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Abstract.

In the Kai Fukudai no Hō (Methods of Solving Concealed Problems) re-
revised in 1683, Seki Takakazu gave two eliminating procedures for a system
of n polynomial equations of degree n−1. Both procedures are derived from
a formula in which the determinant of the coefficient matrix of the system of
equations vanishes. Seki called the first procedure the successive multiplica-
tion of equations by coefficients of other equations (chikushiki kōjō). Because
the first procedure was so complicated, he invented another procedure con-
sisting of shuffles (kōshiki) and oblique multiplications (shajō), an extension
of the rule of Sarrus.

Although there are some errors when n ≥ 5, we can prove that Seki’s
conception of the second procedure is essentially correct. We can summarize
that Seki’s second procedure is based on a coset decomposition of the sym-
metric group Sn with respect to the dihedral subgroup Dn. We also clarify
Seki’s terms forward (jun) and backward (gyaku) which have not yet been
explained by historians of mathematics.

§1. Introduction

The Kai Fukudai no Hō [解伏題之法] (Methods of Solving Concealed
Problems) re-revised by Seki Takakazu [関孝和] (1640s–1708) in 1683 was
passed down among students of his school in the form of manuscripts such as
[15, 16]. A concealed problem (fukudai [伏題]) means the problem which is
solved using a system of equations with several unknowns.
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Let x be an unknown to be found and y an auxiliary unknown. Seki con-
siders a pair of polynomial equations for y of degree n:

(1)
{

a0(x) + a1(x)y + · · ·+ an(x)y
n = 0,

b0(x) + b1(x)y + · · ·+ bn(x)y
n = 0.

Eliminating yn in (1), Seki transforms the pair (1) into a system of [simultane-
ous] n polynomial equations of degree n− 1:

(2)

⎧
⎪⎪⎨
⎪⎪⎩

x11 + x12y + · · ·+ x1ny
n−1 = 0,

x21 + x22y + · · ·+ x2ny
n−1 = 0,

· · ·
xn1 + xn2y + · · ·+ xnny

n−1 = 0,

where xij are polynomials in terms of the required unknown x. Seki refers to
(2) as the [transformed] system of n equations (kanshiki [換式]).

For the systen of n equations (2) to have a solution y, it is necessary for
the determinant of the coefficients to vanish:

(3)

∣∣∣∣∣∣∣∣

x11 x12 · · · x1n

x21 x22 · · · x2n

· · ·
xn1 xn2 · · · xnn

∣∣∣∣∣∣∣∣
= 0.

In the Kai Fukudai no Hō, an algorithm for transforming the pair (1) into
the system of n equations (2) was explicitly given. See e.g. M. Fujiwara [1,
p. 203] or H. Katō [7, pp. 138–139]. For deriving (3) from (2), however,
Seki gave two different procedures: The first is referred to as the successive
multiplication of each equation by coefficients of other equations (chikushiki
kōjō [逐式交乗]) and tables of multiplications are given only for n = 2, 3 and
4. For this procedure, see N. Osada [13].

This first procedure was so complicated that Seki introduced a second
procedure called shuffles (kōshiki [交式]) and oblique multiplications (shajō
[斜乗]), which generalize the rule of Sarrus.

Seki’s choice of shuffles for the system of n equations (See Fig. 1) gives
incorrect multiplications when n = 5, but a corrected procedure for any n
greater than 3 is given by Matsunaga Yoshisuke [松永良弼] (1694–1744), a
second-generation pupil of Seki, in the Kai Fukudai Kōshiki Shajō no Genkai
[解伏題交式斜乗之諺解] (Commentary on the Shuffles and Oblique Multiplica-
tions in the Kai Fukudai no Hō) [10] re-revised in 1715. However, the algo-
rithm used by Matsunaga is different from that of Seki who used the expression
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Table 1. List of abbreviations

abbreviation Seki’s term in English Seki’s term in Japanese
b. backward gyaku [逆]
f. forward jun [順]
3-system system of 3 equations kan-san-shiki [換三式]
4-systm system of 4 equations kan-shi-shiki [換四式]
5-system system of 5 equations kan-go-shiki [換五式]

“forward and backward [rearrangements] proceed and are followed by attach-
ing 1 in turn”1. Matsunaga did not mention the terms forward (jun [順]) and
backward (gyaku [逆]).

