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Abstract

In 1669 Newton wrote De Analysi to claim the priority of the
method of infinite series. Newton did not want to publish his method
of fluxions, so he introduced the moment instead of the ratio of flux-
ions, which is the differential quotient in modern calculus, and ex-
pressed the fluent, which is the antiderivative in modern calculus, in
terms of the pair of the indefinite region drawn by the motion of the
ordinate and its signed area.

In the priority dispute, Newton suspected that Leibniz had read
De Analysi in 1676, so he used De Analysi as evidence that New-
ton was the first inventor of the method of fluxions and that Leibniz
had plagiarized differences from the moments of De Analysi. How-
ever Newton did not use fluxions when he wrote De Analysi and the
moment in De Analysi was differential quotient, not differential, in
modern calculus. In 1715, in his anonymous An Account of the Book,
Newton explained how he had represented the fluxions in De Analysi
and rewrote the note he had given in De Analysi regarding the unit
of moment so that moment meant differential.

Keywords: Isaac Newton, De Analysi, priority dispute, moment,
Commercium Epistolicum

1. Introduction

In 1669 Isaac Newton wrote the De Analysi per Æquationes numero Ter-
minorum Infinitas, abbreviated as De Analysi, to claim the priority of the
method of infinite series against Nicolaus Mercator. When Newton wrote De
Analysi, because he did not want to publish his method of fluxions, he did
not use velocities, which he later called fluxions. Therefore he introduced
the moment instead of the ratio of fluxions, which is the differential quotient
in modern calculus, and he expressed the quantity to be sought, which he
later called fluent, in terms of the pair of the indefinite region drawn by the
motion of the ordinate and its signed area.

∗This paper is based on a lecture given by the author at the Newton Symposium of the
History of Science Society of Japan on 29 May 2022.

†Tokyo Woman’s Christian University, Email: osada@lab.twcu.ac.jp
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In the priority dispute with Leibniz on calculus, Newton tried to prove
that Leibniz had plagiarized from De Analysi and the two letters, Epistola
Prior and Epistola Posterior. Westfall1 and Guicciardini2 have described the
accusations of plagiarism from the two letters in details. In this paper we
will focus on the accusations of plagiarism from De Analysi 3.

2. Rule I and II in De Analysi

The procedure of the method of infinite series is to expand the differential
quotient of a quantity to be sought into an infinite series of the form∑

i

aix
mi
ni , (1)

and then to obtain the quantity by termwise integration. In order to perform
this method it is sufficient that

1. To find the antiderivative of ax
m
n .

2. The possibility of termwise integration.

3. To expand the differential quotient of the quantity into an infinite series
of the form (1).

Newton gave Rule I, II, and III in De Analysi which correspond to the above
1,2, and 3, respectively. Rule I and Rule II are as follows.

To the base AB of some curve AD let the ordinate BD be per-
pendicular and let AB be called x and BD y. Let again a, b, c, . . .
be given quantities and m,n integers. Then

A B

D

1 Richard Westfall, Never at Rest, Cambridge University Press, 1980, pp.712-720.
2 Niccolò Guicciardini, Isaac Newton On Mathematical Certainty and Method, The

MIT press, 2009, pp.373-381.
3 The main purpose of De Analysi was to show how to express y as an infinite series

of x given an implicit function f(x, y) = 0, but this is not closely related to the priority
dispute and is therefore omitted. For the series expansion of implicit functions, see the
author’s paper: Naoki Osada, “Literal resolution of affected equations by Isaac Newton,”
RIMS Kôkyûroku Bessatsu B73 (2019): 1-20.
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The Quadrature of simple Curves
Rule I. If ax

m
n = y, then will na

m+n
x

m+n
n equal the area ABD.

The matter will be evident by example.

And of those compounded of simple ones
Rule II. If the value of y is compounded of several terms of that
kind the area also will be compounded of the areas which arise
separately from each of those terms.4

Since Newton said “The matter will be evident by example”, we shall
look at the fourth example.

