Regular b-functions of D-modules

Toshinori Oaku

Tokyo Woman's Christian University, Suginami-ku, Tokyo 167-8585, Japan e-mail: oaku@lab.twcu.ac.jp

Abstract

Let M be an algebraic D-module defined on an affine space X and Y be a linear submanifold of X. We give an algorithm to determine if M is regular specializable along Y, and to find, if so, its regular b-function. (M has a regular b-function by definition if and only if M is regular specializable.) We also prove that the A-hypergeometric system of Gelfand-Kapranov-Zelevinsky is always regular specializable along the origin.

Key words: D-module, b-function, A-hypergeometric system, Gröbner base

1991 MSC: 32C38; 33C70; 35N10; 13P10

1 Introduction

Let X be the affine space \mathbb{C}^n with the coordinate system $x = (x_1, \ldots, x_n)$ and Y be the linear subvariety defined by $x_1 = \cdots = x_d = 0$ with $1 \leq d \leq n$. We denote by \mathcal{D}_X the sheaf on X of linear partial differential operators (of finite order) with holomorphic coefficients. A section P of \mathcal{D}_X is written in a finite sum

$$P = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha}(x) \partial^{\alpha} = \sum_{\alpha_1, \dots, \alpha_n \in \mathbb{N}} a_{\alpha_1 \dots \alpha_n}(x_1, \dots, x_n) \partial_1^{\alpha_1} \dots \partial_n^{\alpha_n}$$

with $a_{\alpha}(x)$ being holomorphic on an open set of X, where $\partial_i = \partial/\partial x_i$ denotes the partial derivation with respect to x_i , and \mathbb{N} is the set of nonnegative integers. The order of P is defined to be

$$\operatorname{ord} P := \max\{|\alpha| = \alpha_1 + \dots + \alpha_n \mid a_{\alpha}(x) \neq 0\}.$$

We have two filtrations on \mathcal{D}_X : The order filtration is defined by

$$F_k(\mathcal{D}_X) := \{ P \in \mathcal{D}_X \mid \text{ord } P \leq k \} \quad (k \in \mathbb{Z}),$$

and the V-filtration with respect to Y is defined by

$$V_k(\mathcal{D}_X) := \left\{ P \in \mathcal{D}_X \mid Pf \in \mathcal{J}^{i-k} \text{ for any } f \in \mathcal{J}^i \text{ and } i \in \mathbb{Z} \right\} \quad (k \in \mathbb{Z}),$$

where \mathcal{J} is the defining ideal of Y in \mathcal{O}_X , the sheaf of holomorphic functions on X. (We set $\mathcal{J}^i = \mathcal{O}_X$ if $i \leq 0$.)

Definition 1 A coherent \mathcal{D}_X -module \mathcal{M} is said to be regular specializable along Y at $p \in Y$ (cf. [13], [18]) if and only if for any germ u of \mathcal{M} at p, there exist a nonzero polynomial $b(s) \in \mathbb{C}[s]$ and an operator $Q \in \mathcal{D}_X$ defined on a neighborhood of p such that

$$(b(x_1\partial_1 + \dots + x_d\partial_d) + Q)u = 0, \quad Q \in V_{-1}(\mathcal{D}_X), \quad \text{ord } Q \le \deg b(s).$$
 (1)

A polynomial b(s) satisfying (1) is called a regular b-function of u along Y at p. If \mathcal{I} is a left ideal of \mathcal{D} , the stalk of \mathcal{D}_X at $0 \in X$, and b(s) is a regular b-function of the residue class of $1 \in \mathcal{D}$ in \mathcal{D}/\mathcal{I} , then we call b(s) simply a regular b-function of \mathcal{I} and say that \mathcal{I} is regular specializable along Y.

The b-function of u is the monic polynomial b(s) of the minimum degree which satisfies (1) without the condition ord $Q \leq \deg b(s)$. Hence a regular b-function is a multiple of the b-function.

An equation of the form (1) is essential in proving the convergence of the power series solutions of \mathcal{M} . Let $\mathcal{O}_{X,0} = \mathbb{C}\{x_1,\ldots,x_n\}$ be the ring of convergent power series. The formal completion of $\mathcal{O}_{X,0}$ along Y is defined to be

$$\mathcal{O}_{\widehat{X|Y},0} = \Big\{ \sum_{\alpha_1,\dots,\alpha_d \geq 0} a_{\alpha_1,\dots,\alpha_d}(x_{d+1},\dots,x_n) x_1^{\alpha_1} \cdots x_d^{\alpha_d} \mid a_{\alpha_1,\dots,\alpha_d}(x_{d+1},\dots,x_n) \\ \text{are holomorphic on some neighborhood } U \subset Y \text{ of } 0 \Big\}.$$

Kashiwara and Kawai [11] proved that if \mathcal{I} is regular specializable along Y, then one has

$$\operatorname{Ext}_{\mathcal{D}}^{k}(\mathcal{D}/\mathcal{I}, \mathcal{O}_{X,0}) = \operatorname{Ext}_{\mathcal{D}}^{k}(\mathcal{D}/\mathcal{I}, \mathcal{O}_{\widehat{X|Y|0}}) \quad (\forall k \in \mathbb{Z}).$$
 (2)

On the other hand, Laurent [13] (see also [14]) defined the (algebraic) slopes of \mathcal{M} along Y at p. Laurent and Mebkhout [14] proved that (2) holds if and only if \mathcal{I} has no slopes along Y. It was conjectured in [14] that \mathcal{M} is regular specializable along Y if and only if there is no slope of \mathcal{M} along Y. (As far as the author knows, this remains to be an open problem.) Assi et al. [2] (see also [6]) presented an algorithm for computing the slopes of \mathcal{M} when \mathcal{M} is algebraic and Y is a hyperplane.