Toita Yasusuke [戸板保佑] (1708–1784), a second-generation pupil of
Matsunaga, regarded the terms forward and backward as signs of cofactors
in his Seikoku Inhō Den [生尅因法伝] (Commentary on Creative and Anni-
hilative Terms Using Multiplicative Methods) [18] in 1759. Most modern and
present day historians of mathematics, such as T. Hayashi [3], M. Fujiwara
[1], H. Katō [7], A. Hirayama [4] and H. Komatsu [9] have treated the terms
forward and backward as signs of oblique multiplications or cofactors. On the
other hand, Y. Mikami [11, p. 14] notes: “Though there are added in these
figures the ideograms jun (regular order) and gyaku (reverse order), we are not
yet enabled to decipher them correctly”. K. Satō [14] is the only historian who
correlated the terms forward and backward with permutations. For these, see
N. Osada [12].

In this paper we resolve the procedure of shuffles and oblique multipli-
cations by means of the group theory. In particular, we clarify Seki’s terms
forward and backward.

In the sequel, we shall use the abbreviations as listed in Table 1.

§2. Shuffles

2.1. Original text for shuffles
The original text2 of referring to shuffles (kōshiki) in the Kai Fukudai no

Hō is as follows3.
The [shuffles of the] 4-system is derived from [those of] the
3-system. The [shuffles of the] 5-system is derived from

1順逆共逓添一
2從換三式起換四式,從換四式起換五式,逐如此.（換二式換三式者,不及交式也）

順逆共逓添一,得次. 乃式数奇者,皆順. 偶者,順逆相交也.
3We referred to Goto and Komatsu [2] for English translation of the original text.
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5-system
5 4 3 2 1
4 5 2 3 1
3 2 5 4 1
2 3 4 5 1
3 5 4 2 1
5 3 2 4 1
4 2 3 5 1
2 4 5 3 1
4 3 5 2 1
3 4 2 5 1
5 2 4 3 1
2 5 3 4 1

4-system
b. f. b. f.
4 3 2 1
2 4 3 1
3 2 4 1

　
　
　
　
　
　
　
　

3-system
f. f. f.
3 2 1
　
　
　
　
　
　
　
　
　
　

Fig. 1. The permutations corresponding to Seki’s choice of shuf-
fles in the original form.

[those of] the 4-system, and so on. (The 2-system and the
3-system require no shuffles.)

forward and backward [rearrangements] proceed and
are followed by attaching 1 in turn so as to produce the next
[shuffles]. That is, if the number of equations is odd, all
[rearrangements] are forward; if even, alternately forward
and backward.

Next, Seki gives lists of the permutations corresponding to shuffles for the
3-, 4- and 5-systems. These lists are shown in Fig. 1.

2.2. Interpretation of a shuffle
As can be seen in Fig. 1, the original text, based on the Japanese writing

system, has the permutations set out in rows from right to left [5, p. 193] [6,
p. 194]. But from here on, we will rearrange them into columns running from
top to bottom as shown in Fig. 2.

Applying three shuffles for 4-systems in Fig. 2 to the 4-system (4), we
obtain three 4-systems (4), (5) and (6):

(4)

1
2
3
4

⎧
⎪⎪⎨
⎪⎪⎩

x11 + x12y + x13y
2 + x14y

3 = 0
x21 + x22y + x23y

2 + x24y
3 = 0

x31 + x32y + x33y
2 + x34y

3 = 0
x41 + x42y + x43y

2 + x44y
3 = 0,
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3-system
f. 1
f. 2
f. 3

4-system
f. 1 1 1
b. 2 3 4
f. 3 4 2
b. 4 2 3

5-system
[f.] 1 1 1 1 1 1 1 1 1 1 1 1
[f.] 2 3 4 5 2 4 5 3 2 5 3 4
[f.] 3 2 5 4 4 2 3 5 5 2 4 3
[f.] 4 5 2 3 5 3 2 4 3 4 2 5
[f.] 5 4 3 2 3 5 4 2 4 3 5 2

Fig. 2. Seki’s permutations rotated 90◦ in counterclockwise to fit
the representation of shuffles adopted in this paper.

