . . . , bk are constants independent of n and the sign ; denotes ap-

proximate equality. By construction, the equality of (12.6) holds for n = m, . . . , m + 2k.

Suppose a sequence (sn) with the limit s satisfies

sn =
snk + a1n

k−1 + · · · + ak

nk + b1nk−1 + · · · + bk
. (12.7)

Then, by the above discussion, ρ
(m)
2k = s for any m. Thus the ρ-algorithm is a rational

extrapolation which is exact on a sequence satisfying (12.7).

A sequence satisfying (12.7) has an asymptotic expansion of the form

sn ∼ s + nθ
(
c0 +

c1

n
+

c2

n2
+ . . .

)
, as n → ∞ (12.8)

where θ is a negative integer and cj ’s are constants independent of n. Conversely, suppose

that θ is a negative integer. If we truncate the terms up to ck/nk in (12.8), then sn satisfies

(12.7). This fact suggests that the ρ-algorithm works well on (12.8) if and only if θ is a

negative integer, which will be proved in the end of this section.

Recently, Osada[39] has extended the ρ-algorithm to vector sequences; the vector

ρ-algorithm and the topological ρ-algorithm.
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12.2 The asymptotic behavior of the ρ-algorithm

In order to describe the asymptotic behavior of the ρ-algorithm, we shall use the

following sequence. For a given non-integer θ and a given nonzero real c, we define the

sequence (Cn) as follows:

C−1 = 0, (12.9a)

C0 = c, (12.9b)

C2k−1 = C2k−3 +
2k − 1
θC2k−2

k = 1, 2, . . . , (12.9c)

C2k = C2k−2 +
2k

(1 − θ)C2k−1
k = 1, 2, . . . , (12.9d)

This sequence (Cn) is called the associated sequence of the ρ-algorithm with respect to θ

and c.

For the associated sequence of the ρ-algorithm, the following two theorems hold.

Theorem 12.1 Under the above notation,

C2k−1 =
k(2 − θ)(3 − θ) · · · (k − θ)
cθ(1 + θ) · · · (k − 1 + θ)

, k = 1, 2, . . . (12.10a)

C2k =
c(1 + θ) · · · (k + θ)

(1 − θ)(2 − θ) · · · (k − θ)
, k = 1, 2, . . . . (12.10b)

Proof. By induction on k. For k = 1, C1 = C−1 +1/cθ = 1/cθ, C2 = C0 +2/(1−θ)C1 =

c(1 + θ)/(1 − θ). Assuming that they are valid for k > 1. By the induction hypothesis,

we have

C2k+1 = C2k−1 +
2k + 1
θC2k

=
k(2 − θ) · · · (k − θ)

cθ(1 + θ) · · · (k − 1 + θ)
+

(2k + 1)(1 − θ) · · · (k − θ)
cθ(1 + θ) · · · (k + θ)

=
(k + 1)(2 − θ) · · · (k − θ)(k + 1 − θ)

cθ(1 + θ) · · · (k + θ)
. (12.11)

Similarly,

C2k+2 =
c(1 + θ)(2 + θ) · · · (k + 1 + θ)

(1 − θ) · · · (k + 1 − θ)
. (12.12)

This completes the proof. ¤
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We remark that Theorem 12.1 is still valid when θ is an integer and k < |θ|.

Theorem 12.2 Under the above notation,

lim
k→∞

C2k

k2θ
= −cΓ(−θ)

Γ(θ)
, (12.13)

where Γ(x) is the Gamma function.

Proof. By means of Euler’s limit formula for the Gamma function

Γ(x) = lim
k→∞

k!kx

x(x + 1) · · · (x + k)
, (12.14)

we obtain the result. ¤

Now we have asymptotic behavior of the ρ-algorithm.

Theorem 12.3 Let (sn) be a sequence satisfying

sn ∼ s + nθ
(
c0 +

c1

n
+

c2

n2
+ . . .

)
, as n → ∞. (12.15)

Let (Cn) be the associated sequence of the ρ-algorithm with respect to θ and c0 in (12.15).

Let A = (1 − θ)(−1/2 + c1/c0θ). Then the following formulae are valid.

(1)

ρ
(n)
1 = C1(n + 1)1−θ

[
1 +

A

n + 1
+

B1

(n + 1)2
+ O((n + 1)−3)

]
, (12.16)

where

B1 =
θ2 − 1

12
+

c1(1 − θ)
2c0

+
(1 − θ)2c1

2

c0
2θ2

+
c2(2 − θ)

c0θ
. (12.17)

(2)

ρ
(n)
2 = s + C2(n + 1)θ

[
1 +

c1

c0(n + 1)
+

B2

(n + 1)2
+ O((n + 1)−3)

]
,

(12.18)

where

B2 = −c0θ(1 + θ)
6(1 − θ)

+
2c1

2

c0θ(1 − θ)
+

c2(5 − θ2)
(1 − θ)2

. (12.19)
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(3) Suppose that θ 6= −1, . . . , 1 − k. For j = 1, . . . , k,

ρ
(n)
2j−1 = C2j−1(n + j)1−θ

[
1 +

A

n + j

]
+ O((n + j)−1−θ) (12.20)

ρ
(n)
2j = s + C2j(n + j)θ

[
1 +

c1

c0(n + j)

]
+ O((n + j)θ−2) (12.21)

Proof. (1) Using the binomial expansion, we have

sn+1 − sn

= c0θ(n + 1)θ−1

[
1 − A

n + 1
+

(
−1 − θ

6
+

c1(1 − θ)
2c0θ

+
c2

c0θ

)
θ − 2

(n + 1)2

]
+ O((n + 1)θ−3). (12.22)

Hence, we obtain

ρ
(n)
1 = C1(n + 1)1−θ

[
1 +

A

n + 1
+

B1

(n + 1)2
+ O((n + 1)−3)

]
. (12.23)

(2) and (3). Similarly to (1). ¤

By Theorem 12.3, when θ in (12.15) is non-integer, for fixed k,

ρ
(n)
2k − s

sn+2k − s
∼ C2k as n → ∞, (12.24)

where the sign ∼ means asymptotic approximate. When −θ is small non-integer, the

ρ-algorithm cannot be available.

When θ is a negative integer, say −k, we have C0 6= 0, . . . , C2k−2 6= 0 and C2k = 0.

Thus, it follows from Theorem 12.3 that

ρ
(n)
2k = s + O((n + k)−k−2), as n → ∞. (12.25)

As illustrations, we give two examples.

Example 12.1 We apply the ρ-algorithm to the partial sums of ζ(2):

sn =
n∑

i=1

1
i2

. (12.26)

We give sn and ρ
(n−2k)
2k in Table 12.1, where k = b(n − 1)/2c. By the first 12 terms, we

obtain 12 exact digits.
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Table 12.1

The ρ-algorithm applying to ζ(2)

n sn ρ
(n−2k)
2k

1 1.00
2 1.25
3 1.36 1.650
4 1.42 1.6468
5 1.46 1.64489
6 1.49 1.64492 2
7 1.511 1.64493 437
8 1.527 1.64493 414
9 1.539 1.64493 40643

10 1.549 1.64493 40662 8
11 1.558 1.64493 40668 64
12 1.564 1.64493 40668 418
13 1.570 1.64493 40668 56
14 1.575 1.64493 40668 82
15 1.580 1.64493 40668 56
20 1.596 1.64493 40668 50
∞ 1.644 1.64493 40668 48

Example 12.2 We apply the ρ-algorithm to the partial sums of ζ(1.5):

sn =
n∑

i=1

1
i
√

i
. (12.27)

We give sn and ρ
(n−2k)
2k in Table 12.2, where k = b(n − 1)/2c. Since θ = −0.5, the

ρ-algorithm cannot accelerate (12.27).
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Table 12.2

The ρ-algorithm applying to ζ(1.5)

n sn ρ
(n−2k)
2k

1 2.0
2 1.35
3 1.54 2.19
4 1.67 2.25
5 1.76 2.40
6 1.82 2.42
7 1.88 2.48
8 1.92 2.49
9 1.96 2.525

10 1.99 2.528
11 2.02 2.520
12 2.04 2.553
13 2.06 2.552
14 2.08 2.553
15 2.10 2.564
∞ 2.61 2.612
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13. Generalizations of the ρ-algorithm*

Let (sn) be a sequence satisfying

sn ∼ s + nθ
(
c0 +

c1

n
+

c2

n2
+ . . .

