Minimal free resolutions of analytic D-modules

Toshinori Oaku

Department of Mathematics, Tokyo Woman's Christian University Suginami-ku, Tokyo 167-8585, Japan

November 7, 2002

We introduce the notion of minimal free resolution for a filtered module over the ring \mathcal{D} of analytic differential operators. A module over \mathcal{D} corresponds to a system of linear partial differential equations with analytic coefficients. Hence a filtered free resolution of a filtered \mathcal{D} -module is essential in studying homological properties of linear partial differential equations. We also give some examples of minimal free resolution of the \mathcal{D} -module generated by the reciprocal 1/f of a polynomial f with a singularity at the origin. This defines analytic invariants attached to hypersurface singularities.

1 Filtered modules over the ring of analytic differential operators

Let $\mathcal{D} = \mathcal{D}_n$ be the ring of differential operators with convergent power series coefficients in n variables $x = (x_1, \dots, x_n)$. An element P of \mathcal{D} is written as a finite sum

$$P = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha}(x) \partial^{\alpha}$$

with $a_{\alpha}(x)$ belonging to the ring of convergent power series $\mathcal{O} = \mathbb{C}\{x_1, \ldots, x_n\}$, where we use the notation $\partial^{\alpha} = \partial_1^{\alpha_1} \cdots \partial_n^{\alpha_n}$ with $\partial_i = \partial/\partial x_i$. Then the order of P is defined by

$$\operatorname{ord} P := \max\{|\alpha| = \alpha_1 + \dots + \alpha_n \mid a_{\alpha}(x) \neq 0\}.$$

A presentation of a finitely generated left \mathcal{D} -module M is an exact sequence

$$\mathcal{D}^{r_1} \xrightarrow{\varphi_1} \mathcal{D}^{r_0} \xrightarrow{\varphi_0} M \to 0$$

of left D-modules. The homomorphism φ_1 is defined by

$$\varphi_1: \mathcal{D}^{r_1} \ni U = (U_1, \dots, U_{r_1}) \longmapsto UP \in D^{r_0}$$

with an $r_1 \times r_0$ matrix $P = (P_{ij})$ whose elements are in \mathcal{D} . Hence we often identify the homomorphism φ_1 with the matrix P. It is the starting point of the D-module theory to regard M as a system of linear differential equations

$$\sum_{j=1}^{r_0} P_{ij} u_j = 0 \qquad (i = 1, \dots, r_1)$$

for unknown functions u_1, \ldots, u_{r_0} .

We define the order filtration on \mathcal{D} by

$$F_k(\mathcal{D}) := \{ P \in \mathcal{D} \mid \text{ord } P \le k \} \qquad (k \in \mathbb{Z}).$$

A filtered free module is the free module \mathcal{D}^r equipped with the filtration

$$F_k[\mathbf{m}](\mathcal{D}^r) := F_{k-m_1}(\mathcal{D}) \oplus \cdots \oplus F_{k-m_r}(\mathcal{D})$$

with some $\mathbf{m} = (m_1, \dots, m_r) \in \mathbb{Z}^r$, which we call the shift vector. Let M be a finitely generated left \mathcal{D} -module. Then a filtration on M is a family $\{F_k(M)\}_{k\in\mathbb{Z}}$ of \mathbb{C} -subspaces of M such that

$$F_k(M) \subset F_{k+1}(M), \quad \bigcup_{k \in \mathbb{Z}} F_k(M) = M, \quad F_m(\mathcal{D})F_k(M) \subset F_{k+m}(M).$$

A filtration $\{F_k(M)\}_{k\in\mathbb{Z}}$ on M is called a good filtration if there exist $r\in\mathbb{N}$, $\mathbf{m}\in\mathbb{Z}^r$, and a homomorphism $\varphi:\mathcal{D}^r\to M$ of left \mathcal{D} -modules such that

$$\varphi(F_k[\mathbf{m}](\mathcal{D}^r)) = F_k(M) \qquad (\forall k \in \mathbb{Z}).$$

If $\{F_k(M)\}_{k\in\mathbb{Z}}$ is a good filtration, the induced filtration $\{F_k(M)\cap N\}_{k\in\mathbb{Z}}$ is good for any submodule N of M.

