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Abstract

Let M be an algebraic D-module defined on an affine space X and Y be a linear sub-
manifold of X. We give an algorithm to determine if M is regular specializable along
Y, and to find, if so, its regular b-function. (M has a regular b-function by definition
if and only if M is regular specializable.) We also prove that the A-hypergeometric
system of Gelfand-Kapranov-Zelevinsky is always regular specializable along the
origin.
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1 Introduction

Let X be the affine space C™ with the coordinate system z = (z1,...,x,) and
Y be the linear subvariety defined by 1 =--- =245 =0 with 1 < d < n. We
denote by Dy the sheaf on X of linear partial differential operators (of finite
order) with holomorphic coefficients. A section P of Dx is written in a finite
sum

P = Z Ao ()0 = Z Aoy (T1y oy Ty )OO - - O

aeNn aq,...,an€N

with a,(x) being holomorphic on an open set of X, where 0; = 0/0z; denotes
the partial derivation with respect to z;, and N is the set of nonnegative
integers. The order of P is defined to be

ord P := max{|a| = a1 + - - + a, | as(z) # 0}.

We have two filtrations on Dx: The order filtration is defined by

Fi.(Dx):={P €Dx |ordP <k} (keZ),
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and the V-filtration with respect to Y is defined by
Vi(Dy) = {P €Dy |PfeT ™ forany fe Jiandi€Z) (ke )

where J is the defining ideal of Y in Oy, the sheaf of holomorphic functions
on X. (Weset J' = Ox if i <0.)

Definition 1 A coherent Dx-module M is said to be regular specializable
along Y at p € Y (cf. [13], [18]) if and only if for any germ u of M at p, there
exist a nonzero polynomial b(s) € C[s] and an operator () € Dx defined on a
neighborhood of p such that

(0(x101 + -+ 2402) + Qu=0, Q€ V_1(Dx), ordQ <degh(s). (1)

A polynomial b(s) satisfying (1) is called a regular b-function of u along Y at
p. If Z is a left ideal of D, the stalk of Dx at 0 € X, and b(s) is a regular
b-function of the residue class of 1 € D in D/Z, then we call b(s) simply a
regular b-function of Z and say that Z is regular specializable along Y .

The b-function of u is the monic polynomial b(s) of the minimum degree which
satisfies (1) without the condition ord @) < degb(s). Hence a regular b-function
is a multiple of the b-function.

An equation of the form (1) is essential in proving the convergence of the power
series solutions of M. Let Oxy = C{z1,...,2,} be the ring of convergent
power series. The formal completion of Ox along Y is defined to be

O)/(—E’,O = { Z Qqy,..., ad(xd—i—la cee >$n)x(111 e xgd ’ Qay,... ;a4 (xd—&-l; s 7xn>

are holomorphic on some neighborhood U C Y of O}.

Kashiwara and Kawai [11] proved that if Z is regular specializable along Y,
then one has

Exth(D/Z, Ox,) = Exth(D/Z, Ocw,) (VkE€Z). (2)

On the other hand, Laurent [13] (see also [14]) defined the (algebraic) slopes
of M along Y at p. Laurent and Mebkhout [14] proved that (2) holds if and
only if Z has no slopes along Y. It was conjectured in [14] that M is regular
specializable along Y if and only if there is no slope of M along Y. (As far
as the author knows, this remains to be an open problem.) Assi et al. [2] (see
also [6]) presented an algorithm for computing the slopes of M when M is
algebraic and Y is a hyperplane.



We give some examples of regular b-functions for A-hypergeometric systems
of Gelfand-Kapranov-Zelevinsky [8]. We prove that A-hypergeometric sys-
tems are regular specializable along the origin without assuming the homo-
geneity (Theorem 1). In particular, this implies (2) with D/Z being the A-
hypergeometric system and Y = {0}.

For a left ideal I of the Weyl algebra D, we also give an algorithm for deter-
mining if DI is regular specializable along a linear submanifold of arbitrary
codimension, and if so, finding a regular b-function of the minimum degree and
an associated operator @) satisfying (1). For that purpose, we make use of the
homogenization (or the Rees algebra) of D with respect to the order filtration,

which we denote by D™, and (a generalization of) the division algorithm of
[9] in D).

Our method consists in calculating the b-function, or the indicial polynomial,
in the homogenized ring D™ . Note that an algorithm for computing the usual
(i.e. non-homogenized) b-function of a D-module was given in [16] for the case
d =1, and in [17] for the general case. We also generalize the notion of regular
b-function and give an algorithm to compute it. Once a regular b-function
is found, we can compute an associated operator ) by using the division
algorithm.

Remark 1 A regular b-function of the minimum degree is not necessarily
unique up to constant multiple. For example, set n = 2, d = 1 and let

T:=D-{0?, 0, +03}
be the left ideal of D generated by {07, 9; + 05}. Then
(]3181)(13181 —1 + C) + cxlﬁg = JI%&% + C:L’l(al + (9%)

belongs to Z and cz103 belongs to V_1(D) N F»(D). Hence s(s — 1+ ¢) is a
regular b-function (of the minimum degree) of Z along z; = 0 for any ¢ € C,
while the b-function is s.