Example 4 If 1
x2 (= x−2) = y, that is, if a =

n = 1 and m = −2, then

(
1

−1
x

−1
1 =

)
−

x−1

(
=

−1

x

)
= αBD infinitely extended in the A B

D

α

direction of α: the computation sets its sign negative because it
lies on the further side of the line BD.5

Example 4 shows that when m
n

< −1, Newton defined the indefinite
region described by the line segment BD = ax

m
n by αBD, and its area is

na

n+m
x

m+n
n . Newton made the area negative because it matched the sign of

the antiderivative.
Next we see the third example of Rule II.

Third examples. If x2 + x−2 = y, then 1
3
x3 −

x−1 =the surface described. But here you should
note that the parts of the said surface thus found
lie on opposite sides of the line BD: precisely, on
setting BF = x2 and FD = x−2, then 1

3
x3 = the

surface ABF described by BF and −x−1 = DFα
describes by DF. And this always happens when

the indices

(
m+ n

n

)
of the ratios of the base x A β B

ϕ

δ
F

D

α

in the values of the surface sought are affected with different
signs.6

4 D.T. Whiteside, The Mathematical Papers of Isaac Newton, Vol.II, Cambridge Uni-
versity Press, 1968, pp.206-209. This book will be abbreviated as MP II in this paper.

5 Ibid., pp.208-209.
6 Ibid., pp.210-211.
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Example 4 in Rule I and the above example show that Rule I should be
viewed as giving the antiderivative rather than the area of the curve. That
is, the antiderivative of the simple curve y = ax

m
n corresponds to the signed

area of the indefinite region drawn by the line segment BD = ax
m
n .

na

m+ n
x

m+n
n =


[∫ x

0

ax
m
n dx =

]
ABD if m

n
> 0,[∫ x

∞
ax

m
n dx =

]
αBD if m

n
< −1.

See our recent paper7 for details.
The equivalent of Rule I was given in the October 1666 tract as follows:

If two Bodys A&B, by their velocitys p&q describe ye lines x&y.
[...]

As if ax
m
n =

q

p
. Then is

na

n+m
x

n+m
n = y.8

The ratio9 q
p
of velocities in the October 1666 tract was represented as the

line segment BD in Rule I in De Analysi.

3. Moments in De Analysi

3.1 Introduction of moments
Newton introduced the new term and concept of moment as follows:

Let ABD be any curve and AHKB a rectangle
whose side AH or BK is unity. And consider
that the straight line DBK describes the areas
ABD and AK as it moves uniformly away from
AH; that BK(1) is the moment by which AK(x)
gradually increases and BD(y) that by which
ABD does so; and that, when given

A

H
K

B

D

continuously the moment of BD, you can by the foregoing rules
investigate the area ABD described by it [...]
The matter will be clarified by example.10

7 Naoki Osada, “Area and moment in De Analysi by Isaac Newton,” RIMS Kôkyûroku
Bessatsu, B85 (2021): 15-34.

8 D.T. Whiteside, The Mathematical Papers of Isaac Newton, Vol.I, Cambridge Uni-
versity Press, 1967, p.403.

9 In modern notation, p = dx
dt and q = dy

dt , thus
q
p = dy

dx .
10 MP II, pp.232-233
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It is not clear from the above explanation alone.11

3.2 The length of an arc
Newton gave an example of finding the length of an arc using moments.

Let ADLE be a circle whose
arc length AD is to be dis-
covered. On drawing the tan-
gent DHT, completing the in-
definitely small rectangle T A K B C

L
D

H
G

E

HGBK and setting AE = 2AC = 1, there will then be BK or
GH (the moment of the base AB) to DH (the moment of the arc
AD)[= BK : DH]

= BT : DT = BD(
√
x− x2) : DC(1

2
) = 1(BK) :

1

2
√
x− x2

(DH)

so that
1

2
√
x− x2

or

√
x− x2

2(x− x2)
is the moment of the arc AD.