)
, as n → ∞ (13.1)

where θ < 0 and c0( 6= 0), c1, . . . are constants independent of n. As we proved in the

preceding section, the ρ-algorithm works well on a sequence satisfying (13.1) if and only

if θ is a negative integer. In this section we extend ρ-algorithm that works well on (13.1)

for any θ < 0.

13.1 The generalized ρ-algorithm

For a sequence (sn) satisfying (13.1), we put s0 = 0 if s0 is not defined. We define

ρ
(n)
k as follows:

ρ
(n)
−1 = 0, (13.2a)

ρ
(n)
0 = sn, (13.2b)

ρ
(n)
k = ρ

(n+1)
k−2 +

k − 1 − α

ρ
(n+1)
k−1 − ρ

(n)
k−1

, k = 1, 2, . . . . (13.2c)

This procedure is called the generalized ρ-algorithm with a parameter α [37]. It is obvious

that, when α = −1, the generalized ρ-algorithm coincides with the ρ-algorithm defined

in (12.3).

We now derive asymptotic behaviors for the quantities ρ
(n)
k produced by applying

the generalized ρ-algorithm with parameter θ to the sequence satisfying (13.1).

Theorem 13.1 (Osada) If ρ
(n)
2k−1 and ρ

(n)
2k satisfy the asymptotic formulae of the forms

ρ
(n)
2k−1 = − 1

d
(k−1)
0

(n + k − 1)2k−1−θ
[
1 + O((n + k − 1)−1)

]
, (13.3)

ρ
(n)
2k = s + (n + k)θ−2k

[
d
(k)
0 +

d
(k)
1

n + k
+

d
(k)
2

(n + k)2
+ O((n + k)−3)

]
(13.4)

with d
(k−1)
0 6= 0 and d

(k)
0 6= 0, then

ρ
(n)
2k+2 = s + (n + k + 1)θ−2k−2

[
d
(k+1)
0 + O((n + k + 1)−1)

]
, (13.5)

*The material in this section is taken from the author’s paper: N. Osada, A convergence acceleration

method for some logarithmically convergent sequences, SIAM J. Numer. Anal. 27(1990), pp.178-189.
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where

d
(k+1)
0 = −d

(k)
0

12
(2k − θ − 1) − (d(k)

1 )2

d
(k)
0 (2k − θ)2

+
2d

(k)
2

(2k − θ)(2k − θ + 1)

+
(d(k)

0 )2(2k − θ − 1)

d
(k−1)
0 (2k − θ + 1)

. (13.6)

Proof. Using (13.4) and the binomial expansion, we have

ρ
(n+1)
2k − ρ

(n)
2k = −d

(k)
0 (2k − θ)(n + k + 1)θ−2k−1

×

[
1 +

(
1
2

+
d
(k)
1

d
(k)
0 (2k − θ)

)
2k − θ + 1
n + k + 1

+

(
2k − θ − 1

6
+

d
(k)
1 (2k − θ + 1)

2d
(k)
0 (2k − θ)

+
d
(k)
2

d
(k)
0 (2k − θ)

)
2k − θ + 2

(n + k + 1)2

+O((n + k + 1)−3)
]
. (13.7)

Hence, we obtain
2k − θ

ρ
(n+1)
2k − ρ

(n)
2k

= − 1

d
(k)
0

(n + k + 1)2k+1−θ

×

[
1 −

(
1
2

+
d
(k)
1

d
(k)
0 (2k − θ)

)
2k − θ + 1
n + k + 1

+

(
2k − θ − 1

12
+

d
(k)
1

2d
(k)
0

+
(d(k)

1 )2(2k − θ + 1)

(d(k)
0 )2(2k − θ)2

− d
(k)
2 (2k − θ + 2)

d
(k)
0 (2k − θ)(2k − θ + 1)

)
2k − θ + 1

(n + k + 1)2

+O((n + k + 1)−3)
]
. (13.8)

By means of (13.2) and (13.8),

ρ
(n)
2k+1 = − 1

d
(k)
0

(n + k + 1)2k+1−θ

×

[
1 −

(
1
2

+
d
(k)
1

d
(k)
0 (2k − θ)

)
2k − θ + 1
n + k + 1

+

(
2k − θ − 1

12
+

d
(k)
1

2d
(k)
0

+
(d(k)

1 )2(2k − θ + 1)

(d(k)
0 )2(2k − θ)2

− d
(k)
2 (2k − θ + 2)

d
(k)
0 (2k − θ)(2k − θ + 1)

+
d
(k)
0

d
(k−1)
0 (2k − θ + 1)

)
2k − θ + 1

(n + k + 1)2

+O((n + k + 1)−3)
]
. (13.9)
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Similarly we obtain

ρ
(n)
2k+2 = ρ

(n+1)
2k +

2k − θ + 1

ρ
(n+1)
2k+1 − ρ

(n)
2k+1

= s + (n + k + 1)θ−2k−2

[
−d

(k)
0

12
(2k − θ − 1) − (d(k)

1 )2

d
(k)
0 (2k − θ)2

+
2d

(k)
2

(2k − θ)(2k − θ + 1)
+

(d(k)
0 )2(2k − θ − 1)

d
(k−1)
0 (2k − θ + 1)

+O((n + k + 1)−1)
]
. (13.10)

This completes the proof. ¤

Theorem 13.2 (Osada) With the notation above, if d
(j)
0 6= 0 for j = 0, 1, . . . , k, then

ρ
(n)
2k = s + O((n + k)θ−2k). (13.11)

Proof. By means of the induction on k, the proof follows from Theorem 13.1. ¤

It is easy to see that ρ
(n)
2 = s

(n+1)
1 in (10.17) when α = θ. Moreover, under the

assumption of Theorem 13.2, ρ
(n)
2k − s has the same order as s

(n+k)
k − s defined in (10.17).

For another information of the generalized ρ-algorithm, see Weniger[57].

Example 13.1 We apply the generalized ρ-algorithm to the partial sums of ζ(1.5). We

give sn, ρ
(n−2k)
2k in Table 13.1, where k = bn/2c. For comparison, we also give the

modified Aitken δ2 formula s
(n−l)
l , where l = bn/2c.
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Table 13.1

The generalized ρ-algorithm and

the modified Aitken δ2 formula applied to ζ(1.5)

n k sn ρ
(n−2k)
2k s

(n−k)
k

1 0 1.00
2 1 1.35 2.640 2.640
3 1 1.54 2.6205 2.6205
4 2 1.67 2.61215 2.61217
5 2 1.76 2.61232 3 2.61232 9
6 3 1.82 2.61237 71 2.61237 657
7 3 1.88 2.61237 572 2.61237 560
8 4 1.92 2.61237 5334 2.61237 53431
9 4 1.96 2.61237 53458 2.61237 53475 5

10 5 1.99 2.61237 53488 0 2.61237 53487 16
11 5 2.02 2.61237 53487 2 2.61237 53487 10
12 6 2.04 2.61237 53489 2 2.61237 53487 17
13 6 2.06 2.61237 53487 0 2.61237 53486 04
14 7 2.08 2.61237 53486 848 2.61237 53486 13
∞ 2.61 2.61237 53486 854 2.61237 53486 85

13.2 The automatic generalized ρ-algorithm

The generalized ρ-algorithm requires the knowledge of the exponent θ in (13.1). But,

as described in Section 10, θ can be computed using the generalized ρ-algorithm with

parameter −2.

For a given sequence (sn) satisfying

sn ∼ s + nθ
(
c0 +

c1

n
+

c2

n2
+ . . .

)
, as n → ∞ (13.1)

where θ < 0 and c0(6= 0), c1, . . . are unknown constants independent of n. We define θn

by

θn = 1 +
1

∆
(

∆sn

∆2sn−1

) . (13.12)

The sequence (θn) has the asymptotic expansion of the form

θn ∼ θ + n−2

(
t0 +

t1
n

+
t2
n2

+ . . .
)

, as n → ∞, (13.13)
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where t0(6= 0), t1, . . . are unknown constants independent of n. Thus by applying the

generalized ρ-algorithm with parameter −2 on (θn), we can estimate the exponent θ.

Suppose that the first n terms of a sequence (sn) satisfying (13.1) are given. Then

we put s0 = 0 and define ρ
(m)
k as follows:

ρ
(m)
−1 = 0, (13.14a)

ρ
(m)
0 = θm, m ≥ 1, (13.14b)

ρ
(m)
k = ρ

(m+1)
k−2 +

k + 1

ρ
(m+1)
k−1 − ρ

(m)
k−1

, k = 1, 2, . . . . (13.14c)

Next, we define αn(n ≥ 3) by

αn =

{
ρ
(1)
n−3 if n is odd,

ρ
(0)
n−2 if n is even.