Remark 2 Let f = f(z) be a polynomial in = = (xy, ..., z,). Denote by D,
the ring of differential operators on the variables xy,...,x, with convergent
power series coefficients. Introducing a new variable t, let D, ;1 be the ring
of differential operators on the variables x and ¢ with convergent power series
coefficients. Let Z¢ be the left ideal of D,,;; generated by

0 90 iy )

E=1@) ot o

Then b(s) € Cls] is a regular b-function of Z; along the hyperplane ¢t = 0
if and only if there exists Q(s) € D,[s] such that the degree of Q(s) in



0/0xy,...,0/0x, and s is less than or equal to degb(s) and

Q(s)f* =b(=s — 1) f".

2 Regular b-functions of A-hypergeometric systems

Let

A= : ol =(an, ..., a,)

Qg1+ Qdn

be an integer d X n matrix with rank A = d, and 5 = (34, ..., 84) be a complex
d-dimensional vector. The toric ideal 14 is the left ideal of C[0] = Cl0y, ... 0]
generated by {0" — 9" | u,v € N", Au = Av}. We denote by (40 — ) the
ideal of C[0] = Cl#,...,0,] generated by

{ZCLWQJ—BZ|Z:1,,CZ}
Jj=1

with 0 = (01,...,0,) = (x101,...,2,0,). Then the A-hypergeometric ideal
H4(B) is defined to be the left ideal of the Weyl algebra

D:Dn:C[:L'l,...,a:n]<81,...,(9n>

which are generated by I4 and (A0 — 3). The left D-module D/H 4(f3) is called
the A-hypergeometric system, which was introduced by Gelfand, Kapranov,
Zelevinsky (see e.g., [8]).

The following examples were computed by using algorithms to be presented in
Section 7 with Kan/sm1 [21], a computer algebra system for algebraic analysis.
In the following examples, regular b-functions beg(s) of the minimum degree
are unique up to constant multiple and coincide with the b-functions.

201

Example 1 Set A = ( ) Then I4 = (0,0, — 02), and the regular b-
021

functions of H4(f) of minimum degree along coordinate submanifolds Y are

as follows:

Y = {z1 = 0}: The regular b-function be(s) along Y is s(2s — 51 + ().
Y = {23 =0} : breg(s) = s(s — 1).

Y = {21 = 29 = 0}: breg(s) = (25 + 51 — B2)(2s — 1 + Pa).

Y = {21 =23 = 0}: breg(s) = (25 — 51)(2s — 51 — 1).



O N AP O

Fig. 1. Column vectors of A for Examples 1-5 (from left to right)

oY = {O} breg(s> =25 — 61 — ﬁg.

302
Example 2 A = ( ), Iy = (0702 — 03).
032

o V ={z; =0} breg(s) = s(s —1)(3s — f1 + (2)(3s — 51 + B2 — 3).

e Y = {x3 = 0}: not regular specializable.

o V = {z1 =23 = 0} breg(s) = (35 — B1 + 2)(3s — 1 + B2 — 6)(3s + B1 —
Ba)(3s + B1 — B2 — 6).

e Y = {x; = x3 = 0}: not regular specializable.

o YV = {0}: breg(s) = (6s — 201 — f2)(65 — 251 — B2 — 3)(6s — B1 — 204)(6s —
1 — 2Py — 3).

301
Example 3 A =
031

), Iy = (03 — 0,0s).

Y = {z; = 0}: not regular specializable.

Y = {23 =0}: beg(s) = s(s — 1)(s — 2).

Y = {z; = 22 = 0}: not regular specializable.

Y = {21 = 23 = 0}: breg(s) = (3s — 1)(3s — B1 — 2)(3s — B1 — 4).

Y = {0}: beg(s) = (35 — 1 — B2)(3s — 1 — B2 — 1)(35 — B — B2 — 2).

20 -1

Example 4 A =
02 -1

), [A - <81(928§ - 1>

o YV = {z; =0}: breg(s) = s(25 — £1)(2s — f1 — 1)(25 — 51 + Ba).

o YV = {x3 =0} beg(s) = s(s — 1)(s + 51)(s + Ba).

o YV = {1z =25 = 0}: beg(s) = (2s — 1 — B2)(25s — 1 — P2 — 2)(2s — 1 +
B2)(25 + B1 — B2).

o YV ={x; =23 =0} beg(s) = (s+ 51)(25s — £1)(25 — B1 — 3)(2s — 1 + 3a).

o Y = {0}: beg(s) = (25—1—2) (25— 1 —Pa—4) (25— f1+352)(25+351 — 52).

1201

Example 5 A =
0011

), Iy = (0F — D2, 0105 — 04, 0203 — 0104).



e regular specializable along z; =0, x3 =0,
[Elsz'QZO, [E1:ZE3:07 ZE1:[E4:0, 1'3:1‘4:0
$1:I2:I3:07 ZE1:I3:I4:0,

Ty =29 =x3=x4 = 0.

e not regular specializable along x5 =0, x4 =0,
$2:$3:0, $2:$4:0,

ZE1:ZE2:ZL'4:0, ZEQZZE3:ZE4:0.

o YV ={0}: breg(s) = (s — B2)(25 — B1 — B2)(2s — 1 — B2 — 1).