When reduced this becomes 1
2
x− 1

2 + 1
4
x

1
2 + 3

16
x

3
2 + 5

32
x

5
2 + 35

256
x

7
2 +

63
512

x
9
2 &c. Therefore by Rule II the length of the arc AD is

x
1
2 + 1

6
x

3
2 + 3

40
x

5
2 + 5

112
x

7
2 + 35

1152
x

9
2 + 63

2816
x

11
2 &c.12

Since HGBK is an indefinitely small rectangle, the moment BK of the

base AB and the moment DH of the arc AD, denoted by

(

AD, are indefinitely

small line segments. However Newton put BK = 1 and DH =
1

2
√
x− x2

.

The fact that BK is indefinitely small and BK = 113 are contradictory.

3.3 Newton’s true intention of the concept of moment
There are two main interpretations of moment in De Analysi: one is

the fluxional velocity by Whiteside14, other is the infinitesimal increments of

11 Malet and Panza† wrote “Nothing else is said about the nature and properties of
those moments, although it seems to be implicit that (the line DBK being in motion) they
are something else that mere Cavalierian indivisibles – in any case, whatever Newton had
in mind, here, he left to the reader the task of clarifying the matter.” (p.377)
†Antoni Malet and Marco Panza, “Newton on indivisibles” in Vincent Jullien, ed.
Seventeenth-Century Indivisibles Revisited, 365-390, Birkhäuser, 2015.
https://halshs.archives-ouvertes.fr/halshs-01172653/document

12 MP II, pp.232-233
13 The author wrote “if BK = 1 is corrected to BK = o, the moment in De Analysi

becomes the differential and coincides with that in De Methodis.” (footnote 7, p.31.) If
HGBK were indefinitely small rectangle, BK = o, but Newton did not treat the moments
in De Analysi in that way. See Section 3.3.

14 MP II, p.233 (101).
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variable quantity by Boyer15, Whitrow16 and Guicciardini17, or differential18

by Dunham19 and others.
In this section, we consider Newton’s true intention of the concept of

moment from the description in De Analysi. After the example of finding
the length of an arc, Newton made the following note about the units of
moments.

But it must be noted that unit20 which is set for the moment is a
surface when the question concerns solids, a line when it relates
to surfaces and a point when (as in this example) it has to do
with lines. Nor am I afraid to talk of a unit in points or infinitely
small lines inasmuch as geometers now consider proportions in
these while using indivisible methods.21

Let us consider the area of ABD in Section 3.1. In modern notation, since
the unit of ABD is a surface, the unit of d

dt
ABD is a velocity of changing area,

the unit of the differential dABD is an infinitesimal increment of surface and
the unit of the differential quotient d

dx
ABD is a line, it is appropriate to

determine that Newton represented differential quotients by moments.
We will verify by modern calculus that Newton represented the differential

quotient by moments, using the example of the length of an arc (Section 3.2).

It follows from AB = x that BK = d
dx
AB = 1. Since ̸ DCA = sin−1

√
x− x2

1
2

,

we have

(

AD =
1

2
sin−1

√
x− x2

1
2

and

DH =
d

dx

(

AD =
1

2

1−2x√
x−x2√

1− 4(x− x2)
=

1

2
√
x− x2

, (0 < x <
1

2
),

which is consistent with Newton’s calculation.

15 Carl B. Boyer, The History of the Calculus and its Conceptual Development, Dover,
2018, (Hafner Publishing, first published 1949), p.191.

16 G.J. Whitrow, “Newton’s Role in the History of Mathematics,” Notes and Records
of the Royal Society of London, Vol.43, No.1, (1989), pp.71-92.

17 Footnote 2, p.155.
18 Let y = f(x) be a function. The differential dy is defined by dy = f ′(x)dx, where

f ′(x) is the derived function of f , and dx is the infinitesimal increment of the variable x.
19 William Dunham, The Calculus Gallery: Masterpieces from Newton to Lebesgue,

Princeton University Press, 2009.
http://assets.press.princeton.edu/chapters/s7905.pdf

20 The Latin original is unitas, which Whiteside translates as “unity”, while Malet and
Panza (footnote 11, p.378.) translated as “unit”.