(13.15)

Then we can apply the generalized ρ-algorithm with parameter αn to (sm).

ρ
(m)
n,0 = sm, m = 0, . . . , n (13.16a)

ρ
(m)
n,1 =

−αn

ρ
(m+1)
n,0 − ρ

(m)
n,0

, m = 0, 1, . . . , n − 1, (13.16b)

ρ
(m)
n,k = ρ

(m+1)
n,k−2 +

k − 1 − αn

ρ
(m+1)
n,k−1 − ρ

(m)
n,k−1

, k = 2, . . . , n; m = 0, . . . , n − k.
(13.16c)

This scheme is called the automatic generalized ρ-algorithm. The data flow of this scheme

is as follows (case n = 4):

s1

s2 ↘
↘

s3 → θ1 = ρ
(1)
0 → ρ

(0)
1

↘ ↘ ↘
s4 → θ2 = ρ

(2)
0 → ρ

(1)
1 → ρ

(0)
2 = α4

s1 = ρ
(1)
4,0 → ρ

(0)
4,1

↘ ↘
s2 = ρ

(2)
4,0 → ρ

(1)
4,1 → ρ

(0)
4,2

↘ ↘ ↘
s3 = ρ

(3)
4,0 → ρ

(2)
4,1 → ρ

(1)
4,2 → ρ

(0)
4,3

↘ ↘ ↘ ↘
s4 = ρ

(4)
4,0 → ρ

(3)
4,1 → ρ

(2)
4,2 → ρ

(1)
4,3 → ρ

(0)
4,4
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For a given tolerance ε, the stopping criterion of this scheme is as follows:

(i) n is even and |ρ(0)
n,n − ρ

(1)
n,n−2| < ε,

(ii) n is odd and |ρ(0)
n,n−1 − ρ

(1)
n,n−1| < ε.

Example 13.2 We apply the automatic generalized ρ-algorithm to the partial sums of

ζ(1.5). We give sn, αn in (13.15) and ρ
(n−2k)
n,2k in Table 13.2, where k = bn/2c.

Table 13.2

The automatic generalized ρ-algorithm

applied to ζ(1.5)

n sn αn ρ
(n−2k)
n,2k

1 1.00
2 1.35
3 1.54 −0.544 2.55
4 1.67 −0.5071 2.604
5 1.76 −0.50015 2.61217
6 1.82 −0.50001 4 2.61236 60
7 1.88 −0.50000 0052 2.61237 568
8 1.92 −0.49999 9980 2.61237 53453
9 1.96 −0.49999 99946 2.61237 53487 1

10 1.99 −0.50000 00002 3 2.61237 53487 1
11 2.02 −0.50000 00001 1 2.61237 53488 9
12 2.04 −0.50000 00002 9 2.61237 53488 2
13 2.06 −0.49999 99999 76 2.61237 53487 2
14 2.08 −0.50000 00000 93 2.61237 53486 49
∞ 2.61 −0.50000 00000 00 2.61237 53486 85

A FORTRAN subroutine of the automatic generalized ρ-algorithm is given in Ap-

pendix.
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14. Comparisons of acceleration methods*

In this section we compare acceleration methods for scalar sequences using wide

range of slowly convergent infinite series.

14.1 Sets of sequences

Whether an acceleration method works effectively on a given sequence or not depends

on the type of the asymptotic expansion of the sequence. Conversely, when we know the

type of expansion we can choose a suitable method.

The sets of sequences Sλ and LOGSF are defined by

Sλ = { (sn) | sn ∼ s + λnnθ
∞∑

j=0

cjn
−j , c0 6= 0, λ 6= 0}, (14.1)

LOGSF = { (sn) | lim
n→∞

sn+1 − s

sn − s
= lim

n→∞

∆sn+1

∆sn
= 1 }, (14.2)

respectively. For (sn) ∈ Sλ, (sn) converges if 0 < |λ| < 1, and (sn) diverges if |λ| > 1.

We consider subsets of Sλ and LOGSF as follows:

Alt = { (sn) | sn ∼ s + (−1)nnθ
∞∑

j=0

cjn
−j , c0 6= 0, θ < 0}, (14.3)

L1 = { (sn) | sn ∼ s + nθ
∞∑

j=0

cjn
−j , c0 6= 0,−θ ∈ N}, (14.4)

L2 = { (sn) | sn ∼ s + nθ
∞∑

j=0

cjn
−j , c0 6= 0, θ < 0}, (14.5)

L3 = { (sn) | sn ∼ s +
m∑

i=1

nθi

∞∑
j=0

cijn
−j , 0 > θ1 > θ2 > · · · > θm}, (14.6)

L4 = { (sn) | sn ∼ s + nθ
∞∑

j=0

aj + bj log n

nj
, θ < 0}, (14.7)

L5 = { (sn) | sn ∼ s + nθ(log n)τ
∞∑

j=0

∞∑
i=0

cij

(log n)inj
, θ < 0 or θ = 0 and τ < 0}.

(14.8)

*The material in this section is an improvement of the author’s informal paper: N. Osada, Asymptotic
expansion and acceleration methods for certain logarithmically convrgent sequences, RIMS Kokyuroku
676(1988), pp.195-207.
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We remark that Alt= S−1 and L1 = S1. We also remark that

L1 ⊂ L2 ⊂ L3 ⊂ LOGSF, L2 ⊂ L4 ⊂ LOGSF, L2 ⊂ L5 ⊂ LOGSF. (14.9)

14.2 Test series

We take up infinite series for each set. Test series are shown in Table 14.1. Some of

them, No. 1,3,4,5, and 8 were tested by Smith and Ford[54].
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Table 14.1

Test series

set No. partial sum of series sum asymptotic expansion

Sλ 1
n∑

i=1

(0.8)i

i
log 5 θ = −1, λ = 0.8

2
n∑

i=1

(−1)i−1 4i

i
log 5 θ = −1, λ = 4

Alt 3
n∑

i=1

(−1)i−1 1
i

log 2 θ = −1 Example 3.1

4
n∑

i=1

(−1)i−1 1√
i

0.60489 86434 21630 θ = −0.5 Example 3.3

L1 5
n∑

i=1

1
i2

π2/6 θ = −1 Example 3.4

6
n∑

i=1

1
i3

1.20205 69031 59594 θ = −2 Example 3.4

L2 7
n∑

i=1

1
i
√

i
2.61237 53486 85488 θ = −0.5 Example 3.4

8
n∑

i=1

(
i + e1/i

)−
√

2

1.71379 67355 40301 θ = 1 −
√

2 Example 3.5

L3 9
n∑

i=1

√
i + 1
i2

4.25730 94155 33714 θ1 = −0.5, θ2 = −1

L4 10
n∑

i=1

log i

i2
0.93754 82543 15844 θ = −1 Example 3.6

11
n∑

i=1

log i

i
√

i
3.93223 97374 31101 θ = −0.5 Example 3.6

L5 12
n+1∑
i=2

1
i(log i)2

2.10974 28012 36892 θ = −1 Example 3.7

14.3 Numerical results

Let (sn) converge to s or diverge from s. Let T be a sequence transformation (tn) the

transformed sequence by T , where tn depends on s1, . . . , sn but does not on sn+k, k > 0.
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The maximum significant digits from m terms is defined by

max
1≤n≤m

{ − log10 |tn − s| }. (14.10)

Acceleration methods taken up in this section are as follows. The ε-algorithm, the

Levin u-, v-, and t-transforms, the d(2)- and d(3)-transforms, the iterated Aitken δ2 pro-

cess, the automatic modified Aitken δ2 formula, the W transform, the ρ-algorithm, and

the automatic generalized ρ-algorithm. All methods require no knowledge of asymptotic

expansion of objective sequence. We compare with the quantities listed in Table 14.2.