For Y = {0}, an associated Q € V_,(D) N F3(D) such that
breg(01 + 02 + 05+ 04) — Q € Ha(B)

is given by

Q = —227%372822 -+ 6;?7%%38283 + 41311’25(}38284 — 121’11‘%8384
— ].43?11‘3.1‘482 + ngxgaz —I— 2(51 — BQ)I%@Q + (1452 — 10)1‘11‘384.

(In fact, Q € Fy(D).)

Theorem 1 Assume rank A = d. Then H4(B) is reqular specializable along
{0} for any B € CZ. In particular,

Exth (D/HA(B), C{x1,...,2,}) = Exth(D/HA(B), Cllz1, ..., z]])  (3)

holds for any integer k, where Cl[xy, ..., x,]] denotes the formal power series
Ting.

The proof of this theorem will be given in Section 4. Note that the dimensions
of the cohomology groups of the right-hand side of (3) are computable (see
Algorithm 5.4 of [17]). In particular, the cohomology groups of (3) all vanish
if the b-function along the origin has no integral roots. That is the case with
Examples 1-5 above for generic /5. Note also that Schulze and Walther [20]
described the slopes of H4(5) along coordinate subvarieties in terms of what
they call (A, L)-umbrellas under the condition that the column vectors of A
are contained in a proper convex cone with vertex at the origin.

3 Homogenization of the ring of differential operators

In order to prove Theorem 1 as well as to deduce algorithms for computing a
regular b-function and an associated operator, we work in the Weyl algebra,
i.e., the ring of differential operators with polynomial coefficients D = D,,. The
following constructions are also valid for the ring D of differential operators
with convergent power series coefficients.



We introduce the homogenlzed ring D of D with respect to the order fil-
tration. That is, D" is a C-algebra generated by x1,...,2,,01,...,0, and h
with the commutation relations

@-xj = xj&- + 5ijh, l’in = Ijl‘l‘, 82@ = 8]-81-, &Lh = hal, .Tzh = hl‘l

for 1 <i,5 < n. Then D™ is a (non-commutative) graded ring with respect
to the following weights:

Ty 1y Oy - Oy h
0---01---11

The homogeneous part of degree m of D™ is the set (D), consisting of 0
and the homogeneous operators of D™ of weight m.

The homogenization of an element P = Y cyn o (2)0% of D is defined to be

P = 3" q,(x)0*h™ 1 € DM (m := ord P).

aeN"

The homogenization 1™ of a left ideal I of D is the left ideal of D) generated
by {P™ | P € I}, which is homogeneous with respect to the above weights.

The V-filtration of D™ with respect to Y is defined by

Vk(D(h)) = {P = Z aaﬁl,xo‘aﬁh” € D(h) | Qo By € (Cv

a,BeN™ veEN

aaBV:Oif61+---+5d—a1—---—ad>k}

For an element P of D™ we define its V-order ordV(P) to be the minimum
integer k such that P € Vk(D )). For a left ideal I’ of D™ its V-graded ideal
is

gry (I') = QVi(DM) N 1)/ (Vi (DW) N 1),

keZ
which is a left ideal of the V-graded ring

gry (D @Vk /Vk (DS ) ~ D",

keZ

For a nonzero element P of D™ with ordy (P) = k, we denote by oy (P) the
residue class of P in V,(D™)/V;_1(D®) C gr,,(D™). Note that oy (P) can
be regarded as an element of D™ since gr,,(D™) is isomorphic to D™ as
graded ring with respect to the V-filtration.



4 Regular specializability of the A-hypergeometric system — proof
of Theorem 1

We denote by {Vi(D)}rez and {Vi(D™)} ez the V-filtrations with respect to
the origin on the Weyl algebra, D and on its homogenization D™ respectively.
Restricted to the commutative subring C[0] = C[dy,...,0,] of D, the V-
filtration coincides with the order filtration, which we denote by {Vi(C[0)]) }rez.
For an ideal I of C[J], we denote by

gry (1) :== DU NVi(C[9]))/ (I N Vit (C[A)))

k>0

the graded ideal with respect to this filtration, which is an ideal of gry, (C[0]) ~
C[0]. Its zero set V(gry (1)) C C™ is the characteristic variety of I regarded
as a system of linear partial differential equations with constant coefficients.

Let A = (aj,...,a,) be an integer d X n matrix with rank A = d. We denote
by A4 the convex hull of the set {0,ai,...,a,} in RY, and by F, the set of
the facets of A4 which do not contain the origin.

Lemma 1 (Adolphson)

Vigry(1a)) € U {£=(&,....&) € CM | & =01ifa; €7}

YEF A

Proof: This inclusion follows directly from (the proof of ) Lemma 3.2 of Adolph-
son [1]. O
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82, 6183—84, 8283—81(94}, and ng(IA) is generated by {8%, (9163, (9263—8184}.

Thus we have

For example, if A = ( ) , then the toric ideal 14 is generated by {07 —

Vigry(Ia) ={& =& =0} U{{ =& =0}

Let [XL) be the homogenization of I, in the commutative subring C[0, h] of
D™ We denote by ng(II(L,h)) the graded ideal of IXZ) with respect to the
V-filtration of D™ restricted to C[0, h]. Then from the definition of 11(4}1), it
follows that

Vigry (I5) = Vgry (14)) x C.