(5)

1
3
4
2

⎧
⎪⎪⎨
⎪⎪⎩

x11 + x12y + x13y
2 + x14y

3 = 0
x31 + x32y + x33y

2 + x34y
3 = 0

x41 + x42y + x43y
2 + x44y

3 = 0
x21 + x22y + x23y

2 + x24y
3 = 0,

(6)

1
4
2
3

⎧
⎪⎪⎨
⎪⎪⎩

x11 + x12y + x13y
2 + x14y

3 = 0
x41 + x42y + x43y

2 + x44y
3 = 0

x21 + x22y + x23y
2 + x24y

3 = 0
x31 + x32y + x33y

2 + x34y
3 = 0.

Fig. 3 and Fig. 4 show the algorithm of giving rise to shuffles for the 4- and
5-systems, respectively. Here, a line connecting two letters means a forward or
backward rearrangement, and arrows ↘ and → mean attaching 1 in turn.

§3. Oblique multiplications

3.1. Translation of the original text of oblique multiplications
Subsequently, Seki states his procedure of oblique multiplications. Seki’s

original text4 is as follows.
At each [simultaneous equations obtained by] a shuffle, we
perform oblique multiplications from left and from right and

4交式各布之,從左右斜乗,而得生尅也.（若當空級者,除之）
換式數奇者,以左斜乘爲生,以右斜乘爲尅. 偶者左斜乗右斜乗共生尅相交也.
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Fig. 3. The algorithm of giving rise to shuffles for the 4-system.

Fig. 4. The algorithm of giving rise to the first four shuffles for
5-system.

thus obtain creative and annihilative terms. (If a multiplica-
tion hits an empty term, then delete it.)

If the number of the [transformed] equations is odd,
the oblique multiplications from the left are creative, and
oblique multiplications from the right are annihilative. If
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the number is even, then oblique multiplications from both
left and right are alternately creative and annihilative.

Seki explains further using so-called diagrams of oblique multiplications.

3.2. Interpretation of oblique multiplications
Let us now apply shuffles and oblique multiplications to the 3-, 4- and

5-systems.
For a transformed system (2) of n equations of degree n− 1 we define the

coefficient matrix by

X(n) =

⎛
⎝

x11 · · · x1n

· · ·
xn1 · · · xnn

⎞
⎠ .

Let S (X(n)) be the set of all unsigned oblique multiplications of X(n), that is
the set of all unsigned multiplications of n elements parallel to the diagonal or
anti-diagonal, and S±(X

(n)) be the set of all oblique multiplications of X(n).
For the coefficient matrix X(3) of a 3-system, according to the diagrams

of oblique multiplications, we have

S±(X
(3)) = {+ x11x22x33,+x21x32x13,+x31x12x23,

− x11x32x23,−x21x12x33,−x31x22x13}.

The summation of all 6 terms of S±(X
(3)) is the determinant of X(3). This is

commonly called the rule of Sarrus.
Let X(4)

1 ,X
(4)
2 and X

(4)
3 be matrices of coefficients of the 4-systems (4),

(5) and (6), respectively. Then we have

S±(X
(4)
1 )

= {+ x11x22x33x44,−x21x32x43x14,+x31x42x13x24,−x41x12x23x34,

− x11x42x33x24,+x21x12x43x34,−x31x22x13x44,+x41x32x23x14},

S±(X
(4)
2 )

= {+ x11x32x43x24,−x31x42x23x14,+x41x22x13x34,−x21x12x33x44,

− x11x22x43x34,+x31x12x23x44,−x41x32x13x24,+x21x42x33x14},

S±(X
(4)
3 )

= {+ x11x42x23x34,−x41x22x33x14,+x21x32x13x44,−x31x12x43x24,

− x11x32x23x44,+x41x12x33x24,−x21x42x13x34,+x31x22x41x14}.

The summation of all 24 terms of S±(X
(4)
1 ) ∪ S±(X

(4)
2 ) ∪ S±(X

(4)
3 ) is the

determinant of X(4)
1 (See T. Hayashi [3, p. 588]).
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Let X(5)
1 be the coefficient matrix of a 5-system, i.e. the systen of n equa-

tions (2) with n = 5. Let X(5)
4 be the coefficient matrix applying the permuta-

tion

1
5
4
3
2

. Then we have

S±(X
(5)
1 )

= {+ x11x22x33x44x55,+x21x32x43x54x15,+x31x42x53x14x25,

+ x41x52x13x24x35,+x51x12x23x34x45,−x11x52x43x34x25,

− x21x12x53x44x35,−x31x22x13x54x45,−x41x32x23x14x55,

− x51x42x33x24x15},

S±(X
(5)
4 )

= {+ x11x52x43x34x25,+x51x42x33x24x15,+x41x32x23x14x55,

+ x31x22x13x54x45,+x21x12x53x44x35,−x11x22x33x44x55,

− x51x12x23x34x45,−x41x52x13x24x35,−x31x42x53x14x25,

− x21x32x43x54x15}.