Table 14.2

Acceleration methods

acceleration method definition quantity

ε-algorithm (8.10) ε
(n−2k)
2k , k = b(n − 1)/2c

Levin u-transform §9.1 T
(1)
n−1

Levin v-transform §9.1 T
(1)
n−2

Levin t-transform §9.1 T
(1)
n−2

d(2)-transform §9.3 E
(n−2l+2)
2l−2 , l = bn/2c

d(3)-transform §9.3 E
(n−3m+3)
3m−3 , m = bn/3c

iterated Aitken δ2 process (10.10) T
(n−2k)
k , k = b(n − 1)/2c

automatic modified Aitken δ2 formula §10.3 s
(n−l)
n,l , l = bn/2c

iterated Lubkin W transform (11.17) W (n−3p)
p , p = b(n − 1)/3c

ρ-algorithm (12.3) ρ
(n−2l)
2l , l = bn/2c

automatic generalized ρ-algorithm §13.2 ρ
(n−2k)
n,2k , k = b(n − 1)/2c

For each acceleration method we show the maximum significant digits from 20 terms

of each test series in Table 14.3. In table 14.3, the “number of terms” is abbreviated to

“NT”, and the “number of significant digits” is abbreviated to “SD”. Numerical com-

putations reported in this section were carried out on the NEC ACOS-610 computer in

double precision with approximately 16 digits.
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Table 14.3

The maximum significant digits

partial sum ε-algorithm Levin u Levin v

NT SD NT SD NT SD NT SD

Sλ 1 20 2.72 20 8.01 19 10.78 20 10.40
2 diverge 20 7.81 16 10.78 16 11.58

Alt 3 20 1.61 20 15.11 15 15.90 15 15.86
4 20 0.96 20 15.74 14 15.56 14 15.56

L1 5 20 1.31 20 2.06 14 11.46 12 9.64
6 20 2.92 20 4.17 12 11.49 12 11.01

L2 7 20 0.35 20 0.78 10 9.01 12 8.55
8 20 0.17 20 0.53 13 8.44 13 7.58

L3 9 20 0.31 20 0.75 20 2.58 19 2.96
L4 10 20 0.71 20 1.62 20 3.11 20 3.47

11 20 −0.35 20 −0.01 20 0.98 20 1.24
L5 12 20 0.49 20 0.69 20 1.07 20 1.13

Table 14.3 (Continued)

Levin t d(2)-trans d(3)-trans Aitken δ2

NT SD NT SD NT SD NT SD

Sλ 1 20 10.49 20 7.16 20 6.45 17 9.62
2 16 10.54 19 8.36 19 6.18 17 11.77

Alt 3 14 15.95 20 13.85 20 12.84 19 16.08
4 15 15.54 20 15.90 19 15.31 16 16.08

L1 5 20 2.28 18 11.29 20 10.69 20 3.18
6 20 4.60 16 12.44 16 12.20 19 5.72

L2 7 20 0.89 14 9.82 19 10.20 19 1.42
8 20 0.16 15 10.76 18 9.63 7 1.05

L3 9 20 0.87 12 5.54 15 8.54 19 1.35
L4 10 20 1.52 13 7.07 20 6.99 15 1.33

11 20 0.03 13 4.98 17 4.80 20 −0.18
L5 12 20 0.74 19 1.29 20 1.59 20 0.81
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Table 14.3 (Continued)

aut mod δ2 Lubkin W ρ-algorithm aut gen ρ
NT SD NT SD NT SD NT SD

Sλ 1 13 6.76 20 10.69 decelerate 20 8.06
2 18 10.52 19 11.13 decelerate 20 7.99

Alt 3 19 16.01 19 16.26 decelerate 19 14.51
4 19 15.50 17 15.54 decelerate 19 14.59

L1 5 12 11.02 15 9.66 18 11.66 20 12.18
6 19 12.53 18 10.92 20 12.81 14 13.05

L2 7 11 9.79 15 8.34 18 1.52 9 10.51
8 19 9.70 13 8.38 20 1.03 17 11.29

L3 9 19 3.04 20 4.43 17 1.54 18 3.08
L4 10 16 3.03 12 2.25 20 3.03 19 3.58

11 14 0.75 20 0.46 18 0.44 17 1.27
L5 12 20 1.13 20 1.31 20 0.89 20 1.15

14.4 Extraction

As Delahahe and Germain-Bonne[14] proved, there is no acceleration method that

can accelerate all sequences belonging to LOGSF. However, if a logarithmic sequence

(sn) satisfies the asymptotic form

sn = s + O(nθ), (14.11)

or

sn = s + O(nθ(log n)τ ), (14.12)

where θ < 0, then the subsequence (s2n) of (sn) satisfies

s2n = s + O((2θ)n), (14.13)

or

s2n = s + O((2θ)nnτ ), (14.14)
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respectively. Both (14.13) and (14.14) converges linearly to s with contraction ratio 2θ.

In particular, if a sequence (sn) belongs to L3, the subsequence (s2n) of (sn) satisfies

the asymptotic expansion of the form

s2n ∼ s +
∞∑

j=1

cjλ
n
j , (14.15)

where cj and 1 > λ1 > λ2 > · · · > 0 are constants. By Theorem 8.4, the ε-algorithm and

the iterated Aitken δ2 process can accelerate the subsequence efficiently.

If (sn) satisfies

sn = s + O((log n)τ ), (14.16)

where τ < 0, then

s2n = s + O(nτ ), (14.17)

that is, (s2n) converges logarithmically. Therefore the d-transform or the automatic

generalized ρ-algorithm are expected to accelerate the convergence of (s2n).

In Table 14.4, we take up the Levin t-transform, the ε-algorithm, the iterated Aitken

δ2 process, and the d(2)-transform as acceleration methods, and we apply to the last 6

series in Table 14.1. Though we do not list in Table 14.4, the Levin t-transform is slightly

better than the Levin u-, v-transforms. The d(2)-transform is slightly better than the

d(3)-transform.

Table 14.4

The maximum significant digits

series partial sum Levin t ε-algorithm Aitken δ2 d(2)

No. NT SD NT SD NT SD NT SD NT SD

7 16384 1.81 16384 6.49 16384 12.02 4096 11.45 16384 6.96
8 16384 1.36 16384 5.28 16384 10.92 8192 10.77 8192 4.31
9 16384 1.80 16384 5.81 16384 9.56 16384 8.09 16384 6.32

10 16384 3.18 16384 8.52 4096 9.86 8192 7.41 16384 8.91
11 16384 0.74 16384 5.14 8192 6.69 2048 5.97 8192 4.14
12 16384 0.99 16384 1.67 8192 1.49 512 1.45 16384 4.63
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Table 14.5

The maximum significant digits for
2n+1∑
i=2

1
i(log i)2

.

series Levin u Lubkin W aut. gen. ρ aut. mod. δ2 d(3)

No. NT SD NT SD NT SD NT SD NT SD

12 16384 2.60 4096 3.48 8192 3.91 2048 3.11 8192 4.04

14.5 Conclusions

Table 14.3 show that the best available methods are the d(2)- and d(3)-transforms.

For Sλ, all tested methods except the ρ-algorithm work well. For L1 and L2, the

automatic generalized ρ-algorithm is the best.

The Levin u-, v-transforms, the automatic generalized ρ-algorithm, and the auto-

matic modified Aitken δ2 formula, and Lubkin’s W transforms are good methods. The

automatic generalized ρ-algorithm and the automatic modified Aitken δ2 formula are

generalizations of the sequence transformation

sn 7→ sn − θ − 1
θ

∆sn∆sn−1

∆2sn−1
, (14.18)

therefore they perform similarly.

The ε-algorithm, the Levin t-transform, and the iterated Aitken δ2 process perform

similarly. Because these three methods are extensions of the Aitken δ2 process.

For a sequence (sn) belonging to L3 or L4, any acceleration method listed in Table

14.2 cannot give high accurate result. However, when we apply the ε-algorithm or the

iterated Aitken δ2 process to the subsequence (s2n), we can obtain good result.

For the last series, the d(2)-, d(3)-transforms, the automatic generalized ρ-algorithm,

Lubkin’s W transform, and the automatic modified Aitken δ2 formula accelerate the

convergence of (s2n).
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15. Application to numerical integration

Infinite integrals and improper integrals usually converge slowly. Such an integral

yields a slowly convergent sequence or an infinite series. Various acceleration methods

have been applied to such slowly convergent integrals. In this section we deal with the

application of acceleration methods to numerical integration.

15.1 Introduction

Acceleration methods are applied to numerical integration in the following ways.

I. The semi-infinite integral I =
∫ ∞

a
f(x)dx.

Let a = x0 < x1 < x2 < . . . be an increasing sequence diverging to ∞. Then I

becomes to an infinite series

I =
∞∑

j=1

∫ xj

xj−1

f(x)dx =
∞∑

j=1

Ij . (15.1)

Let Sn be the nth partial sum of (15.1).

I-1. Suppose that f(x) converges monotonically to zero as x → ∞. Let a = x0 <

x1 < x2 < . . . be equidistant points. Then Sn sometimes either converges linearly or

satisfies

Sn ∼ I + nθ
∞∑

j=1

cjn
−j . (15.2)

As we described in the preceding section, we can accelerate (Sn) or (S2n).