In general, for a homogeneous ideal I of C[0, h], we define its distraction to
be
dist(1) :== DWI N C[6y,...,0,, A



with 0, = x;0;, which is a homogeneous ideal of the commutative subring
Clf,h] = Clby,...,0,,h] of D). Note that this definition slightly differs from
the one given in [19]. The following lemma is an immediate consequence of
the definition:

Lemma 2 Let I be an ideal of C|0, h] generated by {0% | o = (a,...,0y) €
A} with a finite subset A of N™. Then dist(I) is an ideal of C[0,h] generated

by

The following is an immediate consequence of this lemma.

Corollary 1 Let I and Iy be ideals of C[0, h] which are generated by mono-
mials in 0. Then dist(l; N Iy) = dist(I;) N dist(I3) holds.

Now by lemma 1, we have

Vigry(11) ¢ U {(&,h) e C™H & =0if a; ¢~}

YEFA
This implies
h
g (1) o () (05 lay &),

YEFA
and hence
h Ly,
gry(I4) o () (0 | a; ¢ 9)
YEFA

with some positive integers n. ;. It follows, in view of Lemma 2 and Corollary
1, that

aist(ary (1) > () (T @ - vh) | o &)

VEFa =0
Define an ideal J of C[6y,...,0,,h| by
J = dist(gry (1)) + (A0 — o),
where (A0 — Sh) denotes the ideal of C[#,...,0,, h] generated by

{ZCLZ]Q] _Bzh |Z: 1,,d}
j=1

Then we have
J C Cloy,...,00 k] Ngry(Ha(B)™)
and the set V(J) is contained in

My, —1

U {(M)I IT ¥ —uh)_olfa]gzy,z% = B;h (z':l,...,d)}.

YEFA v=0 7=1



For each 7, there exist c,; € Q such that
d
ch,iaij =1 if a; €y
i=1

since ~y is contained in a hyperplane of R? which does not contain the origin.
Hence we get an element

d n d
> Cri (Z ai;t; — @‘h) =D 0+ > b — > _cyibih
1=1 J=1 a; ey a; &y i=1
of (A0 — Bh) with some p; € C. This implies that V(J) is contained in
nyj—1 d
U {(H,h) | H (QJ — Vh) =0 if aj g’y, Z Hj + Z ,ujej = chﬂih} .
~EFa v=0 ajey a; gy =1
In particular, there exist NV, € N and b, € C such that
N'Y
VD U UL ) [ 01+ + 00 = by xh}.
YEFA k=1
By Hilbert’s Nullstellensatz,
N’Y
b1+ -+ 6, h) = [ T[4 +60,—byuh)™*
YEFA k=1

belongs to J C gry(H4(8)™) with some positive integers m., ;. In view of the
definition of gry (H(3)™), there exists an element @ of V_;(D®™) homoge-
neous of the same degree as b(s, h) such that

b0y + -+ 0, h) +Q € Ha(B)™.

Substituting 1 for h, we conclude that H4 () is regular specializable along the
origin noting that ord(Q|,=1) < deg @ = degb(s, h) = degb(s, 1).

5 Generalized regular b-function

Let us generalize the definition of regular b-function. Let Z be a sheaf of
left ideals of Dx and Y a submanifold of X which is defined by ¥ = {z =
(x1,...,2n) | 11 = -+ = x4 = 0} in terms of a local coordinate z of X.
Then a generalized regular b-function of Z along Y at p is a monic polynomial
b(z',s) = ™ + ci1(2)s™ + -+ + ¢ (7)) in s with coefficients ¢;(2’) being

10



analytic functions of ' = (2441, ..., 2,) on a neighborhood of p € Y satisfying
b([El,l'lal +---+ l‘dad) + Q erl

with a germ @ of V_;(Dx) N F,,(Dx) at p. If there exists a generalized b-
function, Z is said to be regular specializable in a weak sense along Y at p.

This definition coincides with that of b-function if Y is a point. In case d = 1,
7 is regular specializable in a weak sense if and only if Z is regular singular in
a weak sense in the terminology of [12], or equivalently, it is Fuchsian along Y
in the sense of [15] (or [4] for a single equation). For general d, Z is Fuchsian
along Y in the sense of [15] if it is regular specializable in a weak sense. It was
proved in [15] that (2) holds if Z is Fuchsian along Y.

6 Division algorithm and standard bases

Our algorithms for regular b-functions are based on the following division
algorithm, which is a generalization of the one given in [9] (Algorithm 2.2) to
general monomial orderings. In what follows we present only the scalar version
for the sake of simplicity.