We give some examples of regular b-functions for A-hypergeometric systems of Gelfand-Kapranov-Zelevinsky [8]. We prove that A-hypergeometric systems are regular specializable along the origin without assuming the homogeneity (Theorem 1). In particular, this implies (2) with \mathcal{D}/\mathcal{I} being the A-hypergeometric system and $Y = \{0\}$.

For a left ideal I of the Weyl algebra D, we also give an algorithm for determining if $\mathcal{D}I$ is regular specializable along a linear submanifold of arbitrary codimension, and if so, finding a regular b-function of the minimum degree and an associated operator Q satisfying (1). For that purpose, we make use of the homogenization (or the Rees algebra) of D with respect to the order filtration, which we denote by $D^{(h)}$, and (a generalization of) the division algorithm of [9] in $D^{(h)}$.

Our method consists in calculating the b-function, or the indicial polynomial, in the homogenized ring $D^{(h)}$. Note that an algorithm for computing the usual (i.e. non-homogenized) b-function of a D-module was given in [16] for the case d=1, and in [17] for the general case. We also generalize the notion of regular b-function and give an algorithm to compute it. Once a regular b-function is found, we can compute an associated operator Q by using the division algorithm.

Remark 1 A regular *b*-function of the minimum degree is not necessarily unique up to constant multiple. For example, set n = 2, d = 1 and let

$$\mathcal{I} := \mathcal{D} \cdot \{\partial_1^2, \, \partial_1 + \partial_2^2\}$$

be the left ideal of \mathcal{D} generated by $\{\partial_1^2, \partial_1 + \partial_2^2\}$. Then

$$(x_1\partial_1)(x_1\partial_1 - 1 + c) + cx_1\partial_2^2 = x_1^2\partial_1^2 + cx_1(\partial_1 + \partial_2^2)$$

belongs to \mathcal{I} and $cx_1\partial_2^2$ belongs to $V_{-1}(\mathcal{D}) \cap F_2(\mathcal{D})$. Hence s(s-1+c) is a regular b-function (of the minimum degree) of \mathcal{I} along $x_1 = 0$ for any $c \in \mathbb{C}$, while the b-function is s.

Remark 2 Let f = f(x) be a polynomial in $x = (x_1, ..., x_n)$. Denote by \mathcal{D}_n the ring of differential operators on the variables $x_1, ..., x_n$ with convergent power series coefficients. Introducing a new variable t, let \mathcal{D}_{n+1} be the ring of differential operators on the variables x and t with convergent power series coefficients. Let \mathcal{I}_f be the left ideal of \mathcal{D}_{n+1} generated by

$$t - f(x), \quad \frac{\partial}{\partial x_i} + \frac{\partial f}{\partial x_i} \frac{\partial}{\partial t} \quad (i = 1, \dots, n).$$

Then $b(s) \in \mathbb{C}[s]$ is a regular *b*-function of \mathcal{I}_f along the hyperplane t = 0 if and only if there exists $Q(s) \in \mathcal{D}_n[s]$ such that the degree of Q(s) in

 $\partial/\partial x_1,\ldots,\partial/\partial x_n$ and s is less than or equal to deg b(s) and

$$Q(s)f^{s+1} = b(-s-1)f^s.$$

$\mathbf{2}$ Regular b-functions of A-hypergeometric systems

Let

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{d1} & \dots & a_{dn} \end{pmatrix} = (\mathbf{a}_1, \dots, \mathbf{a}_n)$$

be an integer $d \times n$ matrix with rank A = d, and $\beta = (\beta_1, \dots, \beta_d)$ be a complex d-dimensional vector. The toric ideal I_A is the left ideal of $\mathbb{C}[\partial] = \mathbb{C}[\partial_1, \dots \partial_n]$ generated by $\{\partial^u - \partial^v \mid u, v \in \mathbb{N}^n, Au = Av\}$. We denote by $\langle A\theta - \beta \rangle$ the ideal of $\mathbb{C}[\theta] = \mathbb{C}[\theta_1, \dots, \theta_n]$ generated by

$$\left\{ \sum_{j=1}^{n} a_{ij} \theta_j - \beta_i \mid i = 1, \dots, d \right\}$$

with $\theta = (\theta_1, \dots, \theta_n) = (x_1 \partial_1, \dots, x_n \partial_n)$. Then the A-hypergeometric ideal $H_A(\beta)$ is defined to be the left ideal of the Weyl algebra

$$D = D_n = \mathbb{C}[x_1, \dots, x_n] \langle \partial_1, \dots, \partial_n \rangle$$

which are generated by I_A and $\langle A\theta - \beta \rangle$. The left D-module $D/H_A(\beta)$ is called the A-hypergeometric system, which was introduced by Gelfand, Kapranov, Zelevinsky (see e.g., [8]).

The following examples were computed by using algorithms to be presented in Section 7 with Kan/sm1 [21], a computer algebra system for algebraic analysis. In the following examples, regular b-functions $b_{reg}(s)$ of the minimum degree are unique up to constant multiple and coincide with the b-functions.