A filtered free resolution of a filtered \mathcal{D} -module M is an exact sequence

$$\cdots \xrightarrow{\varphi_3} \mathcal{D}^{r_2} \xrightarrow{\varphi_2} \mathcal{D}^{r_1} \xrightarrow{\varphi_1} \mathcal{D}^{r_0} \xrightarrow{\varphi_0} M \to 0$$

of left \mathcal{D} -modules with shift vectors $\mathbf{m}_i \in \mathbb{Z}^{r_i}$ $(i \geq 0)$ such that

$$\cdots \xrightarrow{\varphi_3} F_k[\mathbf{m}_2](\mathcal{D}^{r_2}) \xrightarrow{\varphi_2} F_k[\mathbf{m}_1](\mathcal{D}^{r_1}) \xrightarrow{\varphi_1} F_k[\mathbf{m}_0](\mathcal{D}^{r_0}) \xrightarrow{\varphi_0} F_k(M) \to 0$$

is exact for any $k \in \mathbb{Z}$. The graded ring of \mathcal{D} is defined by

$$\operatorname{gr}(\mathcal{D}) = \bigoplus_{k \geq 0} F_k(\mathcal{D}) / F_{k-1}(\mathcal{D}) \simeq \mathcal{O}[\xi] = \mathcal{O}[\xi_1, \dots, \xi_n],$$

where $\mathcal{O}[\xi]$ denotes the polynomial ring in the commutative variables $\xi = (\xi_1, \dots, \xi_n)$ with coefficients in \mathcal{O} .

If the order of the differential operator $P = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha}(x) \partial^{\alpha}$ is k, then its principal symbol is defined to be

$$\sigma(P) = \sigma_k(P) = \sum_{|\alpha|=k} a_{\alpha}(x) \xi^{\alpha} \in \operatorname{gr}(\mathcal{D}).$$

The graded ring $gr(\mathcal{D})$ has a natural structure of commutative graded ring

$$\operatorname{gr}(\mathcal{D}) = \bigoplus_{k>0} \operatorname{gr}(\mathcal{D})_k, \quad \operatorname{gr}(\mathcal{D})_k := F_k(\mathcal{D})/F_{k-1}(\mathcal{D}) \simeq \mathcal{O}[\xi]_k,$$

where $\mathcal{O}[\xi]_k$ is the subspace of $\mathcal{O}[\xi]$ consisting of homogeneous elements of degree k with respect to ξ . If M is a filtered \mathcal{D} -module, then

$$\operatorname{gr}(M) := \bigoplus_{k \in \mathbb{Z}} F_k(M) / F_{k-1}(M)$$

is a graded $gr(\mathcal{D})$ -module. In particular, the graded module of the filtered free module $(\mathcal{D}^r, F_{\bullet}[\mathbf{m}])$ is defined to be

$$\operatorname{gr}[\mathbf{m}](\mathcal{D}^r) = \sum_{k \in \mathbb{Z}} F_k[\mathbf{m}](\mathcal{D}^r) / F_{k-1}[\mathbf{m}](\mathcal{D}^r).$$

2 Minimal filtered free resolutions

The graded ring $gr(\mathcal{D})$ has a unique maximal graded ideal

$$\operatorname{gr}(\mathcal{D})x_1 + \dots + \operatorname{gr}(\mathcal{D})x_n + \operatorname{gr}(\mathcal{D})\xi_1 + \dots + \operatorname{gr}(\mathcal{D})\xi_n = (\mathcal{O}x_1 + \dots + \mathcal{O}x_n) + \bigoplus_{k \ge 1} \operatorname{gr}(\mathcal{D})_k.$$