I-2. Suppose that f(x) is a product of an oscillating function and a positive decreas-

ing function. Let x1 < x2 < . . . be zeros of f(x). Then the infinite series (15.1) becomes

to alternating series. Thus it is easy to accelerate (Sn).

The first proposer of this method was I. M. Longman[28]. In 1956, he applied the

Euler transformation to semi-infinite integrals involving Bessel functions.

In this paper we consider f(x) = g(x) sin ωx or f(x) = g(x) cos ωx, where g(x)

converges monotonically to zero as x → ∞ and ω > 0 is a known constant.

II. The finite integral I =
∫ b

a
f(x)dx.

Let Sn be an approximation of I by applying n panels compound integral formula

such as n panels midpoint rule. As we described in Section 4, Sn has often the asymptotic

expansion of the form

Sn ∼ I +
∞∑

j=0

cjn
θj , (15.3)

101



or

Sn ∼ I + nθ
∞∑

j=0

aj + bj log n

nj
+ nτ

∞∑
j=0

cj + dj log n

nj
. (15.4)

If f(x) is of class C∞ in [a, b] and if the quadrature formula is either the trapezoidal rule

or the midpoint rule, then θj = −2j − 2 in (15.3).

II-1. When θj ’s in (15.3), or θ and τ in (15.4) are known, by applying the Richardson

extrapolation or the E-algorithm to (Sn) or (S2n), the convergence of (Sn) is accelerated.

In 1955, W. Romberg[45] applied the Richardson extrapolation to (S2n) when θj =

−2j − 2 in (15.3). Since 1961, many authors such as I. Navot[33] and H. Rutishauser[46]

applied it to improper integrals, see Joyce’s survey paper[22].

II-2. When the asymptotic scale in the asymptotic expansion is unknown, accelera-

tion methods taken up in the previous section are applied to (Sn) or (S2n). As we saw in

the previous section, when there are integers i and j such that θi − θj is not integer, we

can not obtain a high accurate result by applying an acceleration method to (Sn) itself.

However, for (15.3) and (15.4) it is expected to obtain a good result by applying the

ε-algorithm or the iterated Aitken δ2 process to (S2n). The first proposer of this method

was C. Brezinski[6,7]. In 1970 and 1971, he applied the ρ-algorithm with parameter to

(S2n) and the ε-algorithm when θj = −2j−2 in (15.3). Subsequently many authors such

as D. K. Kahaner[23] applied acceleration methods to finite integrals.

III. For another way of applying extrapolation methods to numerical integration,

see Brezinski and Redivo Zaglia[11, p.366–386] and Rabinowitz[43].

15.2 Application to semi-infinite integrals

We apply the above method I-1 to integrals listed in Table 15.1.
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Table 15.1

Semi-infinite integrals

with a monotonically decreasing integrand

No. integral exact Sn =
∫ 2n

0
f(x)dx

1
∫ ∞

0

e−xdx 1 geometric series

2
∫ ∞

0

x2e−xdx 2 linearly convergent sequence

3
∫ ∞

0

dx

1 + x2

π

2
Sn ∼ π

2
+

∑∞
j=1

cj

n2j−1

We take xj = 2j and compute
∫ 2j

2j−2

f(x)dx by the Romberg method. Acceleration

methods that we apply are the Levin u-transform, the ε-algorithm, Lubkin’s W trans-

form, the iterated Aitken δ2-process, the d(2)-transform and the automatic generalized

ρ-algorithm. The tolerances are ε = 10−6 and 10−12. For
∫ ∞
0

dx/(1 + x2), we take

ε = 10−9 instead of 10−12. The stopping criterion is |Tn − Tn−1| < ε, where (Tn) is

the accelerated sequence. The results are shown in Table 15.2. Throughout this section,

the number of terms is abbreviated to “T”, and the number of functional evaluations is

abbreviated to “FE”.

Table 15.2

Number of terms, functional evaluations, and errors

ε = 10−6

Levin u-transform ε-algorithm Lubkin’s W transform
No. T FE error T FE error T FE error

1 5 43 6.16 × 10−9 4 36 6.19 × 10−9 5 43 6.19 × 10−9

2 8 96 −1.24 × 10−9 8 96 −6.60 × 10−10 8 96 5.05 × 10−8

3 10 102 6.46 × 10−9 failure 9 95 9.63 × 10−7

Aitken δ2 process d(2)-transform automatic generalized ρ

No. T FE error T FE error T FE error

1 3 29 6.16 × 10−9 7 57 6.16 × 10−9 5 43 6.16 × 10−9

2 8 96 1.91 × 10−9 8 96 −6.58 × 10−10 8 96 7.75 × 10−10

3 failure 10 102 −3.24 × 10−8 9 95 −4.17 × 10−8
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ε = 10−12

Levin u-transform ε-algorithm Lubkin’s W transform
No. T FE error T FE error T FE error

1 5 187 −2.78 × 10−16 4 156 −8.33 × 10−17 5 187 −8.33 × 10−17

2 11 325 1.29 × 10−14 8 280 1.40 × 10−14 12 340 8.88 × 10−16

Aitken δ2 process d(2)-transform automatic generalized ρ

No. T FE error T FE error T FE error

1 3 125 −8.33 × 10−17 7 233 −9.71 × 10−17 5 187 −8.33 × 10−17

2 11 325 4.93 × 10−14 9 295 1.20 × 10−14 10 310 1.38 × 10−14

ε = 10−9

Levin u-transform d(2)-transform automatic generalized ρ

No. T FE error T FE error T FE error

3 14 226 6.20 × 10−11 14 226 −1.29 × 10−11 14 226 −1.21 × 10−10

When ε = 10−12, all methods except the automatic generalized ρ-algorithm (T= 27,

FE= 557, error= 3.08 × 10−13), failure on
∫ ∞
0

dx/(1 + x2).

Next we apply the above method I-2 to integrals listed in Table 15.3. All integrals

were tested by Hasegawa and Torii[19].

Table 15.3

Semi-infinite integrals with an oscillatory integrand

No. integral exact

1
∫ ∞

0

e−x cos xdx 0.5

2
∫ ∞

0

x sin x

x2 + 1
dx π/(2e)

3
∫ ∞

0

cos x

x2 + 1
dx π/(2e)

4
∫ ∞

0

cos x√
x2 + 1

dx 0.42102 44382 40708

5
∫ ∞

1

sin x

x2
dx 0.50406 70619 06919
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We compute integrals between two consecutive zeros by the Romberg method. Ac-

celeration methods considered here are the Levin u-transform, the ε-algorithm, and the

d(2)-transform. These methods require no knowledge of asymptotic expansion of the in-

tegrand or the integral. The tolerances are ε = 10−6 and 10−12. The results are shown

in Table 15.4.

Table 15.4

Number of terms, functional evaluations, and errors

ε = 10−6

Levin u-transform ε-algorithm d(2)-transform
No. T FE error T FE error T FE error

1 5 81 −7.38 × 10−9 4 73 −7.38 × 10−9 5 81 −7.44 × 10−9

2 8 129 1.54 × 10−7 10 145 1.13 × 10−7 9 137 1.46 × 10−7

3 7 89 1.62 × 10−7 9 105 7.37 × 10−9 8 97 −7.75 × 10−8

4 8 145 −3.01 × 10−8 10 177 −9.09 × 10−8 9 161 −1.21 × 10−7

5 7 89 −5.01 × 10−8 9 105 4.77 × 10−8 8 97 −1.05 × 10−8

ε = 10−12

Levin u transform ε-algorithm d(2)-transform
No. T FE error T FE error T FE error

1 5 353 −2.50 × 10−16 4 321 4.16 × 10−17 6 358 −2.78 × 10−16

2 12 641 −4.53 × 10−14 18 833 −9.40 × 10−15 14 705 2.16 × 10−14

3 12 897 1.82 × 10−14 17 1217 8.10 × 10−14 13 961 1.56 × 10−13

4 12 897 −2.01 × 10−13 18 1281 −6.90 × 10−14 14 1025 4.33 × 10−15

5 12 1025 −9.01 × 10−15 17 1345 3.68 × 10−14 12 1025 −1.71 × 10−13

The Levin v- and t-transforms perform similar to the Levin u-transform. The it-

erated Aitken δ2 process and Lubkin’s W trasnsform are slightly better than the ε-

algorithm. The d(2)-transform is better that the d(3)-transform. The best acceleration

methods we tested for semi-infinite oscillating integrals are the Levin transforms.