We make use of the second homogenization by introducing a new variable s
in addition to h. For a homogeneous element P = 3", 5, Aoprr 0P hF of DM,
we define its second homogenization to be

P = 3" aupa°0°hEsmlelt Bl ¢ phg)
o8,k

with
m := max{|a| — |5] | anpr # 0 for some k}.
An element of D™][s] is said to be bihomogeneous if it is simultaneously ho-

mogeneous with respect to both weights defined by the rows of the following
table:

1 Tn O 0, h s
0 0 1 1 1 0
1 1 -1 -1 0 1

Let < be a monomial ordering for D™ | ie., a total ordering on the set of
monomials {z*¢?h* | o, 8 € N*, k € N} which is invariant under the multi-
plication by the same monomial on both sides, with the additional condition

11



For an element P = }°, 5, AaprT 0P hE of DWW its leading monomial with
respect to < is
LM (P) := max o {z*¢"h* | agpp # 0},

which is a monomial in the commutative polynomial ring C[xz, &, h] with £ =
(&1,...,&,) being the commutative variables corresponding to 0. We call the
element

Pz, &, h) = anpa®’h”
a,fB.k

of Clz, &, h| the total symbol of P.

A monomial ordering <, for D™]s] is defined so that z*¢?hist <, €% his”
if and only if

| = Bl + p < || = |5 + v
or (|| = |8] + = |o/| = |8'] + v and 2°°h* < 2 €7 h7).

Let P, @ be bihomogeneous elements of D™ ][s]. If LM (P) devides LM (Q),
then we set
Red(P,Q) = (R,U) with R:= P — UQ,

where U is an element of D" [s] whose total symbol is LM~ (Q)/LM, (P).
Algorithm 1 (Division algorithm in D®))

Input: homogeneous elements P, P, ..., P,, of D™ a monomial ordering <
for D).
Output: homogeneous Q1,...,Q,, € D™ and a € C[z] such that
(1) A+a)P=Qi1P+--+QunbPy + R,
(2) LM(a) < 1if a #0,
(3) If R # 0, then LML (R) is not divisible by any LM (),
(4) LM< (QiP) = LM (P) if Q; # 0.

G = (Pl(s), ., PB)) (alist), R:= P A:=1
Q=(Q1,...,Qn) :=(0,...,0) € (DM
IF R # 0 THEN
F:={P € G|Lm (P) divides LML, (s°R) for some ¢ € N}
ELSE F :=( (an empty set)
H = () (an empty list)
WHILE (F # §) DO
Choose P’ € F with ¢ minimal, which is the i-th element of G
IF ¢ >0 THEN
G:=GU(R) (append R to G as the last element)
H:=HU((A,Q)) (append a list (A, Q) to H as the last element)
(R,U) := Red(s'R, P")

12



IF ¢ <m THEN Q; :=Q; +U
IF' % > m THEN
(A, Q") :==H[i —m] (the (i — m)-th element of H)

A=A-UA

FOR j=1,...,m DO Q; :=Q; - UQ);
IF R # 0 THEN

v := the highest power of s dividing R

R:=R/s"

F:={P e G |1mg (P) divides LML (s°R) for some ¢ € N}
ELSE F := ()
FOR j =1,...,m DO Q; := Q;|s_1
R := Rls=1, a := Als=1

The correctness of this algorithm can be proved in a way similar to [9]. See
also [10, Chapter 2] for the commutative case.

By using this division in the Buchberger algorithm, we can compute a Grébner
(or a standard) base of a given homogeneous left ideal of Dih) with respect

to an arbitrary monomial ordering < for D™ See [9] for details. Here D" is
the localization with respect to the multiplicative subset

S = {1} U{1+a(2) | a(@) € Clal, a(z) £ 0, n(a(x)) < 1}
of D™ An element P of D(j) is expressed in a finite sum

Aok ()

P =
a,k bak (.Z‘)

o (aor(x) € Clz], bar(z) € S<).

In fact, all computations can be done in D™ not in Dg1 ). For this purpose,

let us introduce the following definition:

Definition 2 Let I be a left homogeneous ideal of D™ and < be a mono-
mial ordering for D™ . Then a finite set G C I consisting of homogeneous
elements is called a standard base of I with respect to < if the ideal (LM<(]))
of Clx,&, h], which is generated by the leading monomials with respect to <
of the elements of I, coincides with the ideal (LML (G)) which is generated by
the leading monomials of the elements of G. If, in addition, G generates I,
then G is called a Grobner base of I.

Lemma 3 Let G = {Py,..., P} be a standard base of a homogeneous left
ideal I of D™ with respect to a monomial ordering < for D™ . Then for any
P, there exist homogeneous Q1 ..., Q, € D and a € C[z] such that

(1+a)P:Q1P1+"'+Q7"Pr>

13



LM<(a) < 1ifa# 0, LMx(Q;F;) 2 LM(P) of Q; # 0.
Proof: Applying Alogorithm 1, we get an expression
1+a)P=Q 1P+ ---+Q.P-+R

with the conditions (2),(3),(4) of Alogorithm 1. If R # 0, then LM< (R) does
not belong to (LML (G)), which contradicts the fact that R € I and G is a
standard base of I. O

Given a finite set of generators of a homogeneous left ideal I of D™ we can
compute a standard base of I with respect to an arbitrary monomial ordering
< by the Buchberger algorithm with the usual division replaced by Algorithm
1. Then by the preceding lemma, G generates DgL T in D&h).