Hence the notion of minimal free resolution of a graded $gr(\mathcal{D})$ -module makes sense. A minimal free resolution of a graded $gr(\mathcal{D})$ -module M' is an exact sequence

$$\cdots \xrightarrow{\varphi_3} \operatorname{gr}[\mathbf{m}_2](\mathcal{D}^{r_2}) \xrightarrow{\varphi_2} \operatorname{gr}[\mathbf{m}_1](\mathcal{D}^{r_1}) \xrightarrow{\varphi_1} \operatorname{gr}[\mathbf{m}_0](\mathcal{D}^{r_0}) \xrightarrow{\varphi_0} M' \to 0$$

of graded $\operatorname{gr}(\mathcal{D})$ -modules with $\mathbf{m}_i \in \mathbb{Z}^{r_i}$ $(i \geq 0)$ such that each φ_i is homogeneous of degree 0 (with respect to ξ) and does not contain invertible elements in \mathcal{O} as an entry for $i \geq 1$, or equivalently that $\{\varphi_i(1,0,\ldots,0),\ldots,\varphi_i(0,\ldots,0,1)\}$ is a minimal set of generators of $\operatorname{Ker} \varphi_{i-1}$ for all $i \geq 1$ and $\{\varphi_0(1,0,\ldots,0),\ldots,\varphi_0(0,\ldots,0,1)\}$ is a minimal set of generators of M'.

It is well-known that a minimal free resolution is unique up to isomorphism (see e.g., [E]). In particular, the ranks r_i and the shift vectors \mathbf{m}_i (up to permutation of their entries) are invariants of M'.

Definition 1 (minimal filtered free resolution) Let M be a finitely generated left \mathcal{D} -module with a filtration $\{F_k(M)\}_{k\in\mathbb{Z}}$. A filtered free resolution

$$\cdots \xrightarrow{\psi_3} \mathcal{D}^{r_2} \xrightarrow{\psi_2} \mathcal{D}^{r_1} \xrightarrow{\psi_1} \mathcal{D}^{r_0} \xrightarrow{\psi_0} M \to 0$$

of M (with shift vectors $\mathbf{m}_i \in \mathbb{Z}^{r_i}$) is called a minimal filtered free resolution of M if the induced exact sequence

$$\cdots \xrightarrow{\overline{\psi}_3} \operatorname{gr}[\mathbf{m}_1](\mathcal{D}^{r_2}) \xrightarrow{\overline{\psi}_2} \operatorname{gr}[\mathbf{m}_1](\mathcal{D}^{r_1}) \xrightarrow{\overline{\psi}_1} \operatorname{gr}[\mathbf{m}_0](\mathcal{D}^{r_0}) \xrightarrow{\overline{\psi}_0} \operatorname{gr}(M) \to 0$$

is a minimal free resolution of gr(M).

By using standard arguments in commutative algebra, we can easily prove

Theorem 1 Let M be a finitely generated left \mathcal{D} -module with a good filtration. Then a minimal filtered free resolution of M exists and is unique up to isomorphism; i.e., if there are two minimal filtered free resolutions

$$\cdots \to \mathcal{D}^{r_3} \xrightarrow{\psi_3} \mathcal{D}^{r_2} \xrightarrow{\psi_2} \mathcal{D}^{r_1} \xrightarrow{\psi_1} \mathcal{D}^{r_0} \xrightarrow{\psi_0} M \to 0$$

with shift vectors \mathbf{m}_i $(i \geq 0)$ and

$$\cdots \to \mathcal{D}^{r_3'} \xrightarrow{\psi_3'} \mathcal{D}^{r_2'} \xrightarrow{\psi_2'} \mathcal{D}^{r_1'} \xrightarrow{\psi_1'} \mathcal{D}^{r_0'} \xrightarrow{\psi_0'} M \to 0$$

with shift vectors \mathbf{m}'_i ($i \geq 0$), then there exist \mathcal{D} -isomorphisms $\theta_i : \mathcal{D}^{r_i} \to \mathcal{D}^{r'_i}$ satisfying $\theta_i(F_k[\mathbf{m}_i](\mathcal{D}^{r_i})) = F_k[\mathbf{m}'_i](\mathcal{D}^{r'_i})$ for any $k \in \mathbb{Z}$, such that the diagram

$$\cdots \to \mathcal{D}^{r_3} \xrightarrow{\psi_3} \mathcal{D}^{r_2} \xrightarrow{\psi_2} \mathcal{D}^{r_1} \xrightarrow{\psi_1} \mathcal{D}^{r_0} \xrightarrow{\psi_0} M$$