These results are less than Hasegawa and Torii’s results[19], but they are available

in practice because they require no knowledge of the integrand.
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15.3 Application to improper integrals

We apply the above method II-2 to integrals listed in Table 15.5.

Table 15.5

Improper integrals

No. integral exact Sn = h
∑n

i=1 f(a + (2i − 1)h), h = (b − a)/n

1
∫ 1

0

√
xdx 2/3 Sn ∼ I + c0n

−1.5 +
∞∑

j=1

cjn
−2j

2
∫ 1

0

dx√
x

2 Sn ∼ I + c0n
−0.5 +

∞∑
j=1

cjn
−2j

3 B(
2
3
,
1
3
) 2π/

√
3 Sn ∼ I +

∞∑
j=1

(c2j−1n
−1/3−j+1 + c2jn

−2/3−j+1)

4
∫ 1

0

log x√
x

dx −4 Sn ∼ I +
∞∑

j=0

(ajn
−1/2−j + bjn

−1/2−j log n

+cjn
−j−1)

We use the midpoint rule as the quadrature formula. Acceleration methods are

the Levin u-transform, the ε-algorithm, Lubkin’s W transform, the iterated Aitken δ2-

process, the d(2)-transform and the automatic generalized ρ-algorithm. The tolerance is

ε = 10−6 and the maximum number of terms is 15. The results are shown in Table 15.6.
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Table 15.6

Number of terms, functional evaluations, and errors

ε = 10−6

Levin u-transform ε-algorithm Lubkin’s W transform
No. T FE error T FE error T FE error

1 8 255 3.70 × 10−9 7 127 −4.86 × 10−9 8 255 3.30 × 10−9

2 13 8191 −2.09 × 10−7 8 255 1.78 × 10−8 11 2047 −2.46 × 10−10

3 15 32767 7.21 × 10−6 13 8191 1.13 × 10−7 failure
4 14 16383 −4.90 × 10−7 11 2047 3.91 × 10−9 15 32767 2.04 × 10−6

Aitken δ2 process d(2)-transform automatic generalized ρ

No. T FE error T FE error T FE error

1 6 63 −4.22 × 10−7 8 255 −1.20 × 10−7 8 255 2.24 × 10−11

2 9 511 9.10 × 10−10 14 16383 −3.36 × 10−8 15 32767 −8.26 × 10−9

3 15 32767 −6.56 × 10−6 15 32767 1.64 × 10−5 15 32767 −9.97 × 10−6

4 15 32767 −2.01 × 10−6 15 32767 −1.06 × 10−7 14 16383 3.20 × 10−7

The ε-algorithm is the best. For the tolerance ε = 10−9, only the ε-algorithm

succeeds on all integrals listed in Table 15.5, provided that the number of terms is less

than or equals to 15.
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CONCLUSIONS

In this paper we studied acceleration methods for slowly convergent scalar sequences

from asymptotic view point, and applied these methods to numerical integration.

In conclusion, our opinion is as follows.

1. Suppose that a sequnce (sn) has an asymptotic expansion of the form

sn ∼ s +
∞∑

j=1

cjgj(n). (1)

Let T be a sequence transformation and (tn) = T (sn). If we know an asymptotic scale

(gj(n)), then we can often obtain an asymptotic formula

tn = s + O(g(n)). (2)

2. By the above 1, if we know (gj(n)), we can choose a suitable acceleration method

for (sn).

3. We show the most suitable methods in the following Table 1. We append the

number of theorem giving the asymptotic formula.

4. For a logarithmically convergent sequence (sn), we can usually obtain higher

accuracy when we apply to (s2n).

5. There is no all-purpose acceleration method. The best method of all we treated

is the d-transform, and the second best method is the automatic generalized ρ-algorithm.

In application, we can usually determine a type of an aymptotic expansion of an objective

sequence. For example, when we apply the midpoint rule to an improper integral with

endpoint singularity, the objective sequence has the asymptotic expansion of the form

sn ∼ s + nθ
∞∑

j=0

cjn
−j + nτ

∞∑
j=0

djn
−j . (3)

In such a case, we recommend the methods listed in Table 1.

6. If (sn) satisfies (3) and the ε-algorithm is applied to (s2n), (ε(n−2k)
2k ) gives high

accurate result. In particular, it is a good method that the ε-algorithm is applied to M2n ,

where M2n is the 2npanels midpoint rule.
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Table 1

Suitable acceleration methods

asymptotic expansion asymptotic scale asymptotic scale
sn − s known unknown∑∞

j=1 cjλ
n
j (sn) Richardson extrapolation1) ε-algorithm2)

λnnθ
∑∞

j=0 cjn
−j (sn) E-algorithm3) Levin transforms4)

nθ
∑∞

j=0 cjn
−j (sn) generalized ρ-algorithm5) automatic generalized

modified Aitken δ2 formula6) ρ-algorithm
(s2n) Richardson extrapolation1) ε-algorithm2)∑

cijn
θi−j (sn) E-algorithm3) d-transform

(s2n) Richardson extrapolation1) ε-algorithm2)

nθ
∑∞

j=0(aj + bj log n)n−j (sn) E-algorithm3) d-transform
(s2n) E-algorithm3) ε-algorithm2)∑

i,j cij(log n)τ−inθ−j (sn) E-algorithm3)

(s2n) E-algorithm3) d-transform

1) Formula (7.37), 2) Theorem 8.4, 3) Theorem 6.2, 4) Theorem 9.1, 5) Theorem 13.2, 6) Theorem 10.5.

We raise the following questions.

1. Find an efficient algorithm for the automatic generalized ρ-algorithm.

2. Find an acceleration method that works well on a sequence (sn) satisfying

sn ∼ s +
m∑

i=1

nθi

∞∑
j=0

aij + bij log n

nj
. (4)

Such sequences occur in numerical integration.

3. Find an acceleration method that works well on a sequence (sn) satisfying

sn ∼ s + nθ
∞∑

j=0

j∑
i=0

ci,j(log n)i

nj
. (5)

Such sequences occur in singular fixed point problems.

4. Extend results for scalar sequences to vector sequences. In particular, study

acceleration methods for logarithmically convergent vector sequences.
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Appendix A. Asymptotic formulae of the Aitken δ2 process

Lemma 10.3 Suppose that a sequence (sn) satisfies

sn = s + c0n
θ + c1n

θ−1 + c2n
θ−2 + O(nθ−3), (A.1)

where θ < 0 and c0( 6= 0), c1, c2 are constants. Then the following asymptotic formulæ

hold.

(1) sn − (∆sn)2

∆2sn
= s +

c0

1 − θ
nθ + O(nθ−1).

(2) sn − θ − 1
θ

(∆sn)2

∆2sn
= s + O(nθ−1).

(3) sn − θ − 1
θ

∆sn∇sn

∆sn −∇sn
= s + O(nθ−2).

Proof. (1) Using (A.1) and the binomial expansion, we have

∆sn = c0n
θ

[(
1 +

1
n

)θ

− 1

]
+ c1n

θ−1

[(
1 +

1
n

)θ−1

− 1

]

+ c2n
θ−2

[(
1 +

1
n

)θ−2

− 1

]
+ O(nθ−4)

= c0θn
θ−1 +

(
1
2
c0θ + c1

)
(θ − 1)nθ−2

+
[
1
6
c0θ(θ − 1) +

1
2
c1(θ − 1) + c2

]
(θ − 2)nθ−3 + O(nθ−4) (A.2)

and

∆2sn = c0θn
θ−1

[(
1 +

1
n

)θ−1

− 1

]

+
(

1
2
c0θ + c1

)
(θ − 1)nθ−2

[(
1 +

1
n

)θ−2

− 1

]
+ O(nθ−4)

= c0θ(θ − 1)nθ−2

[
1 +

(
1 +

c1

c0θ

)
(θ − 2)

1
n

+ O(
1
n2

)
]

.

By (A.2),

(∆sn)2 = c2
0θ

2n2θ−2

[
1 +

(
1 +

2c1

c0θ

)
(θ − 1)

1
n

+ O(
1
n2

)
]

,

then we have
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(∆sn)2

∆2sn
=

c0θ

θ − 1
nθ

[
1 +

(
1 +

c1

c0θ

)
(θ − 2)

1
n

+ O(
1
n2

)
]

×
[
1 −

(
1 +

2c1

c0θ

)
(θ − 1)

1
n

+ O(
1
n2

)
]

=
c0θ

θ − 1
nθ

[
1 +

(
1 +

c1

c0

)
1
n

+ O(
1
n2

)
]

. (A.3)

Thus we obtain

sn − (∆sn)2

∆2sn
= s +

c0

1 − θ
nθ + O(nθ−1).