7 Algorithms for (generalized) regular b-functions

Let us describe the whole algorithm in several steps. The inputs are a finite set
of generators of a left ideal I of the Weyl algebra D, and a linear submanifold
Y ={x; =--- = x4 =0}. The outputs are a (generalized) regular b-function
of Z := DI along Y of the minimum degree, and an associated operator () € D
satisfying (1), where D is the stalk of Dx at 0.

Step 1. Computation of generators of the homogenized ideal I("). Let < be
a monomial ordering for D such that

2P <2 W it |8 < ||

and that 1 is the minimum monomial. Let {P, ..., P.} be a set of generators
of a given left ideal I of D. Let {P], ..., P} be a Grobner base with respect to
< of the ideal of D generated by {Pl(h)7 ..., PMY. Let v; be the maximum
nonnegative integer such that h* divides P/ and set P/ := P//h". Then

]

Gy :={P/' ..., P/} is a set of generators of the homogenized ideal 1" of I.

In fact, let P be an arbitrary nonzero element of I. Then it is easy to see
that there exists a nonnegative integer v such that h* P belongs to the ideal
generated by (1. Hence by division we have

WPW = QP 4+ -+ QP

with homogeneous Q; € D™ such that LM (Q;P/) < LM (h¥ PM) if Q; # 0.
This implies that " divides each @; in view of the definition of <. Hence P®
belongs to the ideal generated by G. Since P!’|,—; belongs to I, it is also easy
to see that G is a subset of T,
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Step 2. Computation of generators of gr,,(I"). Let < be a monomial ordering
for D™ compatible with the V-filtration, i.e., satisfying

2P < PR A Bt A Bu—an——ag < B+ Bh—al = —al,

and 1 < 2; ford+1<4i <n.Let {P,..., P} be a standard base of ") with
respect to <. Then

Gy = {gry(P1),. .., gry ()}
is a set of generators of gry (1).

In fact, let Py be a homogeneous nonzero element of gr,,(I(") with ordy (Py) =
m. Then there exists Q € V,,,_1(D™) such that Py + Q € I™. By Lemma
3, there exist homogeneous Q,...,Q, € D™ and a polynomial a(z) € C[z]
such that
(I+a(@)(Po+Q) =P+ + Q. P,

LM< (Q:P) = LM< (F) if Q; 7& 0, and LM<( (35)) < 1if a(z) # 0. The last
condition implies that a(x) € V_ (D™). In fact, if a(x) & (x1,...,24), we
would have LM< (a(z)) > 1. From

Po=Q1Pi+--+Q.P.—a(z)Py — (1 +a(x))Q

it follows that

ov(F) = Qov(P) + -+ Quov(F),
where Q) := oy (Q;) if ordy(Q;P;) = m, and @ := 0 otherwise. Hence Gy
is a set of generators of gry,(I("). We may assume that each element of G
is bihomogeneous, i.e., homogeneous with respect to the graded structure of
gry (D™) as well as to the one coming from D™,

Step 3. Computation of generators of the ideal

J = ng(I(h)) ﬂ@[$d+1, e ,an,el 4+ -+ (9d, h]

with 0; = x;60;. Introducing new commutative variables u;, v; with¢=1,...,d,
we work in the ring D™ [uy, ... ug,v1,...,v4. For an element
P = Z aagkxaﬁﬁhk
a7ﬂ7k

of D we define its multi-homogenization to be

mh(P) = ) aaﬁkxaﬁﬁhkufl_aﬁﬁl et e DMy g vy, v
a7/37k

with r; :== max{a; — 05; | @apr # 0 for some k}.

Let {Pi,..., P} be a set of bihomogeneous generators of gry, (I("). (Here we
identify gri,(D™) with D™.) Let I be the left ideal generated by

{mh(Py),...,mh(P)} U{wv, —1|i=1,...,d}
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in DM[uy, ... ug,vy,...,v4, and compute a Grobner base G of I with re-
spect to a monomial ordering for eliminating u,;’s and v;’s. Set Gy := G N
D™ For each element P of Gy, there exist unique p = (1, .., pq) and
v = (v,...,v4) in N¢ with p;p; = 0 (i = 1,...,d) so that there exists a
P € Clxgi1, ..., xn,01,...,0q h] satisfying

M1 MHd Qv 14 _ /
et 0P = Plxgya, .o Ty 01, .., 0, h).

Let us denote this P’ by ¢(P). Then one can prove that the set @D(éo) =
{Y(P) | P € Gp} generates

J = gry(I")Y N Clags, - .-, Tn, 01, ..., 04, h]
in the same way as the proof of Proposition 4.3 of [17].
Next compute a set G3 of generators of the ideal
J = JNCzas1, -, Tn, S, R
with s =67 + - - - + 64. This can be done by computing the intersection
(j—I— (s — 6, —---—9d>) NClxgit, .-, Tn, S, h]
through a Grobner base.

Step 4A. Computation of a generalized regular b-function of the minimum
degree. Let J be as in Step 3. We denote x' = (xg41,...,Ty).