$$\theta_3 \downarrow \qquad \qquad \theta_2 \downarrow \qquad \qquad \theta_1 \downarrow \qquad \qquad \theta_0 \downarrow \qquad \qquad \parallel$$

$$\cdots \to \mathcal{D}^{r'_3} \xrightarrow{\psi'_3} \mathcal{D}^{r'_2} \xrightarrow{\psi'_2} \mathcal{D}^{r'_1} \xrightarrow{\psi'_1} \mathcal{D}^{r'_0} \xrightarrow{\psi'_0} M$$

is commutative. In particular, we have $r_i = r'_i$, and \mathbf{m}_i and \mathbf{m}'_i coincide up to permutation of their entries.

Let I be a left ideal of \mathcal{D} . A subset $G = \{P_1, \ldots, P_s\}$ of I is called a *minimal set of involutive generators* of I if $\sigma(G) := \{\sigma(P_1), \ldots, \sigma(P_s)\}$ is a minimal set of homogeneous generators of the graded $\operatorname{gr}(\mathcal{D})$ -module

$$\operatorname{gr}(I) := \bigoplus_{k \in \mathbb{Z}} (F_k(\mathcal{D}) \cap I) / (F_{k-1}(\mathcal{D}) \cap I).$$

The theorem above implies

Corollary 1 In the notation above, suppose that $G = \{P_1, \ldots, P_r\}$ and $G' = \{P'_1, \ldots, P'_{r'}\}$ are minimal sets of involutive generators of a left ideal I of \mathcal{D} with

$$\operatorname{ord} P_1 \leq \operatorname{ord} P_2 \leq \cdots \leq \operatorname{ord} P_r, \qquad \operatorname{ord} P_1' \leq \operatorname{ord} P_2' \leq \cdots \leq \operatorname{ord} P_r'.$$

Then we have r = r' and $\operatorname{ord} P_i = \operatorname{ord} P_i'$ for $i = 1, \ldots, r$. Moreover, there exists an invertible $r \times r$ matrix $U = (U_{ij})$ with entries in \mathcal{D} satisfying

$$P_i = \sum_{j=1}^r U_{ij} P'_j, \quad \max\{\text{ord } U_{ij} + \text{ord } P'_j \mid j = 1, \dots, r\} = \text{ord } P_i \quad (i = 1, \dots, r).$$

3 Minimal filtered free resolutions of $Ann_{\mathcal{D}}f^{-1}$

Let $f \in \mathbb{C}[x]$ be a polynomial in n variables $x = (x_1, \dots, x_n)$ and consider the annihilating ideal

$$\operatorname{Ann}_{\mathcal{D}} f^{-1} = \{ P \in \mathcal{D} \mid P f^{-1} = 0 \}.$$

This is equipped with the filtration $\{\operatorname{Ann}_{\mathcal{D}} f^{-1} \cap F_k(\mathcal{D})\}_{k>0}$.

The simplest case is when f is a so-called Koszul free divisor; i.e., $\operatorname{Ann}_{\mathcal{D}} f^{-1}$ is generated by first order operators whose principal symbols constitute a regular sequence in $\mathcal{O}[\xi]$. Then a minimal filtered free resolution of $\operatorname{Ann}_{\mathcal{D}} f^{-1}$ is of the form

$$0 \to \mathcal{D} \to \mathcal{D}^n \to \mathcal{D}^{n(n-1)/2} \to \cdots \to \mathcal{D}^n \to \operatorname{Ann}_{\mathcal{D}} f^{-1} \to 0$$

with shift vectors

$$\mathbf{m}_1 = (1, \dots, 1), \quad \mathbf{m}_2 = (2, \dots, 2), \quad \dots, \quad \mathbf{m}_n = (n).$$

If f is non-singular, or has normal crossing singularity, then it is Koszul free.