21 MP II, pp.234-235.
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In 1671 Newton defined the moment in the De Methodis Serierum et
Fluxionum,22 abbreviated as De Methodis, as follows:

The moments of the fluent quantities (that is, their indefinitely
small parts, by addition of which they increase during each in-
finitely small period of time) are as their speeds of flow. Where-
fore if the moment of any particular one, say x, be expressed
by the product of its speed m and an infinitely small quantity o
(that is, by mo), then the moments of the others, v, y, z, will be
expressed by lo, no, ro, seeing that lo,mo, no, and ro are to one
another as l,m, n, and r.23

The symbol o is considered to represent dt in modern notation. Thus mo =
dx
dt
dt = dx and lo = dv

dt
dt = dv are the differentials of x and v, respectively.

In the sense of De Methodis, BK = o and DH = o
2
√
x−x2 . The representa-

tion “indefinitely small” was not appropriate in De Analysi, but became an
important phrase in De Methodis.24

3.4 The proof of Rule I in De Analysi
In De Analysi Newton proved Rule I for the case m

n
> 0. In the prepara-

tion of the proof he used a tool which is equivalent to differential.

Preparation for demonstrating the first rule.
1. The quadrature of simple curves in Rule I.
Let then any curve ADδ have base AB = x,
perpendicular ordinate BD = y and area
ABD = z, as before. Likewise take Bβ = o,
BK = v and the rectangle BβHK(ov) equal
to the space BβδD. It is,

A B

D

K
H

β

δ

therefore, Aβ = x+ o and Aδβ = z + ov.25

In modern notation, since o = dx and v = dz
dx
, ov = dz

dx
dx = dz is

the differential of z, and v is the moment (differential quotient) of the area
z = ABD. The ordinate v = BK represents the moment of z in terms of

22 D.T. Whiteside, The Mathematical Papers of Isaac Newton, Vol.III, Cambridge Uni-
versity Press, 1969, pp.32-329.

23 Ibid.,, pp.78-81.
24 Kokiti Hara‡ wrote “The argument of the next work [De Methodis], which calls the

differential, not velocity, the moment, has already started here.” (Early-modern Mathe-
matics, p.307.)
‡Kokiti Hara, Early-modern Mathematics (in Japanese), in A History of Mathematics,
Chikuma Shobō, 1975.

25 MP II, pp.242-245.
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De Analysi, and the fluxion of z in terms of De Methodis. If we assume the
speed of the base AB is 1,

dz

dx
=

dz
dt
dx
dt

=
dz

dt
.

Thus moments in De Analysi and the fluxions in De Methodis have equal
values but different units. The physical unit of the former is length, that of
the latter is a velocity of changing area.

4. Accusations of Plagiarism in the priority dispute

Until the discovery of the Collins’ letters and papers by William Jones in
1708, Newton and mathematicians around him believed that Leibniz had pla-
giarized from the two letters (Epistola Prior and Epistola Posterior) in 1676.
In 1699, John Wallis published the two letters with Newton’s permission in
his Opera Mathematica.

In 1704, Newton published the Tractatus de Quadratura Curvarum (ab-
breviated as De Quadratura) as an appendix to his Opticks. De Quadratura
was the first published treatise on the method of fluxions, nearly 40 years
after Newton’s discovery of it. In the preface (advertisement) to the Opticks,
Newton wrote:

In a Letter written to Mr. Leibniz in the Year 1676 and published
by Dr. Wallis, I mentioned a Method by which I had found
some general Theorems about squaring Curvilinear Figures, or
comparing them with the Conic Sections, or other the simplest
Figures with which they may be compared.26

Newton claimed the priority of the method of fluxions using Epistola Pos-
terior as evidence, but did not directly mention Leibniz’s plagiarism27. And
in the introduction to De Quadratura, Newton explicitly dated the discovery
of the method of fluxions to 1665-1666 as follows:

I was led to seek a method of determining quantities out of the
speeds of motion or increment by which they are generated; and,
naming these speeds of motion or increment ‘fluxions’ and the
quantities so born ‘fluents’, I fell in the years 1665 and 1666 upon
the method of fluxions which I have here employed in the quadra-
ture of curves.28

26 I. Newton, Opticks, Printed for Sam. Smith, and Benj. Walford, London, 1704
https://library.si.edu/digital-library/book/optickstreatise00newta

27 Leibniz might have taken Newton to imply Leibniz’s plagiarism in the above preface.
28 D.T. Whiteside, The Mathematical Papers of Isaac Newton, Vol.VIII, Cambridge

University Press, 1981, p.123.
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In 1705, Leibniz published an anonymous review of the De Quadratura
in the Acta Eruditorum.

when some magnitude grows continuously, as (for instance) a line
grows by the flowing of a point which describes it, the instanta-
neous increments are called ‘differences’, [...] whose elements have
been delivered in these Acts by its inventor Mr Gottfried Wilhelm
Leibniz, [...] In place of Leibnizian differences, accordingly, Mr
Newton employs, and has ever employed, ‘fluxions’,29

Leibniz claimed the priority of the differential calculus. He also implied that
Newton’s fluxions were plagiarism from Leibniz’s differences.

In 1708, John Keill, in his paper published in the Philosophical Transac-
tions, inserted Leibniz’s plagiarism.

All of these [propositions] follow from the now highly celebrated
Arithmetic of Fluxions which Mr. Newton, beyond all doubt,
First Invented, as anyone who reads his Letters published by Wal-
lis can easily determine; the same Arithmetic under a different
name and using a different notation was later published in the
Acta eruditorum, however, by Mr. Leibniz.30

In the same year 1708, William Jones obtained the letters and papers left
by John Collins, which were later called the Collins papers. The Collins pa-
pers consisted of Collins’ handwritten copy of De Analysi and correspondence
with mathematicians. In 1711, Jones published De Analysi, De Quadratura
and others with Newton’s permission.

In 1711, Leibniz learned that he had been accused of plagiarism by Keill,
so he wrote a letter of protest to Hans Sloan, the secretary of the Royal
Society, asking Keill to retract his accusation. In March 1712, the Royal
Society appointed a committee and adopted the report31 attributing Newton
as the first inventor, and published a book in evidence, Commercium Epis-
tolicum D. Johannis Collins, et aliorum de Analysi promota (Printed 1712,
distributed 1713; abbreviated as Commercium Epistolicum). The report and
the Commercium Epistolicum were substantially prepared by Newton him-
self.

29 Ibid., p.26.
30 Footnote 1, pp.715-716.
31 Westfall stated “the published report did not name the committee, whose membership

remained concealed in the society’s records until the nineteenth century.”(ibid., p.725)
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5. De Analysi in the priority dispute

The following statement appears in the report included at the end of the
Commercium Epistolicum.

I. That Mr. Leibniz was in London in the beginning of the Year
1673, and went thence in or about March to Paris, where he kept
a Correspondence with Mr. Collins by means of Mr. Oldenburg,
till about September 1676, and then return’d by London and Am-
sterdam to Hannover: And that Mr. Collins was very free in
communicating to able Mathematicians what he had receiv’d from
Mr. Newton and Mr. Gregory.32

Since Newton learned the above facts from the Collins papers, he would have
had a strong suspicion, though not conclusive evidence33 that Leibniz had
read or transcribed De Analysi from Collins during his stopover in London in
1676. It is believed that Newton was trying to prove that Leibniz plagiarized
from De Analysi, Epistola Prior and Epistola Posterior.

While the two letters had already been published by Wallis in his Opera
Mathematica, De Analysi was published by Jones in 1711 and reproduced
in the Commercium Epistolicum. Furthermore, Newton decided to use De
Analysi and the two letters as evidence for his claim of priority of the method
of fluxions. The report appears as follows:

III. That by Mr. Newton’s Letter of the 13th of June 1676 it ap-
pears, that he had the Method of Fluxions above five Years before
the writing of that Letter. And by his Analysis per Æquationes
numero Terminorum Infinitas, communicated by Dr. Barrow to
Mr. Collins in July 1669, we find that he had invented the Method
before that time.34

With De Analysi, Newton attempted to prove that Newton was the first
inventor of the method of fluxions and that Leibniz plagiarized from moments
to make differential calculus.