Example 1 Set $A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \end{pmatrix}$. Then $I_A = \langle \partial_1 \partial_2 - \partial_3^2 \rangle$, and the regular b-

functions of $H_A(\beta)$ of minimum degree along coordinate submanifolds Y are as follows:

- $Y = \{x_1 = 0\}$: The regular b-function $b_{reg}(s)$ along Y is $s(2s \beta_1 + \beta_2)$.
- $Y = \{x_3 = 0\} : b_{reg}(s) = s(s-1).$
- $Y = \{x_1 = x_2 = 0\}$: $b_{reg}(s) = (2s + \beta_1 \beta_2)(2s \beta_1 + \beta_2)$. $Y = \{x_1 = x_3 = 0\}$: $b_{reg}(s) = (2s \beta_1)(2s \beta_1 1)$.

Fig. 1. Column vectors of A for Examples 1–5 (from left to right)

•
$$Y = \{0\}$$
: $b_{reg}(s) = 2s - \beta_1 - \beta_2$.

Example 2
$$A = \begin{pmatrix} 3 & 0 & 2 \\ 0 & 3 & 2 \end{pmatrix}, I_A = \langle \partial_1^2 \partial_2^2 - \partial_3^3 \rangle.$$

- $Y = \{x_1 = 0\}: b_{reg}(s) = s(s-1)(3s \beta_1 + \beta_2)(3s \beta_1 + \beta_2 3).$
- $Y = \{x_3 = 0\}$: not regular specializable.
- $Y = \{x_1 = x_2 = 0\}$: $b_{reg}(s) = (3s \beta_1 + \beta_2)(3s \beta_1 + \beta_2 6)(3s + \beta_1 \beta_2)(3s + \beta_1 \beta_2 6)$.
- $Y = \{x_1 = x_3 = 0\}$: not regular specializable.
- $Y = \{0\}$: $b_{reg}(s) = (6s 2\beta_1 \beta_2)(6s 2\beta_1 \beta_2 3)(6s \beta_1 2\beta_2)(6s \beta_1 2\beta_2 3)$.

Example 3
$$A = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 3 & 1 \end{pmatrix}$$
, $I_A = \langle \partial_3^3 - \partial_1 \partial_2 \rangle$.

- $Y = \{x_1 = 0\}$: not regular specializable.
- $Y = \{x_3 = 0\}$: $b_{reg}(s) = s(s-1)(s-2)$.
- $Y = \{x_1 = x_2 = 0\}$: not regular specializable.
- $Y = \{x_1 = x_3 = 0\}$: $b_{reg}(s) = (3s \beta_1)(3s \beta_1 2)(3s \beta_1 4)$.
- $Y = \{0\}: b_{reg}(s) = (3s \beta_1 \beta_2)(3s \beta_1 \beta_2 1)(3s \beta_1 \beta_2 2).$

Example 4
$$A = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 2 & -1 \end{pmatrix}$$
, $I_A = \langle \partial_1 \partial_2 \partial_3^2 - 1 \rangle$.

- $Y = \{x_1 = 0\}$: $b_{reg}(s) = s(2s \beta_1)(2s \beta_1 1)(2s \beta_1 + \beta_2)$.
- $Y = \{x_3 = 0\}$: $b_{reg}(s) = s(s-1)(s+\beta_1)(s+\beta_2)$.
- $Y = \{x_1 = x_2 = 0\}$: $b_{reg}(s) = (2s \beta_1 \beta_2)(2s \beta_1 \beta_2 2)(2s \beta_1 + \beta_2)(2s + \beta_1 \beta_2)$.
- $Y = \{x_1 = x_3 = 0\}$: $b_{reg}(s) = (s + \beta_1)(2s \beta_1)(2s \beta_1 3)(2s \beta_1 + 3\beta_2)$.
- $Y = \{0\}: b_{reg}(s) = (2s \beta_1 \beta_2)(2s \beta_1 \beta_2 4)(2s \beta_1 + 3\beta_2)(2s + 3\beta_1 \beta_2).$

Example 5
$$A = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$
, $I_A = \langle \partial_1^2 - \partial_2, \, \partial_1 \partial_3 - \partial_4, \, \partial_2 \partial_3 - \partial_1 \partial_4 \rangle$.

- regular specializable along $x_1 = 0$, $x_3 = 0$, $x_1 = x_2 = 0$, $x_1 = x_3 = 0$, $x_1 = x_4 = 0$, $x_3 = x_4 = 0$, $x_1 = x_2 = x_3 = 0$, $x_1 = x_3 = x_4 = 0$, $x_1 = x_2 = x_3 = x_4 = 0$.
- not regular specializable along $x_2 = 0$, $x_4 = 0$, $x_2 = x_3 = 0$, $x_2 = x_4 = 0$, $x_1 = x_2 = x_4 = 0$, $x_2 = x_3 = x_4 = 0$.

•
$$Y = \{0\}$$
: $b_{\text{reg}}(s) = (s - \beta_2)(2s - \beta_1 - \beta_2)(2s - \beta_1 - \beta_2 - 1)$.

For $Y = \{0\}$, an associated $Q \in V_{-1}(D) \cap F_3(D)$ such that

$$b_{\text{reg}}(\theta_1 + \theta_2 + \theta_3 + \theta_4) - Q \in H_A(\beta)$$

is given by

$$Q = -2x_1^2 x_2 \partial_2^2 + 6x_1^2 x_3 \partial_2 \partial_3 + 4x_1 x_2 x_3 \partial_2 \partial_4 - 12x_1 x_3^2 \partial_3 \partial_4 - 14x_1 x_3 x_4 \partial_4^2 + 2x_2 x_3^2 \partial_4^2 + 2(\beta_1 - \beta_2) x_1^2 \partial_2 + (14\beta_2 - 10) x_1 x_3 \partial_4.$$

(In fact, $Q \in F_2(D)$.)