The following examples are computed by using a program Kan of N. Takayama, which realizes the algorithm of [OT]. This method produces minimal filtered free resolutions of modules over the (homogenized) Weyl algebra with respect to the weight vector $(0, \ldots, 0; 1, \ldots, 1)$. In each example below, we can verify that the output is also a minimal filtered free resolution over \mathcal{D} .

Example 1 Put $f = x^3 - y^2$ with two variables x and y. Then f is a Koszul free divisor. A minimal free resolution of $\operatorname{Ann}_{\mathcal{D}} f^{-1}$ is given by

$$0 \to \mathcal{D} \xrightarrow{\psi_2} \mathcal{D}^2 \xrightarrow{\psi_1} \operatorname{Ann}_{\mathcal{D}} f^{-1} \to 0$$

with shift vectors

$$\mathbf{m}_1 = (1, 1), \quad \mathbf{m}_2 = (2)$$

and homomorphisms defined by matrices

$$\psi_1 = \begin{pmatrix} 2x\partial_x + 3y\partial_y + 6\\ -3x^2\partial_y - 2y\partial_x \end{pmatrix}, \qquad \psi_2 = \begin{pmatrix} 3x^2\partial_y + 2y\partial_x & 2x\partial_x + 3y\partial_y + 5 \end{pmatrix}$$

with $\partial_x = \partial/\partial x$ and $\partial_y = \partial/\partial y$.

Example 2 Put $f = x^4 + y^5 + xy^4$ with two variables x, y. A minimal free resolution of $\operatorname{Ann}_{\mathcal{D}} f^{-1}$ is given by

$$0 \to \mathcal{D}^2 \xrightarrow{\psi_2} \mathcal{D}^3 \xrightarrow{\psi_1} \operatorname{Ann}_{\mathcal{D}} f^{-1} \to 0$$

with shift vectors

$$\mathbf{m}_1 = (1, 1, 2), \quad \mathbf{m}_2 = (2, 2)$$

and homomorphisms

$$\psi_1 = \begin{pmatrix} -16x^2\partial_x - 20xy\partial_x - 12xy\partial_y - 16y^2\partial_y - 64x - 80y \\ P_2 \\ P_3 \end{pmatrix}$$

with

$$\begin{split} P_2 &= -64xy^2\partial_x - 16y^3\partial_x - 48y^3\partial_y + 500xy\partial_x + 16x^2\partial_y - 20xy\partial_y + 400y^2\partial_y \\ &- 256y^2 + 2000y, \\ P_3 &= -262144y^3\partial_x^2 + 262144y^3\partial_x\partial_y - 2048000xy\partial_x^2 + 573440xy\partial_x\partial_y - 1638400y^2\partial_x\partial_y \\ &- 196608x^2\partial_y^2 + 32768xy\partial_y^2 + 393216y^2\partial_y^2 - 1835008xy\partial_x + 589824y^2\partial_x \\ &- 1376256y^2\partial_y + 15237120x\partial_x - 10240000y\partial_x - 425984x\partial_y + 14630912y\partial_y \\ &- 7340032y + 60948480 \end{split}$$

and

$$\psi_2 = \begin{pmatrix} P_{11} & -16384x\partial_x - 16384y\partial_x - 45056 & y \\ P_{21} & 4096x\partial_x + 12288x\partial_y + 16384y\partial_y + 53248 & x \end{pmatrix}$$

with

$$P_{11} = 65536y^2\partial_x - 512000y\partial_x - 16384x\partial_y + 24576y\partial_y + 20480,$$

$$P_{21} = -16384y^2\partial_x - 49152y^2\partial_y + 4096x\partial_y + 409600y\partial_y - 212992y + 1331200.$$

From this resolution, we know that $Ann f^{-1}$ cannot be generated by first order operators.