Since S (X
(5)
1 ) = S (X

(5)
4 ), Seki’s choice of shuffles for the 5-system is in-

correct (See H. Katō [7, p. 45]).

§4. Notation and definitions in group theory

For a permutation μ the sign of μ is defined by

sgn(μ) =
{

1 if μ is an even permutation,
−1 if μ is an odd permutation.

The group Sn of all permutations on the set {1, 2, . . . , n} is called the
symmetric group of degree n. The product is composition of permutations
from right to left. The subgroup An of all even permutations of Sn is called
the alternating group of degree n.

Let n be an integer greater than 2. We define σ, τ ∈ Sn as

σ = σn =

(
1 2 3 · · · n
2 3 4 · · · 1

)
,(7)

τ = τn =

(
1 2 3 · · · n
1 n n− 1 · · · 2

)
,(8)
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respectively. Since σ = (123 · · ·n) = (1 n)(1 n− 1) · · · (1 2) and

τ =

{
(2 n)(3 n− 1) · · · (m m+ 1) if n = 2m− 1,
(2 n)(3 n− 1) · · · (m m+ 2) if n = 2m,

we have

σ ∈ An if and only if n ≡ 1 (mod 2),(9)
τ ∈ An if and only if n ≡ 1 (mod 4) or n ≡ 2 (mod 4),(10)

and σn = 1, τ2 = 1, τστ = σ−1. Let Dn be the subgroup of Sn generated
by σ and τ . The subgroup Dn is called the dihedral subgroup and we have the
following equality:

(11) Dn = 〈σ, τ〉 = {1, σ, . . . , σn−1, τ, τσ, . . . , τσn−1}.

Let G be a finite group and H a subgroup of G. For a ∈ G, the set of the
form aH = {ah|h ∈ H} is called a left coset of H . Two elements a, b ∈ G
are contained in the same coset of H if and only if a−1b ∈ H . The group G
is partitioned into a disjoint union of left cosets of H . A subset T of G is said
to be a set of left representatives (or transversal) of H if T contains exactly
one element of each left coset of H . When T = {a1, . . . , am} is a set of
representatives of H , we write

G =
m∑
i=1

aiH.

This is called the left coset decomposition of G with respect to H .

§5. Shuffles and oblique multiplications from a group-theoretic viewpoint

Let n be an integer greater than 2. Let σ and τ be the permutations de-
fined by (7) and (8), respectively. Recall the dihedral subgroup Dn of Sn is
generated by σ and τ .

The determinant of an n× n-matrix (xi,j) is defined by

(12) det(xi,j) =
∑
η∈Sn

sgn(η)xη(1),1 · · · xη(n),n.

We define the action of a permutation ρ ∈ Sn on a matrix X = (xi,j) by

ρ(X) =

⎛
⎜⎜⎜⎜⎜⎝

xρ(1),1 xρ(1),2 xρ(1),3 · · · xρ(1),n

xρ(2),1 xρ(2),2 xρ(2),3 · · · xρ(2),n

xρ(3),1 xρ(3),2 xρ(3),3 · · · xρ(3),n

...
...

...
...

xρ(n),1 xρ(n),2 xρ(n),3 · · · xρ(n),n

⎞
⎟⎟⎟⎟⎟⎠

.
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Lemma 1. For a permutation ρ ∈ Sn and a matrix X = (xi,j) of degree
n, the set of all unsigned oblique multiplications of ρ(X) is given as follows:

S (ρ(X)) =

{ n∏
j=1

xρ(τtσs(j)),j | t = 0, 1; s = 0, . . . , n− 1

}
.

Proof. The left unsigned oblique multiplications (parallel to the principal
diagonal) of the matrix ρ(X) are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xρ(1),1xρ(2),2xρ(3),3 · · · xρ(n),n,
xρ(2),1xρ(3),2xρ(4),3 · · · xρ(1),n

= xρ(σ(1)),1xρ(σ(2)),2xρ(σ(3)),3 · · · xρ(σ(n)),n,
xρ(3),1xρ(4),2xρ(5),3 · · · xρ(2),n

= xρ(σ2(1)),1xρ(σ2(2)),2xρ(σ2(3)),3 · · · xρ(σ2(n)),n,
· · ·
xρ(n),1xρ(1),2xρ(2),3 · · · xρ(n−1),n

= xρ(σn−1(1)),1xρ(σn−1(2)),2xρ(σn−1(3)),3 · · · xρ(σn−1(n)),n.