(1) Set J|p=o :={fln=0 | f € J}, which is an ideal of C[z’, s]. Compute a set
G of generators of
Clz'] N ((J|n=0) = 57)
by a Grobner base (see e.g., [7]).
(2) If there exists a(2’) € G such that a(0) # 0, then find the minimum
integer m > 0 so that

ClzTN ((JIn=o) : s™)

contains an element a(z’) with a(0) # 0. If there is no a(z’) € G such
that a(0) # 0, then quit (there is no generalized b-function). In view of
the homogeneity of J, m gives us the minimum degree in s of generalized
b-functions.
(3) Let < be a monomial ordering for C[z/, s, h] such that
zgit e alnsth < ngll coeabnshd i <w

and x; < 1 fori =d+1,...,n. Let {f1,..., fx} be a standard base of
J with respect to < consisting of homogeneous elements. By applying
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Algorithm 1 to the commutative subring Cla’, s, h] of D™ we can find
a(z’) € Cla'] and qq, ..., qx,r € C[2/, s, h] such that

1+a(@))s" =qfi+ - +aqfe+T,

a(x’) < 1if a(z’) # 0, LM<(r) is not divisible by any LM<(f;) with
LM< (r) = ™ if r # 0. In fact, we have LM< (r) < s™ since s™ belongs
to the monomial ideal generated by {LM<(f) | f € J} in view of the
definition of m. Hence r can be written in a form

r=co(a')s™ +cr(2)s" T h 4 -+ ()™
with ¢;(2’) € C[2'] and ¢¢(0) = 0. This implies that
V(z',s,h) = (1 +a(x) —co(x")s™ — ci(2/)s™  h — - - — ¢ (/)™

belongs to J. Thus b(2/, s) := (1+a(z") — co(2)) ' (2, 5,1) is a (monic)
generalized b-function of Z of the minimum degree.

Step 4B. Computation of a regular b-function of the minimum degree. Com-
pute a primary decomposition of .J:

J=Q:1N---NQ.

Set
K :={ke{l,...,l}]a(0) =0 for any a(z’') € Qr N C[z']}.

Compute a Grobener base G4 of of the intersection

B:= () (QxNCls,h])

keK

with respect to a monomial ordering such that 1 is the minimum monomial.
Choose, if any, an element V'(s,h) of G4 of the minimum degree such that
b'(s,0) # 0. Then ¥/(s, 1) is a regular b-function of Z of the minimum degree.
If there is no such ¥/(s, h), then Z is not regular specializable along Y at 0.

In fact, we can prove that
B ={b(s,h) € C[s,h] | Fa(z') € C[z] : a(0) # 0, a(z')b(s,h) € J}
in the same way as the proof of Lemma 4.4 of [17].

Step 5. Computation of an associated operator Q. Let b(z’, s) be a (general-
ized) regular b-function of Z computed in Step 4A or 4B. Let < be a monomial
ordering for D™ which is compatible with the V-filtration and satisfies z; < 1
fori =d+1,...,n. Let G = {Py,..., P} be a standard base of I") w.r.t.
<. Take a homogeneous polynomial 0'(z’, s, h) such that ¥/(z',s,1) = b(2’, s)
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and O'(2',s,0) # 0. Dividing 0'(2',0, + --- + 04, h) by Pi,..., P,, we get an

expression
(L4+a)b' (2,00 + -+ 0a,h) = Q1P+ + Q. P, + R

with the conditions (2),(3),(4) in Algorithm 1. Then R belongs to (D™®),, N
V_1(D™) with m being the degree of b(z’,s) in s, and

V(' 0+ - +6;) —(1+a) 'Rl € T

In fact, it is easy to see that oy (G) = {oy(F1),...,0v(F,)} is a standard base
of gry,(I™) in view of the definition of <. In particular, we have (LML (G)) =
(LM<(ov(G))). Note that ordy (R) < 0. Since there exists a c¢(z) € C[z] such
that ¢(0) = 0 and

(1+c(x)b' (2,0, +---+64,h) € grv([(h)),

it follows that oy ((1 + ¢)R) would also belong to gry (I™) if ordy (R) = 0.
Hence LM< (oy(R)) = LM< (R) would belong to (LM< (oy(G))) = (LM< (G)).
This contradicts the property (3) of Algorithm 1. Thus we have ordy (R) < —1.

This completes the description of the algorithms. The proof of the correctness
of the above algorithms will be completed in the next section.

8 Analytic versus algebraic regular b-functions

We denote by D the stalk of Dy at the origin, i.e., the ring of differential
operators with convergent power series coefficients. As was introduced in [3],
the homogenized ring D™ of D is defined to be the set of operators P expressed
in a finite sum

P= > Aok (2)0°hF  (agr(z) € C{x})

aeN" k>0

with the commutation relations

&a = a@- + @h, 0231 = 8]& dh = haz, Clh = ha
8xi

for a € C{z} and 1 < 4,5 < n. This is a graded ring with respect to the total
degree in 01, ..., 0,, h. Then D™ is a graded subring of D).

For an operator P = Y, a,(x)0“ of D, its homogenization is defined to be

P = 3" q,(z)0*hmlel € DM

aeN”
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with m := ord P. The homogenization Z") of a left ideal Z of D is the left
ideal of D generated by the homogenizations of the elements of Z.

Lemma 4 Let I be aleft ideal of D and Z = DI be the left ideal of D generated
by I. Then T is generated by I™ over D).