However, when Newton wrote De Analysi, he did not use fluxions, which
caused two problems: First, if one reads De Analysi in contrast to the October

32 Royal Society, Commercium Epistolicum Collinii & Aliorum, De Analysi promota,
1713. p.120. https://archive.org/details/bub gb r1BCoilZ3PwC

33 Westfall writes that “Leibniz never breathed a word about De Analysi [...] Only when
Leibniz, shortly before his death, inadvertently revealed the extent of Collins’s liberality
in the fall of 1676, did Newton begin to realize that he might have seen the tract as well.”
(footnote 1, p.720.)

34 Footnote 32, p.121.
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1666 tract and De Methodis, one can understand that this paper is a paper on
the method of fluxions, but if one only reads De Analysi by itself, one would
not have thought that this paper dealt with the method of fluxions. Second,
the moments in De Analysi were differential quotients, not differentials, in
modern calculus.

We discuss the first problem in the rest of this section and the second
problem in the next section. In 1715,35 Newton published anonymously the
An Account of the Book (abbreviated as An Account) in the Philosophical
Transactions. In it, he explained how he represented the method of fluxions
when writing De Analysi.

When Mr. Newton had in this Compendium explained these three
Rules, and illustrated them with various Examples, he laid down
the Idea of deducing the Area from the Ordinate, by consider-
ing the Area as a Quantity, growing or increasing by continual
Flux, in proportion to the Length of the Ordinate, supposing the
Abscissa to increase uniformly in proportion to Time.36

Mr. Newton doth not place his Method in Forms of Symbols,
nor confine himself to any particular Sort of Symbols for Fluents
and Fluxions. Where he puts the Areas of Curves for Fluents,
he frequently puts the Ordinates for Fluxions, and denotes the
Fluxions by the Symbols of the Ordinates, as in his Analysis.37

In De Analysi, Newton used symbols that differed from those in his other
works on the method of fluxions. He explained that he expressed the fluent in
terms of the area of the curve and the fluxion in terms of the ordinate. Thus,
the area na

m+n
x

m+n
n = z of Rule I is the fluent, and the ordinate ax

m
n = y is

the fluxion.

6. Differentials in the priority dispute

As mentioned in Section 4, Leibniz wrote in his review of the De Quadratura
that Newton plagiarized Leibniz’s differences (instantaneous increment) as a
fluxion. On the other hand, in the Commercium Epistolicum perhaps Newton
himself added the following footnote to moments in De Analysi.

35 Derek Gjertsen, The Newton Handbook, Routledge & Kegan Paul, 1986, p.505.
36 Royal Society, “An Account of the Book entitles Commercium Epistolicum Collinii &

Aliorum, De Analysi promota”, Philosophical Transactions, Vol. 29 (1714 - 1716), p.178,
https://www.jstor.org/stable/103050

37 Ibid., p.204.
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Here is described the method of operating by fluents and their
moments. These moments were afterwards called differences by
Mr Leibniz: and so came the name of differential method.38

Furthermore, Newton essentially rewrote in the An Account the note on the
units of moments (see Section 3.3) as follows:

And from the Moments of Time he gave the Name of Moments
to the momentaneous Increases, or infinitely small Parts of the
Abscissa and Area, generated in Moments of Time. The Moment
of a Line he called a Point, in the Sense of Cavallerius, tho’ it
be not a geometrical Point, but a Line infinitely short, and the
Moment of an Area or Superficies he called a Line, in the Sense
of Cavallerius, tho’ it be not a geometrical Line, but a Superficies
infinitely narrow.39

If the note on the unit of moment given in De Analysi is revised as above, the
moment becomes an momentaneous increases, i.e., a differential in modern
calculus. The moment of AK(x) is BK(1 × dx), because BK is not a line
[segment] but an infinitely narrow surface, and the moment of ABD(z) is
BD(y × dx) because BD is not a line [segment] but an infinitely narrow
surface. It is thought that Newton changed moments in De Analysi from
differential quotients to differentials in order to claim priority of differentials
and Leibniz’s plagiarism from moments.