The right unsigned oblique multiplications (parallel to the anti-diagonal) of the
matrix ρ(X) are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xρ(1),1xρ(n),2xρ(n−1),3 · · · xρ(2),n

= xρ(τ(1)),1xρ(τ(2)),2xρ(τ(3)),3 · · ·xρ(τ(n)),n,
xρ(2),1xρ(1),2xρ(n),3 · · · xρ(3),n

= xρ(τσn−1(1)),1xρ(τσn−1(2)),2xρ(τσn−1(3)),3 · · ·xρ(τσn−1(n)),n,
xρ(3),1xρ(2),2xρ(1),3 · · ·xρ(4),n

= xρ(τσn−2(1)),1xρ(τσn−2(2)),2xρ(τσn−2(3)),3 · · ·xρ(τσn−2(n)),n,
· · ·
xρ(n),1xρ(n−1),2xρ(n−2),3 · · · xρ(1),n

= xρ(τσ(1)),1xρ(τσ(2)),2xρ(τσ(3)),3 · · · xρ(τσ(n)),n.

Q.E.D.

Proposition 1. If

Sn =

(n−1)!/2∑
k=1

ρkDn
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is a left coset decomposition of Sn with respect to Dn, then the determinant of
some matrix (xi,j) is given as follows:

det(xi,j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑(n−1)!/2
k=1

∑1
t=0

∑n−1
s=0 (−1)s+tsgn(ρk)

∏n
j=1 xρk(τtσs(j)),j ,

if n ≡ 0 (mod 4),∑(n−1)!/2
k=1

∑1
t=0

∑n−1
s=0 sgn(ρk)

∏n
j=1 xρk(τtσs(j)),j ,

if n ≡ 1 (mod 4),∑(n−1)!/2
k=1

∑1
t=0

∑n−1
s=0 (−1)ssgn(ρk)

∏n
j=1 xρk(τtσs(j)),j ,

if n ≡ 2 (mod 4),∑(n−1)!/2
k=1

∑1
t=0

∑n−1
s=0 (−1)tsgn(ρk)

∏n
j=1 xρk(τtσs(j)),j ,

if n ≡ 3 (mod 4).

Proof. This proposition follows from the above assumption of a left coset
decomposition, the definition of determinant (12), and Lemma 1. The signs
are determined by (9) and (10). Q.E.D.

Proposition 1 implies Propositions 2 and 3.

Proposition 2. (Criterion of a good choice of shuffles). A set of permu-
tations {ρ1, . . . , ρ(n−1)!/2} ⊂ Sn corresponds to a good choice of shuffles if
and only if {ρ1, . . . , ρ(n−1)!/2} is a set of representatives of Sn with respect to
Dn.

Proposition 3. (Criterion of oblique multiplications). Let
{ρ1, . . . , ρ(n−1)!/2} be a set of representatives of Sn with respect to Dn. The
signs of oblique multiplications are correct if and only if they satisfy

(−1)s+tsgn(ρk)
∏n

j=1 xρkτtσs(j),j , if n ≡ 0 (mod 4),

sgn(ρk)
∏n

j=1 xρkτtσs(j),j , if n ≡ 1 (mod 4),

(−1)ssgn(ρk)
∏n

j=1 xρkτtσs(j),j , if n ≡ 2 (mod 4),

(−1)tsgn(ρk)
∏n

j=1 xρkτtσs(j),j , if n ≡ 3 (mod 4),

for k = 1, . . . , (n− 1)!/2.

§6. A group-theoretical meaning of shuffles

We denote the permutations corresponding to the shuffles for the system
of n equations by

ρ
(n)
1 , . . . , ρ

(n)
(n−1)!/2.

We define the stabilizer of 1 by

(Sn)1 = {ρ ∈ Sn | ρ(1) = 1}.
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Lemma 2. Let n be an integer greater than 1. The mapping

ι : Sn−1 → (Sn)1

defined by

ι

(
1 2 · · · n− 2 n− 1
i1 i2 · · · in−2 in−1

)

=

(
1 2 · · · n− 1 n
1 i1 + 1 · · · in−2 + 1 in−1 + 1

)
(13)

is an isomorphism.