Theorem 1 Assume rank A = d. Then $H_A(\beta)$ is regular specializable along $\{0\}$ for any $\beta \in \mathbb{C}^d$. In particular,

$$\operatorname{Ext}_{D}^{k}(D/H_{A}(\beta), \mathbb{C}\{x_{1}, \dots, x_{n}\}) = \operatorname{Ext}_{D}^{k}(D/H_{A}(\beta), \mathbb{C}[[x_{1}, \dots, x_{n}]])$$
(3)

holds for any integer k, where $\mathbb{C}[[x_1,\ldots,x_n]]$ denotes the formal power series ring.

The proof of this theorem will be given in Section 4. Note that the dimensions of the cohomology groups of the right-hand side of (3) are computable (see Algorithm 5.4 of [17]). In particular, the cohomology groups of (3) all vanish if the b-function along the origin has no integral roots. That is the case with Examples 1–5 above for generic β . Note also that Schulze and Walther [20] described the slopes of $H_A(\beta)$ along coordinate subvarieties in terms of what they call (A, L)-umbrellas under the condition that the column vectors of A are contained in a proper convex cone with vertex at the origin.

3 Homogenization of the ring of differential operators

In order to prove Theorem 1 as well as to deduce algorithms for computing a regular b-function and an associated operator, we work in the Weyl algebra, i.e., the ring of differential operators with polynomial coefficients $D = D_n$. The following constructions are also valid for the ring \mathcal{D} of differential operators with convergent power series coefficients.

We introduce the homogenized ring $D^{(h)}$ of D with respect to the order filtration. That is, $D^{(h)}$ is a \mathbb{C} -algebra generated by $x_1, \ldots, x_n, \partial_1, \ldots, \partial_n$ and h with the commutation relations

$$\partial_i x_i = x_i \partial_i + \delta_{ij} h$$
, $x_i x_j = x_j x_i$, $\partial_i \partial_j = \partial_j \partial_i$, $\partial_i h = h \partial_i$, $x_i h = h x_i$

for $1 \leq i, j \leq n$. Then $D^{(h)}$ is a (non-commutative) graded ring with respect to the following weights:

$$\frac{x_1 \cdots x_n \partial_1 \cdots \partial_n h}{0 \cdots 0 1 \cdots 1 1}$$

The homogeneous part of degree m of $D^{(h)}$ is the set $(D^{(h)})_m$ consisting of 0 and the homogeneous operators of $D^{(h)}$ of weight m.

The homogenization of an element $P = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha}(x) \partial^{\alpha}$ of D is defined to be

$$P^{(h)} := \sum_{\alpha \in \mathbb{N}^n} a_{\alpha}(x) \partial^{\alpha} h^{m-|\alpha|} \in D^{(h)} \quad (m := \operatorname{ord} P).$$

The homogenization $I^{(h)}$ of a left ideal I of D is the left ideal of $D^{(h)}$ generated by $\{P^{(h)} \mid P \in I\}$, which is homogeneous with respect to the above weights.

The V-filtration of $D^{(h)}$ with respect to Y is defined by

$$V_k(D^{(h)}) := \left\{ P = \sum_{\alpha, \beta \in \mathbb{N}^n, \nu \in \mathbb{N}} a_{\alpha\beta\nu} x^{\alpha} \partial^{\beta} h^{\nu} \in D^{(h)} \mid a_{\alpha\beta\nu} \in \mathbb{C}, \\ a_{\alpha\beta\nu} = 0 \text{ if } \beta_1 + \dots + \beta_d - \alpha_1 - \dots - \alpha_d > k \right\}$$

For an element P of $D^{(h)}$, we define its V-order $\operatorname{ord}_V(P)$ to be the minimum integer k such that $P \in V_k(D^{(h)})$. For a left ideal I' of $D^{(h)}$, its V-graded ideal is

$$\operatorname{gr}_{V}(I') := \bigoplus_{k \in \mathbb{Z}} (V_{k}(D^{(h)}) \cap I') / (V_{k-1}(D^{(h)}) \cap I'),$$

which is a left ideal of the V-graded ring

$$\operatorname{gr}_V(D^{(h)}) := \bigoplus_{k \in \mathbb{Z}} V_k(D^{(h)}) / V_{k-1}(D^{(h)}) \simeq D^{(h)}.$$

For a nonzero element P of $D^{(h)}$ with $\operatorname{ord}_V(P) = k$, we denote by $\sigma_V(P)$ the residue class of P in $V_k(D^{(h)})/V_{k-1}(D^{(h)}) \subset \operatorname{gr}_V(D^{(h)})$. Note that $\sigma_V(P)$ can be regarded as an element of $D^{(h)}$ since $\operatorname{gr}_V(D^{(h)})$ is isomorphic to $D^{(h)}$ as graded ring with respect to the V-filtration.

4 Regular specializability of the A-hypergeometric system — proof of Theorem 1

We denote by $\{V_k(D)\}_{k\in\mathbb{Z}}$ and $\{V_k(D^{(h)})\}_{k\in\mathbb{Z}}$ the V-filtrations with respect to the origin on the Weyl algebra D and on its homogenization $D^{(h)}$ respectively. Restricted to the commutative subring $\mathbb{C}[\partial] = \mathbb{C}[\partial_1, \ldots, \partial_n]$ of D, the V-filtration coincides with the order filtration, which we denote by $\{V_k(\mathbb{C}[\partial])\}_{k\in\mathbb{Z}}$. For an ideal I of $\mathbb{C}[\partial]$, we denote by

$$\operatorname{gr}_V(I) := \bigoplus_{k \geq 0} (I \cap V_k(\mathbb{C}[\partial])) / (I \cap V_{k-1}(\mathbb{C}[\partial]))$$

the graded ideal with respect to this filtration, which is an ideal of $\operatorname{gr}_V(\mathbb{C}[\partial]) \simeq \mathbb{C}[\partial]$. Its zero set $\mathbf{V}(\operatorname{gr}_V(I)) \subset \mathbb{C}^n$ is the characteristic variety of I regarded as a system of linear partial differential equations with constant coefficients.