(2) By (A.3), we have

sn − θ − 1
θ

(∆sn)2

∆2sn
= s − c0n

θ−1 + O(nθ−2).

(3) Similarly,

∇sn = c0θn
θ−1 +

(
−1

2
c0θ + c1

)
(θ − 1)nθ−2

+
[
1
6
c0θ(θ − 1) − 1

2
c1(θ − 1) + c2

]
(θ − 2)nθ−3 + O(nθ−4). (A.4)

By (A.2) and (A.4) we have

∆sn∇sn = c2
0θ

2n2θ−2

[
1 +

2c1

c0θ
(θ − 1)

1
n

+ O(
1
n2

)
]

,

and

∆sn −∇sn = c0θ(θ − 1)nθ−2

[
1 +

c1(θ − 2)
c0θ

1
n

+ O(
1
n2

)
]

.

Thus
∆sn∇sn

∆sn −∇n
=

c0θ

θ − 1
nθ

[
1 +

c1

c0

1
n

+ O(
1
n2

)
]

.

Therefore we obtain

sn − θ − 1
θ

∆sn∇sn

∆sn −∇n
= s + O(nθ−2),

as desired. ¤

116



Appendix B. An asymptotic formula of Lubkin’s W transformation

For a sequence (sn), the δα transform is defined by

δα(sn) = sn+1 −
α + 1

α

∆sn∆sn+1

∆2sn
,

where α is a positive parameter.

Theorem 11.6 (Sablonnière) Suppose that a sequence (sn) satisfies

sn ∼ s + nθ
∞∑

j=0

cj

nj
. (B.1)

If Wn,k is represented as

Wn,k − s = nθ−2k

[
c
(k)
0 +

c
(k)
1

n
+

c
(k)
2

n2
+ O(

1
n3

)

]
, c

(k)
0 6= 0, (B.2)

then

Wn,k+1 − s = nθ−2k−2

[
c
(k+1)
0 + O(

1
n

)
]

,

where

c
(k+1)
0 =

c
(k)
0 (1 + θ − 2k)

6(θ − 2k)
− 2(c(k)

0 k(θ − 2k) − c
(k)
1 )2

c
(k)
0 (θ − 2k)3

+
c
(k)
0 k2(θ − 2k)(θ − 2k − 1) − 4c

(k)
1 k(θ − 2k − 1) + 4c

(k)
2

(θ − 2k)2(θ − 2k − 1)
(B.3)

Proof. Let c̃
(k)
0 , c̃

(k)
1 and c̃

(k)
2 be defined by

Wn,k − s = (n + k)θ−2k

[
c̃
(k)
0 +

c̃
(k)
1

n + k
+

c̃
(k)
2

(n + k)2
+ O(

1
(n + k)3

)

]
.

Then

Wn,k − s = c̃
(k)
0 nθ−2k +

(
c̃
(k)
0 k(θ − 2k) + c̃

(k)
1

)
nθ−2k−1

+
(

1
2
c̃
(k)
0 k2(θ − 2k)(θ − 2k − 1) + c̃

(k)
1 k(θ − 2k − 1) + c̃

(k)
2

)
nθ−2k−2

+ O(nθ−2k−3) (B.4)
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By (B.2) and (B.4), we have

c̃
(k)
0 = c

(k)
0 ,

c̃
(k)
1 = −c

(k)
0 k(θ − 2k) + c

(k)
1 ,

c̃
(k)
2 =

1
2
c
(k)
0 k2(θ − 2k)(θ − 2k − 1) − c

(k)
1 k(θ − 2k − 1) + c

(k)
2 .

By Theorem 10.4,

δ2k−θ(Wn,k) − s = d
(k+1)
0 (n + k + 1)θ−2k−2 + O((n + k + 1)θ−2k−3).

where

d
(k+1)
0 =

c̃
(k)
0 (1 + θ − 2k)

12
− (c̃(k)

1 )2

c̃
(k)
0 (θ − 2k)2

+
2c̃

(k)
2

(θ − 2k)(θ − 2k − 1)
,

=
c
(k)
0 (1 + θ − 2k)

12
− (c(k)

1 − c
(k)
0 k(θ − 2k))2

c
(k)
0 (θ − 2k)2

+
c
(k)
0 k2(θ − 2k)(θ − 2k − 1) − 2c

(k)
1 k(θ − 2k − 1) + 2c

(k)
2

(θ − 2k)(θ − 2k − 1)
. (B.5)

By (B.2),

∆Wn+1,k

= c
(k)
0 (θ − 2k)nθ−2k−1

[
1 +

(
3
2
(θ − 2k − 1) +

c
(k)
1 (θ − 2k − 1)

c
(k)
0 (θ − 2k)

)
1
n

+

(
7
6
(θ − 2k − 1) +

3c
(k)
1 (θ − 2k − 1)

2c
(k)
0 (θ − 2k)

+
c
(k)
2

c
(k)
0 (θ − 2k)

)
θ − 2k − 2

n2

+O(
1
n3

)
]

, (B.6)

and

Wn+1,k − δ2k−θ(Wn,k)

= c
(k)
0 nθ−2k

[
1 +

(
θ − 2k +

c
(k)
1

c
(k)
0

)
1
n

+

(
1
2
(θ − 2k)(θ − 2k − 1) +

c
(k)
1 (θ − 2k − 1)

c
(k)
0

+
c
(k)
2

c
(k)
0

− d
(k+1)
0

c
(k)
0

)
1
n2

+O(
1
n3

)
]

. (B.7)
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We put

Wn,k+1 − s = Wn+1,k − N/D.

Then

N = ∆Wn+1,k (Wn+1,k − δ2k−θ(Wn,k))

= (c(k)
0 )2(θ − 2k)n2θ−4k−1

[
1 +

(
5θ

2
− 5k − 3

2
+

c
(k)
1 (2θ − 4k − 1)

c
(k)
0 (θ − 2k)

)
1
n

+

(
(θ − 2k − 1)(

19θ

6
− 19k

3
− 7

3
) +

c
(k)
1 (θ − 2k − 1)(5θ − 10k − 3)

c
(k)
0 (θ − 2k)

+
2c

(k)
2 (θ − 2k − 1)

c
(k)
0 (θ − 2k)

+
(c(k)

1 )2(θ − 2k − 1)

(c(k)
0 )2(θ − 2k)

− d
(k+1)
0

c
(k)
0

)
1
n2

+ O(
1
n3

)

]
.

(B.8)

Similarly, we have

D = ∆Wn+1,k − ∆δ2k−θ(Wn,k)

= c
(k)
0 (θ − 2k)nθ−2k−1

[
1 +

(
3
2
(θ − 2k − 1) +

c
(k)
1 (θ − 2k − 1)

c
(k)
0 (θ − 2k)

)
1
n

+

(
7
6
(θ − 2k − 1) +

3c
(k)
1 (θ − 2k − 1)

2c
(k)
0 (θ − 2k)

+
c
(k)
2

c
(k)
0 (θ − 2k)

− d
(k+1)
0

c
(k)
0 (θ − 2k)

)
θ − 2k − 2

n2

+O(
1
n3

)
]

. (B.9)

By (B.8) and (B.9),

N

D
= c

(k)
0 nθ−2k

[
1 +

(
θ − 2k +

c
(k)
1

c
(k)
0

)
1
n

+

(
1
2
(θ − 2k)(θ − 2k − 1) +

c
(k)
1 (θ − 2k − 1)

c
(k)
0

+
c
(k)
2

c
(k)
0

− 2d
(k+1)
0

c
(k)
0 (θ − 2k)

)
1
n2

+O(
1
n3

)
]

. (B.10)

Since Wn,k+1 − s = Wn+1,k − N/D , we obtain

Wn,k+1 − s =
2d

(k+1)
0

θ − 2k
nθ−2k−2 + O(nθ−2k−3).

This completes the proof. ¤
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FORTRAN PROGRAM

Here we give a FORTRAN program that includes the subroutines GENRHO, the

generalized ρ-algorithm, and MODAIT, the modified Aitken δ2 formula. The main rou-

tine given below is an example of applications of the subroutines to the series

sn =
n∑

i=1

1
i
√

i
.

The parameters NMAX, EPSTOR, DMINTOR, XTV in GENRHO and MODAIT are as

follows:

NMAX The maximum number of iterations.

EPSTOR The absolute error tolerance.

DMINTOR A positive number. For a variable x, if |x| <DMINTOR then the program stop.