7. Why did Newton choose De Analysi as evidence?

What Newton described in De Analysi was the method of infinite series
and its applications. Why did Newton choose this paper, which did not
explicitly use the method of fluxions, as the most important evidence for his
claim of priority of calculus?

The method of infinite series is a method of finding a quantity by ex-
panding the differential quotient (moment) of it to infinite series, and then
by integrating it term by term (Rule II). Newton applied the method of in-
finite series to the length of an arc, the area of a cycloid and the area of a
quadratrix. In the arc length problem discussed in Section 3.2, the moment
of the arc AD is DH = 1

2
√
x−x2 . Expanding DH to an infinite series gives(

1
2
√
x−x2 =

)
1
2
x− 1

2 + 1
4
x

1
2 + 3

16
x

3
2 + 5

32
x

5
2 + 35

256
x

7
2 + 63

512
x

9
2 + · · ·

38 MP II, p.232 (99).
39 An Account, p.178.
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and then integrating term by term yields

x
1
2 + 1

6
x

3
2 + 3

40
x

5
2 + 5

112
x

7
2 + 35

1152
x

9
2 + 63

2816
x

11
2 + · · ·

(
= sin−1 √x

)
,

which is the arc length. In modern notation, Newton derived∫ x

0

1

2
√
x− x2

dx = sin−1
√
x.

Based on these applications, Newton concluded De Analysi as follows.

It should, finally, merit consideration as a relevant part of analysis
since by its aid the areas and lengths of curves and so on (provided
that may be done) may be exactly and geometrically determined.
But this is not the place to dwell on these matters.40

Newton regarded the method of infinite series to be a powerful tool for
quadrature. Furthermore, as Guicciardini wrote41, Newton considered the
method of integration more important than the method of differentiation, in
modern terms.

8. Conclusion

There are three possible reasons why Newton choose De Analysi as the
most important evidence in the priority dispute.

First, the Collins papers made it extremely likely that Leibniz had read
or transcribed De Analysi in 1676, so Newton probably thought that if he
could prove Leibniz’s plagiarism from De Analysi it would not be necessary
to publish the October 1666 tract or De Methodis.

Second, as we described in sections 5 and 7, Newton regarded De Analysi
as a treatise on the method of fluxions.

Third, Newton showed De Analysi to Collins through Barrow, and Collins
circulated it to many mathematicians, so Newton would have regarded the
paper as having been published42. In the early 18th century, there was no
rule established today that the first paper submitted to an academic journal
has the right of priority.

40MP II, pp.242-243.
41 Guicciardini wrote “When one analyzes the mathematical examples adduced in Com-

mercium Epistolicum, it emerges that Newton and his acolytes who were slavishly editing
it were referring to the inverse method of fluxions applied to problems of quadrature.”
(footnote 2, pp.375-376.)

42 For example, “And by his Analysis per Æquationes numero Terminorum Infinitas,
communicated by Dr. Barrow to Mr. Collins in July 1669, we find that he had invented
the Method before that time.” (the report in Commercium Epistolicum, p.121)
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As Newton suspected, Leibniz is confirmed to have viewed De Analysi and
made excerpts43 from it in London in mid-October 1676. Leibniz transcribed
the parts on infinite series, replacing them with his own symbols, but did
not transcribe the introduction of moments, the application of moments to
the length of an arc and the area of a cycloid, or the proof of Rule I. The
parts that Leibniz did not transcribe are important parts of the method of
fluxions, but since Newton concealed the fluxion, i.e., avoiding the terms and
symbols of the method of fluxions, Leibniz probably did not consider it a
paper on the method of fluxions.

43 We can read the excerpt in MP II, pp.248-259.
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