Let $A = (\mathbf{a}_1, \dots, \mathbf{a}_n)$ be an integer $d \times n$ matrix with rank A = d. We denote by Δ_A the convex hull of the set $\{0, \mathbf{a}_1, \dots, \mathbf{a}_n\}$ in \mathbb{R}^d , and by \mathcal{F}_A the set of the facets of Δ_A which do not contain the origin.

Lemma 1 (Adolphson)

$$\mathbf{V}(\operatorname{gr}_V(I_A)) \subset \bigcup_{\gamma \in \mathcal{F}_A} \{ \xi = (\xi_1, \dots, \xi_n) \in \mathbb{C}^n \mid \xi_j = 0 \text{ if } \mathbf{a}_j \notin \gamma \}.$$

Proof: This inclusion follows directly from (the proof of) Lemma 3.2 of Adolphson [1]. \Box

For example, if $A = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$, then the toric ideal I_A is generated by $\{\partial_1^2 - \partial_2, \, \partial_1\partial_3 - \partial_4, \, \partial_2\partial_3 - \partial_1\partial_4\}$, and $\operatorname{gr}_V(I_A)$ is generated by $\{\partial_1^2, \, \partial_1\partial_3, \, \partial_2\partial_3 - \partial_1\partial_4\}$. Thus we have

$$\mathbf{V}(\operatorname{gr}_V(I_A)) = \{\xi_1 = \xi_2 = 0\} \cup \{\xi_1 = \xi_3 = 0\}.$$

Let $I_A^{(h)}$ be the homogenization of I_A in the commutative subring $\mathbb{C}[\partial,h]$ of $D^{(h)}$. We denote by $\operatorname{gr}_V(I_A^{(h)})$ the graded ideal of $I_A^{(h)}$ with respect to the V-filtration of $D^{(h)}$ restricted to $\mathbb{C}[\partial,h]$. Then from the definition of $I_A^{(h)}$, it follows that

$$\mathbf{V}(\operatorname{gr}_V(I_A^{(h)})) = \mathbf{V}(\operatorname{gr}_V(I_A)) \times \mathbb{C}.$$

In general, for a homogeneous ideal I of $\mathbb{C}[\partial, h]$, we define its distraction to be

$$\operatorname{dist}(I) := D^{(h)}I \cap \mathbb{C}[\theta_1, \dots, \theta_n, h]$$

with $\theta_i = x_i \partial_i$, which is a homogeneous ideal of the commutative subring $\mathbb{C}[\theta, h] = \mathbb{C}[\theta_1, \dots, \theta_n, h]$ of $D^{(h)}$. Note that this definition slightly differs from the one given in [19]. The following lemma is an immediate consequence of the definition:

Lemma 2 Let I be an ideal of $\mathbb{C}[\partial, h]$ generated by $\{\partial^{\alpha} \mid \alpha = (\alpha_1, \dots, \alpha_n) \in \Lambda\}$ with a finite subset Λ of \mathbb{N}^n . Then $\operatorname{dist}(I)$ is an ideal of $\mathbb{C}[\theta, h]$ generated by

$$\left\{\prod_{i=1}^n \theta_i(\theta_i - h) \cdots (\theta_i - (\alpha_i - 1)h) \mid \alpha \in \Lambda\right\}.$$

The following is an immediate consequence of this lemma.

Corollary 1 Let I_1 and I_2 be ideals of $\mathbb{C}[\theta, h]$ which are generated by monomials in ∂ . Then $\operatorname{dist}(I_1 \cap I_2) = \operatorname{dist}(I_1) \cap \operatorname{dist}(I_2)$ holds.

Now by lemma 1, we have

$$\mathbf{V}(\operatorname{gr}_V(I_A^{(h)})) \subset \bigcup_{\gamma \in \mathcal{F}_A} \{ (\xi, h) \in \mathbb{C}^{n+1} \mid \xi_j = 0 \text{ if } \mathbf{a}_j \notin \gamma \}.$$

This implies

$$\sqrt{\operatorname{gr}_V(I_A^{(h)})} \supset \bigcap_{\gamma \in \mathcal{F}_A} \langle \partial_j \mid \mathbf{a}_j \not\in \gamma \rangle,$$

and hence

$$\operatorname{gr}_V(I_A^{(h)}) \supset \bigcap_{\gamma \in \mathcal{F}_A} \langle \partial_j^{n_{\gamma,j}} \mid \mathbf{a}_j \not\in \gamma \rangle$$

with some positive integers $n_{\gamma,j}$. It follows, in view of Lemma 2 and Corollary 1, that

$$\operatorname{dist}(\operatorname{gr}_{V}(I_{A}^{(h)})) \supset \bigcap_{\gamma \in \mathcal{F}_{A}} \langle \prod_{\nu=0}^{n_{\gamma,j}-1} (\theta_{j} - \nu h) \mid \mathbf{a}_{j} \notin \gamma \rangle.$$