Proof: Let < be a monomial ordering for D such that
w°€? < a¥e” it |8 < 1B

and x; < 1 fori =1,...,n. Let G = {P,..., P,} be a standard base of
with respect to <. Applying the Buchberger criterion to D, we see that G is
also a standard base of Z. Hence by using the division in D (see [5]), or by the
flatness of D over D, we see that for any P € Z, there exist Q1,...,Q, € D
such that

P:Q1P1+"'+QTPT
and ord(Q;P;) < ord P. Then by homogenization we get

P(h) _ hungh)Pl(h) 4ot hVTQ£h)PT§h)

with v; = ord P — ord(Q;P;). Hence T is generated by r". .. ,PM ¢ 1),
O

Lemma 5 Let I be a left ideal of D and set T = DI. Then gr, (M) is
generated by gry,(I™) over gr,, (D™).

Proof: Let < be a monomial ordering for D™ adapted to the V-filtration such
that x; < 1 fori =d+1,...,n. Let G = {P,..., P.} be a standard base of
I") with respect to <. Then G is also a standard base of Z") = D" () with
respect to < (see Theorem 3.2 of [9]). Let P be an arbitrary element of Z().
Then by the division algorithm of Assi-Castro-Granger [3] for D) there exist

Q1,...,Q, € DM such that
P= P+ - +QF

with ordy (Q;P;) < ordy(P). Hence oy (P) belongs to the left ideal of D™
generated by {oy(P;),...,ov(P,)}. This completes the proof. O

Lemma 6 Let I be a left ideal of D and set Z ="DI. Then
T = gy (ZM) N C{a'} 6y, .., 0a, ]

15 generated by
J = gr, (I")YNC[z,04,...,04 h)

over C{z'}[01,...,04,h].
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Proof: Let < be a monomial ordering for D™ [u, v] such that
PR < 98 WP o if || + || < i) + |V

and x; < 1 for i = 1,...,n, where we denote u = (uq,...,uq) and v =
(v1,...,vq). Let G = {Pi,...,P.} be a standard base of the left ideal I of
DW[y,v] defined in Step 3. (Note that G is not necessarily the same as in
Step 3.) Then G is also a standard base of gry, (D™)[u, v]I with respect to <.
We can show that J* is generated by ¥(G) with

Go =G Ngry(DMW) =G n D"

in the same way as the proof of Proposition 4.3 of [17]. By substituting 1 for
each u; and v;, we see that ¢(Gy) is contained in gry (/™). This completes
the proof. O

Now we are ready to prove the following theorem, which implies the correctness
of the algorithms given in the preceding section.

Theorem 2 Let I be a left ideal of D and set T = DI.

(1) If b(2',s) € C{a'}[s] is a generalized regular b-function of T along Y,
then there exists a generalized regular b-function b(x',s) along Y which
belongs to C[x’, s] and is of the same degree (in s) as b(x', s).

(2) A polynomial b(x',s) € Cla',s] is a generalized regular b-function of T
along Y if and only if there exist a homogeneous b'(z',s,h) € Clz', s, h]
with ¥ (2',5,0) # 0 and b'(2',s,1) = b(a’,s), and a polynomial c(z') €
C[2] with ¢(0) # 0 such that

(2 (2!, 210y + - + 2404, h) € gry,(IM).
Proof: Let J be as in Step 3 of the preceding section and set
J = C{a'}s, h] N gry (T™)

with s = 6; + --- 4+ 6,4. Then by Lemmas 4,5,6, it is easy to see that J*" is
generated by J over C{z'}[s,h|. Let < be the same monomial ordering for
Cl2’, s, h] as in (3) of Step 4A and G = {fi,..., fx} be a standard base of J
with respect to <. Then G is also a standard base of J*" with respect to <.
Set m be as in (2) of Step 4A. It follows that m is also the minimum integer
such that C{z'} N ((J**|n=0) : s™) contains a c(z') € C{z'} with ¢(0) # 0, or
equivalently, that s™ is contained in (LM<(G)). This completes the proof of

(1).

Now in order to prove (2), let b(z’,s) € C[a/,s| be a (generalized) regular
b-function of Z of degree m in s. Then there eixsts @ € V_1(D) N F,,,(D) such
that

b(z', 01+ +6,)+Q €T
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By homogenization, there eixst a homogeneous b'(z', s, h) € C[z', s, h] with
b (2, s,1) = b(a’,s) and b(2',s,0) # 0, and a v € N such that

V(' 0+ -+ 04 h) +h QMW e ™.
This implies that
V(' 01+ -+ 04 h) € gry,(T™)
and hence b'(z',s,h) belongs to J*. By division in Clz’,s,h|, there exist
Q- qe, 7 € Cla')s,h] and a(z’) € C[2'] such that a(0) = 0,
(I+a(a))v'(2',s,h) = qfi+ -+ qufe +7,

LM< (g f;) = s™if ¢; # 0, and LM<(r) is not divisible by LM< (f;) for any
1 = 1,...,k if r # 0. Since r belongs to J*" and G is a standard base of
J it follows that r = 0. Thus (1 +a(2"))¥ (2, s, h) belongs to gry,(I™). The
converse implication of the statement (2) is obvious. O
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