Example 3 Put f = xyz with three variables x, y, z. Then f has a normal crossing singularity. A minimal filtered free resolution of $\operatorname{Ann}_{\mathcal{D}} f^{-1}$ is given by

$$0 \to \mathcal{D} \xrightarrow{\psi_3} \mathcal{D}^3 \xrightarrow{\psi_2} \mathcal{D}^3 \xrightarrow{\psi_1} \operatorname{Ann}_{\mathcal{D}} f^{-1} \to 0$$

with shift vectors

$$\mathbf{m}_1 = (1, 1, 1), \quad \mathbf{m}_2 = (2, 2, 2), \quad \mathbf{m}_3 = (3)$$

and homomorphisms

$$\psi_1 = \begin{pmatrix} -x\partial_x - 1 \\ z\partial_z + 1 \\ y\partial_y + 1 \end{pmatrix}, \qquad \psi_2 = \begin{pmatrix} -z\partial_z - 1 & -x\partial_x - 1 & 0 \\ -y\partial_y - 1 & 0 & -x\partial_x - 1 \\ 0 & y\partial_y + 1 & -z\partial_z - 1 \end{pmatrix},$$

$$\psi_3 = \begin{pmatrix} -y\partial_y - 1 & z\partial_z + 1 & -x\partial_x - 1 \end{pmatrix}.$$

Example 4 Put $f = x^2 + y^2 + z^2$ with variables x, y, z. A minimal filtered free resolution of $\mathrm{Ann}_{\mathcal{D}} f^{-1}$ is given by

$$0 \to \mathcal{D}^2 \xrightarrow{\psi_3} \mathcal{D}^5 \xrightarrow{\psi_2} \mathcal{D}^4 \xrightarrow{\psi_1} \operatorname{Ann}_{\mathcal{D}} f^{-1} \to 0$$

with shift vectors

$$\mathbf{m}_1 = (1, 1, 1, 1), \quad \mathbf{m}_2 = (1, 2, 2, 2, 2), \quad \mathbf{m}_3 = (3, 2)$$

and homomorphisms

$$\psi_1 = \begin{pmatrix} z\partial_y - y\partial_z \\ z\partial_x - x\partial_z \\ y\partial_x - x\partial_y \\ -x\partial_x - y\partial_y - z\partial_z - 2 \end{pmatrix},$$

$$\psi_2 = \begin{pmatrix} -x & y & -z & 0 \\ -y\partial_y - z\partial_z - 2 & -x\partial_y & x\partial_z & -z\partial_y + y\partial_z \\ \partial_x & -\partial_y & \partial_z & 0 \\ -y\partial_x & -x\partial_x - z\partial_z - 2 & -y\partial_z & -z\partial_x + x\partial_z \\ x\partial_z & -y\partial_z & -x\partial_x - y\partial_y - 1 & -y\partial_x + x\partial_y \end{pmatrix},$$

$$\psi_3 = \begin{pmatrix} -\partial_z^2 & -\partial_x & -z\partial_z - 1 & \partial_y & -\partial_z \\ x\partial_x + y\partial_y + 1 & -x & x^2 + y^2 & y & -z \end{pmatrix}.$$

Example 5 Put $f = x^3 - y^2 z^2$ with variables x, y, z. Then f has non-isolated singularities. A minimal filtered free resolution of $\operatorname{Ann}_{\mathcal{D}} f^{-1}$ is given by

$$0 \to \mathcal{D}^2 \xrightarrow{\psi_3} \mathcal{D}^5 \xrightarrow{\psi_2} \mathcal{D}^4 \xrightarrow{\psi_1} \operatorname{Ann}_{\mathcal{D}} f^{-1} \to 0$$

with shift vectors

$$\mathbf{m}_1 = (1, 1, 1, 1), \quad \mathbf{m}_2 = (1, 2, 2, 2, 2), \quad \mathbf{m}_3 = (2, 3)$$

and homomorphisms

$$\psi_{1} = \begin{pmatrix} -y\partial_{y} + z\partial_{z} \\ -2x\partial_{x} - 3z\partial_{z} - 6 \\ -2yz^{2}\partial_{x} - 3x^{2}\partial_{y} \\ -2y^{2}z\partial_{x} - 3x^{2}\partial_{z} \end{pmatrix},$$