Remark 1. The embedding ι corresponds to attaching 1 in turn (see foot-
note 1) in Seki’s original text.

6.1. From the 3-system to the 4-system
Let n be an integer greater than 2. Let 1n be the identity permutation of

Sn. Let σn be the cyclic permutation defined in (7), i.e.

σn =

(
1 2 . . . n
2 3 . . . 1

)
∈ Sn.

The permutations corresponding to Seki’s choice of shuffles for 4-systems
are

ρ
(4)
1 = 14 = ι(13) =

(
1 2 3 4
1 2 3 4

)
,

ρ
(4)
2 = ρ = ι(σ3) =

(
1 2 3 4
1 3 4 2

)
,

ρ
(4)
3 = ρ2 = ι(σ2

3) =

(
1 2 3 4
1 4 2 3

)
.

Since
(ρ

(4)
1 )−1ρ

(4)
2 = (ρ

(4)
2 )−1ρ

(4)
3 = (ρ

(4)
3 )−1ρ

(4)
1 = ρ �∈ D4,

the set {ρ(4)1 , ρ
(4)
2 , ρ

(4)
3 } is a set of representatives of S4 with respect to D4.

Seki understood the series of three arrangements 13, σ3 and σ2
3 is forward.

6.2. From the 4-system to the 5-system
The permutations corresponding to Seki’s choice of shuffles for 5-systems

are

ρ
(5)
1 = 15, ρ

(5)
2 = (23)(45), ρ

(5)
3 = (24)(35), ρ

(5)
4 = (25)(34),

ρ
(5)
5 = (345), ρ

(5)
6 = (243), ρ

(5)
7 = (254), ρ

(5)
8 = (235),

ρ
(5)
9 = (354), ρ

(5)
10 = (253), ρ

(5)
11 = (234), ρ

(5)
12 = (245).
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We define permutations ρ, λ and μ by

ρ = ι(σ3) =

(
1 2 3 4
1 3 4 2

)
, λ = σ2

4 =

(
1 2 3 4
3 4 1 2

)
,

μ =

(
1 2 3 4
2 1 4 3

)
∈ S4,

respectively. Then the permutations ρ(5)k , k = 1, . . . , 12 can be represented as

ρ
(5)
1 = ι(14), ρ

(5)
2 = ι(μ), ρ

(5)
3 = ι(λ), ρ

(5)
4 = ι(λμ),

ρ
(5)
5 = ι(ρ), ρ

(5)
6 = ι(ρμ), ρ

(5)
7 = ι(ρλ), ρ

(5)
8 = ι(ρλμ),

ρ
(5)
9 = ι(ρ2), ρ

(5)
10 = ι(ρ2μ), ρ

(5)
11 = ι(ρ2λ), ρ

(5)
12 = ι(ρ2λμ).

Since the permutations corresponding to Seki’s choice of shuffles for
5-systems are

ρ
(5)
1 τ5 = ρ

(5)
4 , ρ

(5)
2 τ5 = ρ

(5)
3 , ρ

(5)
5 τ5 = ρ

(5)
8 ,

ρ
(5)
6 τ5 = ρ

(5)
7 , ρ

(5)
9 τ5 = ρ

(5)
12 , ρ

(5)
10 τ5 = ρ

(5)
11 ,

we have

ρ
(5)
4k−3D5 = ρ

(5)
4k D5, ρ

(5)
4k−2D5 = ρ

(5)
4k−1D5 (k = 1, 2, 3).

Thus, the set {ρ(5)k }k=1,...,12 is not a set of representatives. That is, Seki’s
choice of shuffles for 5-systems is not correct.

Seki understood the two permutations 14 and σ2
4 to be forward, and the

two permutations λ and λμ backward. In Table 2 we show permutations
corresponding to the shuffles for 5-systems which are derived form those for
4-systems (See Fig. 4).