Define an ideal J of $\mathbb{C}[\theta_1,\ldots,\theta_n,h]$ by

$$J := \operatorname{dist}(\operatorname{gr}_{V}(I_{A}^{(h)})) + \langle A\theta - \beta h \rangle,$$

where $\langle A\theta - \beta h \rangle$ denotes the ideal of $\mathbb{C}[\theta_1, \dots, \theta_n, h]$ generated by

$$\left\{ \sum_{j=1}^{n} a_{ij}\theta_j - \beta_i h \mid i = 1, \dots, d \right\}.$$

Then we have

$$J \subset \mathbb{C}[\theta_1, \dots, \theta_n, h] \cap \operatorname{gr}_V(H_A(\beta)^{(h)})$$

and the set V(J) is contained in

$$\bigcup_{\gamma \in \mathcal{F}_A} \left\{ (\theta, h) \mid \prod_{\nu=0}^{n_{\gamma,j}-1} (\theta_j - \nu h) = 0 \text{ if } \mathbf{a}_j \notin \gamma, \sum_{j=1}^n a_{ij} \theta_j = \beta_i h \ (i = 1, \dots, d) \right\}.$$

For each γ , there exist $c_{\gamma,i} \in \mathbb{Q}$ such that

$$\sum_{i=1}^{d} c_{\gamma,i} a_{ij} = 1 \quad \text{if } \mathbf{a}_j \in \gamma$$

since γ is contained in a hyperplane of \mathbb{R}^d which does not contain the origin. Hence we get an element

$$\sum_{i=1}^{d} c_{\gamma,i} \left(\sum_{j=1}^{n} a_{ij} \theta_j - \beta_i h \right) = \sum_{\mathbf{a}_j \in \gamma} \theta_j + \sum_{\mathbf{a}_j \notin \gamma} \mu_j \theta_j - \sum_{i=1}^{d} c_{\gamma,i} \beta_i h$$

of $\langle A\theta - \beta h \rangle$ with some $\mu_j \in \mathbb{C}$. This implies that $\mathbf{V}(J)$ is contained in

$$\bigcup_{\gamma \in \mathcal{F}_A} \left\{ (\theta, h) \mid \prod_{\nu=0}^{n_{\gamma, j}-1} (\theta_j - \nu h) = 0 \text{ if } \mathbf{a}_j \notin \gamma, \sum_{\mathbf{a}_j \in \gamma} \theta_j + \sum_{\mathbf{a}_j \notin \gamma} \mu_j \theta_j = \sum_{i=1}^d c_{\gamma, i} \beta_i h \right\}.$$

In particular, there exist $N_{\gamma} \in \mathbb{N}$ and $b_{\gamma,k} \in \mathbb{C}$ such that

$$\mathbf{V}(J) \subset \bigcup_{\gamma \in \mathcal{F}_A} \bigcup_{k=1}^{N_{\gamma}} \{ (\theta, h) \mid \theta_1 + \dots + \theta_n = b_{\gamma, k} h \}.$$

By Hilbert's Nullstellensatz,

$$b(\theta_1 + \dots + \theta_n, h) := \prod_{\gamma \in \mathcal{F}_A} \prod_{k=1}^{N_{\gamma}} (\theta_1 + \dots + \theta_n - b_{\gamma,k}h)^{m_{\gamma,k}}$$

belongs to $J \subset \operatorname{gr}_V(H_A(\beta)^{(h)})$ with some positive integers $m_{\gamma,k}$. In view of the definition of $\operatorname{gr}_V(H_A(\beta)^{(h)})$, there exists an element Q of $V_{-1}(D^{(h)})$ homogeneous of the same degree as b(s,h) such that

$$b(\theta_1 + \dots + \theta_n, h) + Q \in H_A(\beta)^{(h)}.$$

Substituting 1 for h, we conclude that $H_A(\beta)$ is regular specializable along the origin noting that $\operatorname{ord}(Q|_{h=1}) \leq \deg Q = \deg b(s,h) = \deg b(s,1)$.

5 Generalized regular b-function

Let us generalize the definition of regular b-function. Let \mathcal{I} be a sheaf of left ideals of \mathcal{D}_X and Y a submanifold of X which is defined by $Y = \{x = (x_1, \ldots, x_n) \mid x_1 = \cdots = x_d = 0\}$ in terms of a local coordinate x of X. Then a generalized regular b-function of \mathcal{I} along Y at p is a monic polynomial $b(x', s) = s^m + c_1(x')s^{m-1} + \cdots + c_m(x')$ in s with coefficients $c_i(x')$ being

analytic functions of $x' = (x_{d+1}, \dots, x_n)$ on a neighborhood of $p \in Y$ satisfying

$$b(x', x_1\partial_1 + \cdots + x_d\partial_d) + Q \in \mathcal{I}$$

with a germ Q of $V_{-1}(\mathcal{D}_X) \cap F_m(\mathcal{D}_X)$ at p. If there exists a generalized b-function, \mathcal{I} is said to be regular specializable in a weak sense along Y at p.

This definition coincides with that of b-function if Y is a point. In case d = 1, \mathcal{I} is regular specializable in a weak sense if and only if \mathcal{I} is regular singular in a weak sense in the terminology of [12], or equivalently, it is Fuchsian along Y in the sense of [15] (or [4] for a single equation). For general d, \mathcal{I} is Fuchsian along Y in the sense of [15] if it is regular specializable in a weak sense. It was proved in [15] that (2) holds if \mathcal{I} is Fuchsian along Y.

6 Division algorithm and standard bases

Our algorithms for regular b-functions are based on the following division algorithm, which is a generalization of the one given in [9] (Algorithm 2.2) to general monomial orderings. In what follows we present only the scalar version for the sake of simplicity.