$$\psi_{2} = \begin{pmatrix} -3x^{2} & 0 & y & -z \\ 6yz^{2}\partial_{x} + 9x^{2}\partial_{y} & 2yz^{2}\partial_{x} + 3x^{2}\partial_{y} & -2x\partial_{x} - 3y\partial_{y} - 5 & 0 \\ 0 & -2y^{2}z\partial_{x} - 3x^{2}\partial_{z} & 0 & 2x\partial_{x} + 3z\partial_{z} + 5 \\ 2x\partial_{x} + 3z\partial_{z} + 6 & -y\partial_{y} + z\partial_{z} & 0 & 0 \\ 2yz\partial_{x} & 0 & \partial_{z} & -\partial_{y} \end{pmatrix},$$

$$\psi_{3} = \begin{pmatrix} 2x\partial_{x} + 3y\partial_{y} + 3z\partial_{z} + 2 & y & z & 3x^{2} & -3yz \\ 3\partial_{y}\partial_{z} & \partial_{z} & \partial_{y} & -2yz\partial_{x} & 2x\partial_{x} + 2 \end{pmatrix}.$$

Example 6 Put f = xy(x+y)(xz+y) with variables x, y, z. This polynomial was studied in [CU]. A minimal filtered free resolution of $Ann_{\mathcal{D}}f^{-1}$ is given by

$$0 \to \mathcal{D}^2 \xrightarrow{\psi_3} \mathcal{D}^5 \xrightarrow{\psi_2} \mathcal{D}^4 \xrightarrow{\psi_1} \operatorname{Ann}_{\mathcal{D}} f^{-1} \to 0$$

with shift vectors

$$\mathbf{m}_1 = (1, 1, 1, 2), \quad \mathbf{m}_2 = (2, 2, 3, 2, 2), \quad \mathbf{m}_3 = (3, 3)$$

and homomorphisms

$$\psi_1 = \begin{pmatrix} -9x\partial_x - 9y\partial_y - 36 \\ 36xz\partial_z + 36y\partial_z + 36x \\ -36xy\partial_y - 36y^2\partial_y - 36yz\partial_z + 36y\partial_z - 36x - 108y \\ 432z^2\partial_z^2 + 432y\partial_x\partial_z - 432y\partial_y\partial_z - 432z\partial_z^2 + 864z\partial_z - 1296\partial_z \end{pmatrix},$$

$$\psi_2 = \begin{pmatrix} -48y\partial_z & 12z\partial_z - 12\partial_z & 12\partial_z & -x \\ P_{21} & -12x\partial_x - 12y\partial_x - 24 & 12z\partial_z + 12 & y \\ P_{31} & -12z\partial_x\partial_z + 12\partial_x\partial_z & -12\partial_x\partial_z & -y\partial_y - 3 \\ -4xz\partial_z - 4y\partial_z - 4x & -x\partial_x - y\partial_y - 3 & 0 & 0 \\ P_{51} & 0 & x\partial_x + y\partial_y + 3 & 0 \end{pmatrix}$$

with

$$\begin{split} P_{21} &= -48xz\partial_z - 48yz\partial_z - 48y\partial_z - 48x - 48y, \\ P_{31} &= -48z^2\partial_z^2 + 48y\partial_y\partial_z + 48z\partial_z^2 - 96z\partial_z + 144\partial_z, \\ P_{51} &= -4xy\partial_y - 4y^2\partial_y - 4yz\partial_z + 4y\partial_z - 4x - 12y \end{split}$$

and

$$\psi_3 = \begin{pmatrix} y\partial_y + 3 & 0 & -x & 12z\partial_z - 12\partial_z & -12\partial_z \\ -y\partial_x & -x\partial_x - y\partial_y - 3 & -y & 12x\partial_x + 12y\partial_x + 24 & 12z\partial_z + 12 \end{pmatrix}.$$

As was shown in [CU], $\text{Ann} f^{-1}$ can be generated by the first three components of ψ_1 , which are first order operators but are not involutive.

References

- [CU] Castro-Jiménez, F.J. and Ucha-Enriquez, J.M.: Explicit comparison theorems for D-modules. J. Symbolic Computation 32 (2001), 677-685.
- [E] Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Springer, New York, 1995.
- [OT] Oaku, T. and Takayama, N.: Minimal free resolutions of homogenized *D*-modules. J. Symbolic Computation **32** (2001), 575–595.