XTV The true value, i.e. the limit of the sequence.

The variables N, ILL, TH in GENRHO and MODAIT are as follows:

N A positive integer n such that sn is the n-th term.

ILL A non-negative integer. If ILL> 0, then the program stop.

TH A real number. The exponent θ in the asymptotic expansion.

The variables XX, RHO, KOPT in GENRHO are as follows:

XX The n-th term sn. (input)

ρ
(n−2k)
2k , where k = bn/2c. (output)

RHO An array of dimension (0:1,0:NMAX)

RHO(1,k):ρ(n−1−k)
k (input)

RHO(1,k):ρ(n−k)
k (output)

KOPT A non-negative integer such that ρ
(n−2k)
2k is

the accelerated value where k =KOPT.

The variables XX, S, KOPT, DS in MODAIT are as follows:

XX The n-th term sn. (input)

s
(n−k)
k , where k = bn/2c. (output)
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S An array of dimension (0:1,0:NMAX)

S(1,k):s(n−1−k)
k (input)

S(1,k):s(n−k)
k (output)

KOPT A non-negative integer such that s
(n−k)
k is

the accelerated value where k =KOPT.

DS An array of dimension (0:1,0:NMAX)

DS(1,k):s(n−k−1)
k − s

(n−k−2)
k (input)

DS(1,k):s(n−k)
k − s

(n−k−1)
k (output)

The function TERM(N) returns the n-th term of infinite series.

C ACCELERATION METHODS FOR INFINITE SERIES
PROGRAM INFSER
IMPLICIT REAL*8 (A-H,O-Z)
IMPLICIT INTEGER*4 (I-N)
CHARACTER CEQ*60,CACCL*60
PARAMETER (NMAX=20,EPSTOR=1.0D-12,DMINTOR=1.0D-30)
EXTERNAL TERM
REAL*8 X(1:NMAX)
REAL*8 RHO(0:1,0:NMAX)
REAL*8 TRHO(0:1,0:NMAX)
REAL*8 S(0:1,0:NMAX),DS(0:1,0:NMAX)
REAL*8 TS(0:1,0:NMAX),DTS(0:1,0:NMAX)
CEQ=’ A_I=1/SQRT(I)/I ’
XTV=2.61237534868549D0
DO 101 IACCL=1,2

GO TO (102,103),IACCL
102 CACCL=’ AUTOMATIC GENERALIZED RHO ALGORITHM ’

GO TO 109
103 CACCL=’ AUTOMATIC MODIFIED AITKEN DELTA SQUARE ’

GO TO 109
109 CONTINUE

WRITE (*,3000)
WRITE (*,*) CEQ
WRITE (*,*) CACCL
WRITE (*,3100)
ILL=0
XX=0.0D0
DO 201 N=1,NMAX
X0=XX
XX=XX+TERM(N)
X(N)=XX
IF (N.EQ.1) THEN
DX=XX
GO TO 209

ENDIF
IF (N.EQ.2) THEN
DX0=DX
DX=XX-X0
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D2X=DX-DX0
DD=DX/D2X
GO TO 209

ENDIF
DX0=DX
DX=XX-X0
D2X=DX-DX0
DD0=DD
DD=DX/D2X
ALPHA=1.0D0/(DD-DD0)+1.0D0
TH=-2.0D0
NN=N-2
GO TO (202,203),IACCL

202 CALL GENRHO(ALPHA,TRHO,NN,DMINTOR,KOPT,NMAX,ILL,TH)
GO TO 209

203 CALL MODAIT(ALPHA,TS,DTS,NN,DMINTOR,KOPT,NMAX,ILL,TH)
GO TO 209

209 CONTINUE
ERX=ABS(XX-XTV)
SDXER=-LOG10(ERX)
XP=XX
IF (N.LE.2) GO TO 229
GO TO (210,220),IACCL

210 CONTINUE
DO 211 NN=1,N
XP=X(NN)
TH=ALPHA
CALL GENRHO(XP,RHO,NN,DMINTOR,KOPT,NMAX,ILL,TH)

211 CONTINUE
GO TO 229

220 CONTINUE
DO 221 NN=1,N
XP=X(NN)
TH=ALPHA
CALL MODAIT(XP,S,DS,NN,DMINTOR,KOPT,NMAX,ILL,TH)

221 CONTINUE
GO TO 229

229 CONTINUE
ER=ABS(XP-XTV)
SDER=-LOG10(ER)
IF (N.LE.2) GO TO 232

231 WRITE (*,2000) N,XX,ALPHA,XP,SDXER,SDER,KOPT
GO TO 239

232 WRITE (*,2010) N,XX
GO TO 239

239 CONTINUE
DXP=ABS(XP-XP0)
XP0=XP
IF (DXP.LT.EPSTOR) GO TO 300
IF (ILL.GE.1) GO TO 300
IF (N.LE.2) GO TO 201

201 CONTINUE
300 CONTINUE
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WRITE (*,3100)
IF (ILL.GE.1) THEN

WRITE (*,*) ’ ABNORMALLY ENDED ’
ENDIF
WRITE (*,3100)

101 CONTINUE
2000 FORMAT (I4,3D25.15,2F7.2,I5)
2010 FORMAT (I4,1D25.15)
3000 FORMAT (1H1)
3100 FORMAT (/)
9999 STOP

END

FUNCTION TERM(N)
REAL*8 X,TERM
X=DBLE(N)
TERM=1.0D0/X/SQRT(X)
RETURN
END

SUBROUTINE GENRHO(XX,RHO,N,DMINTOR,KOPT,NMAX,ILL,TH)
REAL*8 DMINTOR,ER,TH
REAL*8 RHO(0:1,0:NMAX)
REAL*8 DRHO,XX
KOPT=0
IF (N.EQ.1) GO TO 110
KEND=N-1
DO 101 K=KEND,0,-1
RHO(0,K)=RHO(1,K)

101 CONTINUE
110 CONTINUE

RHO(1,0)=XX
IF (N.EQ.1) THEN
RHO(1,1)=-TH/XX
GO TO 199

ENDIF
DRHO=RHO(1,0)-RHO(0,0)
ER=ABS(DRHO)
KOPT=0
IF (ER.LT.DMINTOR) THEN
ILL=1
GO TO 199

ENDIF
RHO(1,1)=-TH/DRHO
KEND=N
DO 121 K=2,KEND
DRHO=RHO(1,K-1)-RHO(0,K-1)
ER=ABS(DRHO)
IF ((ER.LT.DMINTOR).AND.(MOD(K,2).EQ.1)) THEN
KOPT=K-1
GO TO 140

ENDIF
IF ((ER.LT.DMINTOR).AND.(MOD(K,2).EQ.0)) THEN
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ILL=1
GO TO 199

ENDIF
RHO(1,K)=RHO(0,K-2)+(DBLE(K-1)-TH)/DRHO

121 CONTINUE
IF (MOD(N,2).EQ.0) THEN

KOPT=N
ELSE
KOPT=N-1

ENDIF
140 CONTINUE

XX=RHO(1,KOPT)
199 RETURN

END

SUBROUTINE MODAIT(XX,S,DS,N,DMINTOR,KOPT,NMAX,ILL,TH)
REAL*8 DMINTOR,TH,COEF
REAL*8 W1,W2,XX
REAL*8 S(0:1,0:NMAX),DS(0:1,0:NMAX)
KOPT=0
IF (N.EQ.1) GO TO 110
KEND=INT((N-1)/2)
DO 101 K=0,KEND
S(0,K)=S(1,K)
IF ((MOD(N,2).EQ.1).AND.(K.EQ.KEND)) GO TO 101
DS(0,K)=DS(1,K)

101 CONTINUE
110 CONTINUE

S(1,0)=XX
IF (N.EQ.1) THEN
DS(1,0)=XX
GO TO 199

ENDIF
DS(1,0)=XX-S(0,0)
KEND=INT(N/2)
DO 111 K=1,KEND
W1=DS(0,K-1)*DS(1,K-1)
W2=DS(1,K-1)-DS(0,K-1)
IF (ABS(W2).LT.DMINTOR) THEN
ILL=1
GO TO 199

ENDIF
COEF=(DBLE(2*K-1)-TH)/(DBLE(2*K-2)-TH)
S(1,K)=S(0,K-1)-COEF*W1/W2
IF (N.EQ.2*K-1) GO TO 111
DS(1,K)=S(1,K)-S(0,K)

111 CONTINUE
120 KOPT=INT(N/2)
140 CONTINUE

XX=S(1,KOPT)
199 RETURN

END
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