We make use of the second homogenization by introducing a new variable s in addition to h. For a homogeneous element $P = \sum_{\alpha,\beta,k} a_{\alpha\beta k} x^{\alpha} \partial^{\beta} h^{k}$ of $D^{(h)}$, we define its second homogenization to be

$$P^{(s)} := \sum_{\alpha,\beta,k} a_{\alpha\beta k} x^{\alpha} \partial^{\beta} h^{k} s^{m-|\alpha|+|\beta|} \in D^{(h)}[s]$$

with

$$m := \max\{|\alpha| - |\beta| \mid a_{\alpha\beta k} \neq 0 \text{ for some } k\}.$$

An element of $D^{(h)}[s]$ is said to be bihomogeneous if it is simultaneously homogeneous with respect to both weights defined by the rows of the following table:

Let \prec be a monomial ordering for $D^{(h)}$, i.e., a total ordering on the set of monomials $\{x^{\alpha}\xi^{\beta}h^{k} \mid \alpha, \beta \in \mathbb{N}^{n}, k \in \mathbb{N}\}$ which is invariant under the multiplication by the same monomial on both sides, with the additional condition

$$h \prec x_i \xi_i \quad (i = 1, \dots, n). \tag{4}$$

For an element $P = \sum_{\alpha,\beta,k} a_{\alpha\beta k} x^{\alpha} \partial^{\beta} h^{k}$ of $D^{(h)}$, its leading monomial with respect to \prec is

$$LM_{\prec}(P) := \max_{\prec} \{ x^{\alpha} \xi^{\beta} h^k \mid a_{\alpha\beta k} \neq 0 \},$$

which is a monomial in the commutative polynomial ring $\mathbb{C}[x,\xi,h]$ with $\xi = (\xi_1,\ldots,\xi_n)$ being the commutative variables corresponding to ∂ . We call the element

$$P(x,\xi,h) = \sum_{\alpha,\beta,k} a_{\alpha\beta k} x^{\alpha} \xi^{\beta} h^{k}$$

of $\mathbb{C}[x,\xi,h]$ the *total symbol* of P.

A monomial ordering \prec_s for $D^{(h)}[s]$ is defined so that $x^{\alpha}\xi^{\beta}h^is^{\mu} \prec_s x^{\alpha'}\xi^{\beta'}h^js^{\nu}$ if and only if

$$|\alpha| - |\beta| + \mu < |\alpha'| - |\beta'| + \nu$$

or $(|\alpha| - |\beta| + \mu = |\alpha'| - |\beta'| + \nu$ and $x^{\alpha} \xi^{\beta} h^i \prec x^{\alpha'} \xi^{\beta'} h^j)$.

Let P,Q be bihomogeneous elements of $D^{(h)}[s]$. If $\text{LM}_{\prec_s}(P)$ devides $\text{LM}_{\prec_s}(Q)$, then we set

$$Red(P,Q) = (R,U)$$
 with $R := P - UQ$,

where U is an element of $D^{(h)}[s]$ whose total symbol is $LM_{\prec s}(Q)/LM_{\prec s}(P)$.

Algorithm 1 (Division algorithm in $D^{(h)}$)

Input: homogeneous elements P, P_1, \ldots, P_m of $D^{(h)}$, a monomial ordering \prec for $D^{(h)}$.

Output: homogeneous $Q_1, \ldots, Q_m \in D^{(h)}$ and $a \in \mathbb{C}[x]$ such that

- (1) $(1+a)P = Q_1P_1 + \cdots + Q_mP_m + R$,
- (2) $LM_{\prec}(a) \prec 1$ if $a \neq 0$,
- (3) If $R \neq 0$, then $LM_{\prec}(R)$ is not divisible by any $LM_{\prec}(P_i)$,
- (4) $LM_{\prec}(Q_iP_i) \leq LM_{\prec}(P)$ if $Q_i \neq 0$.

$$\mathcal{G} := (P_1^{(s)}, \dots, P_m^{(s)})$$
 (a list), $R := P^{(s)}, A := 1$
 $Q = (Q_1, \dots, Q_m) := (0, \dots, 0) \in (D^{(h)})^m$
IF $R \neq 0$ THEN

$$\mathcal{F}:=\{P'\in\mathcal{G}\mid \mathrm{LM}_{\prec_s}(P') \text{ divides } \mathrm{LM}_{\prec_s}(s^\ell R) \text{ for some } \ell\in\mathbb{N}\}$$

ELSE $\mathcal{F} := \emptyset$ (an empty set)

 $\mathcal{H} := (\,) \ \ (\mathrm{an} \ \mathrm{empty} \ \mathrm{list})$

WHILE $(\mathcal{F} \neq \emptyset)$ DO

Choose $P' \in \mathcal{F}$ with ℓ minimal, which is the i-th element of \mathcal{G} IF $\ell > 0$ THEN

$$\mathcal{G} := \mathcal{G} \cup (R)$$
 (append R to \mathcal{G} as the last element)

$$\mathcal{H}:=\mathcal{H}\cup((A,Q))$$
 (append a list (A,Q) to \mathcal{H} as the last element) $(R,U):=\mathrm{Red}(s^{\ell}R,P')$

```
IF i \leq m THEN Q_i := Q_i + U

IF i > m THEN
(A', Q') := \mathcal{H}[i - m] \quad \text{(the } (i - m)\text{-th element of } \mathcal{H})
A := A - UA'
FOR j = 1, \dots, m DO Q_j := Q_j - UQ'_j

IF R \neq 0 THEN
\nu := \text{the highest power of } s \text{ dividing } R
R := R/s^{\nu}
\mathcal{F} := \{P' \in \mathcal{G} \mid \text{LM}_{\prec_s}(P') \text{ divides } \text{LM}_{\prec_s}(s^{\ell}R) \text{ for some } \ell \in \mathbb{N}\}
ELSE \mathcal{F} := \emptyset

FOR j = 1, \dots, m DO Q_j := Q_j|_{s=1}

R := R|_{s=1}, a := A|_{s=1}
```

The correctness of this algorithm can be proved in a way similar to [9]. See also [10, Chapter 2] for the commutative case.