Table 2. Permutations corresponding to the shuffles for 5-systems
derived from those for 4-systems

ρ
(4)
1 = 14 ρ

(4)
2 = ρ ρ

(4)
3 = ρ2

f. (1) ι(14) = ρ
(5)
1 ι(ρ) = ρ

(5)
5 ι(ρ2) = ρ

(5)
9

b. (μ) ι(μ) = ρ
(5)
2 ι(ρμ) = ρ

(5)
6 ι(ρ2μ) = ρ

(5)
10

f. (λ) ι(λ) = ρ
(5)
3 ι(ρλ) = ρ

(5)
7 ι(ρ2λ) = ρ

(5)
11

b. (λμ) ι(λμ) = ρ
(5)
4 ι(ρλμ) = ρ

(5)
8 ι(ρ2λμ) = ρ

(5)
12
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6.3. The terms forward and backward
In the Sandatsu no Hō [算脱之法] (Method of Counting and Removing) re-

vised by Seki Takakazu in 1683, he called the forward counting (junsan [順算])
counting and removing black and white stones around a circle in the clockwise
direction, and the backward counting (gyakusan [逆算]) counting and remov-
ing in the counterclockwise direction. With this in mind, we can formulate
Seki’s usage of the terms forward and backward as follows:

Let n be an integer greater than 2. Let ρ be a permutation of degree n. We
lay out letters ρ(1), ρ(2), . . . , ρ(n) on a circle at equal distances in a clockwise
order. The permutation ρ is called forward (resp., backward) if ρ(1), ρ(2), · · · ,
ρ(n) are in the same direction of 1, 2, · · · , n (resp., n, n − 1, · · · , 1). By the
definitions, the permutation σ defined in (7) is forward and τ defined in (8) is
backward.

Let μ and λ be the same as in Section 6.2. Then 14, μ, λ and λμ are
represented as

1

4 � 2

3
14

2

3 � 1

4
μ

3

2 � 4

1
λ

4

1 � 3

2
λμ

respectively. Thus permutations 14 and λ are forward, while μ and λμ are
backward.

6.4. Seki’s choice of shuffles for the general case
Lemma 3. The group Dn is a subgroup of An if and only if n ≡ 1

(mod 4).

Proof. By (9) and (10), Dn is a subgroup of An if and only if n ≡ 1
(mod 4). Q.E.D.

Lemma 4. Suppose n �≡ 1 (mod 4). There exist ρ1, . . . , ρ(n−1)!/2 ∈ An

such that

Sn =

(n−1)!/2∑
k=1

ρkDn.

Proof. By Lemma 3 and from the assumption in Lemma 4, there exists

η ∈ Dn \An. Let Sn =

(n−1)!/2∑
k=1

ρ′kDn be any left coset decomposition.

For k = 1, . . . , (n− 1)!/2, if we put

ρk =

{
ρ′k if ρ′k ∈ An

ρ′kη if ρ′k �∈ An
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then the set {ρ1, . . . , ρ(n−1)!/2} is qualified as a set of representatives and in-
cluded in An. Q.E.D.

Lemma 5. Let n be an integer greater than 2. For any permutation ρ ∈ Sn,
there exists q ∈ {1, 2, . . . , n} such that ρσq−1

n ∈ (Sn)1.

Proof. Let

ρ =

(
1 · · · q · · ·
p · · · 1 · · ·

)
.

If p = 1, then q = 1 and ρ ∈ (Sn)1. If p �= 1, then q �= 1. Since

σq−1
n =

(
1 2 · · · n
q q + 1 · · · q − 1

)
,

ρσq−1
n ∈ (Sn)1. Q.E.D.

Presumably, Seki must have performed some rapid judgment that a set of
representatives is to be found only in even permutations for which the letter 1
is fixed, i.e. in (Sn)1 ∩ An. In the case of n ≡ 1 (mod 4), by Lemma 3, no
subset of An can qualify as a set of representatives of Sn with respect to Dn.

Proposition 4. If n �≡ 1 (mod 4), there is a set of representatives of Sn

with respect to Dn in (Sn)1 ∩An.

Proof. This follows from Lemma 4 and Lemma 5. Q.E.D.

§7. Conclusion

Seki’s procedure of shuffles (kōshiki) and oblique multiplications (shajō)
is hereby completely explained. In particular, the meaning of the terms forward
and backward has been made clear, i.e. they are not signs but the processes
of rearrangement. This procedure is based on a coset decomposition of the
symmetric group of degree n with respect to the dihedral subgroup Dn. Seki
was able to offer an explicit solution for the choice of shuffles and the sign of
oblique multiplication for n = 4, but failed for n = 5. Matsunaga’s shuffles
[10] are correct for any integer n greater than 3, but his oblique multiplications
are not correct (See Osada [12]).
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