By using this division in the Buchberger algorithm, we can compute a Gröbner (or a standard) base of a given homogeneous left ideal of $D_{\prec}^{(h)}$ with respect to an arbitrary monomial ordering \prec for $D^{(h)}$. See [9] for details. Here $D_{\prec}^{(h)}$ is the localization with respect to the multiplicative subset

$$S_{\prec} := \{1\} \cup \{1 + a(x) \mid a(x) \in \mathbb{C}[x], \ a(x) \neq 0, \ \mathrm{LM}_{\prec}(a(x)) \prec 1\}$$

of $D^{(h)}$. An element P of $D_{\prec}^{(h)}$ is expressed in a finite sum

$$P = \sum_{\alpha,k} \frac{a_{\alpha k}(x)}{b_{\alpha k}(x)} \partial^{\alpha} h^{k} \qquad (a_{\alpha k}(x) \in \mathbb{C}[x], b_{\alpha k}(x) \in S_{\prec}).$$

In fact, all computations can be done in $D^{(h)}$ not in $D_{\prec}^{(h)}$. For this purpose, let us introduce the following definition:

Definition 2 Let I be a left homogeneous ideal of $D^{(h)}$ and \prec be a monomial ordering for $D^{(h)}$. Then a finite set $G \subset I$ consisting of homogeneous elements is called a *standard base* of I with respect to \prec if the ideal $\langle LM_{\prec}(I) \rangle$ of $\mathbb{C}[x,\xi,h]$, which is generated by the leading monomials with respect to \prec of the elements of I, coincides with the ideal $\langle LM_{\prec}(G) \rangle$ which is generated by the leading monomials of the elements of G. If, in addition, G generates G, then G is called a G is called

Lemma 3 Let $G = \{P_1, \ldots, P_r\}$ be a standard base of a homogeneous left ideal I of $D^{(h)}$ with respect to a monomial ordering \prec for $D^{(h)}$. Then for any P, there exist homogeneous $Q_1, \ldots, Q_r \in D^{(h)}$ and $a \in \mathbb{C}[x]$ such that

$$(1+a)P = Q_1P_1 + \dots + Q_rP_r,$$

$$LM_{\prec}(a) \prec 1 \text{ if } a \neq 0, LM_{\prec}(Q_iP_i) \leq LM_{\prec}(P) \text{ if } Q_i \neq 0.$$

Proof: Applying Alogorithm 1, we get an expression

$$(1+a)P = Q_1P_1 + \dots + Q_rP_r + R$$

with the conditions (2),(3),(4) of Alogorithm 1. If $R \neq 0$, then $LM_{\prec}(R)$ does not belong to $\langle LM_{\prec}(G) \rangle$, which contradicts the fact that $R \in I$ and G is a standard base of I. \square

Given a finite set of generators of a homogeneous left ideal I of $D^{(h)}$, we can compute a standard base of I with respect to an arbitrary monomial ordering \prec by the Buchberger algorithm with the usual division replaced by Algorithm 1. Then by the preceding lemma, G generates $D_{\prec}^{(h)}I$ in $D_{\prec}^{(h)}$.

7 Algorithms for (generalized) regular b-functions

Let us describe the whole algorithm in several steps. The inputs are a finite set of generators of a left ideal I of the Weyl algebra D, and a linear submanifold $Y = \{x_1 = \cdots = x_d = 0\}$. The outputs are a (generalized) regular b-function of $\mathcal{I} := \mathcal{D}I$ along Y of the minimum degree, and an associated operator $Q \in \mathcal{D}$ satisfying (1), where \mathcal{D} is the stalk of \mathcal{D}_X at 0.

Step 1. Computation of generators of the homogenized ideal $I^{(h)}$. Let \prec be a monomial ordering for $D^{(h)}$ such that

$$x^{\alpha}\xi^{\beta}h^i \prec x^{\alpha'}\xi^{\beta'}h^j$$
 if $|\beta| < |\beta'|$

and that 1 is the minimum monomial. Let $\{P_1,\ldots,P_r\}$ be a set of generators of a given left ideal I of D. Let $\{P'_1,\ldots,P'_k\}$ be a Gröbner base with respect to \prec of the ideal of $D^{(h)}$ generated by $\{P^{(h)}_1,\ldots,P^{(h)}_r\}$. Let ν_i be the maximum nonnegative integer such that h^{ν_i} divides P'_i and set $P''_i:=P'_i/h^{\nu_i}$. Then $G_1:=\{P''_1,\ldots,P''_k\}$ is a set of generators of the homogenized ideal $I^{(h)}$ of I.

In fact, let P be an arbitrary nonzero element of I. Then it is easy to see that there exists a nonnegative integer ν such that $h^{\nu}P^{(h)}$ belongs to the ideal generated by G_1 . Hence by division we have

$$h^{\nu}P^{(h)} = Q_1P_1'' + \dots + Q_kP_k''$$

with homogeneous $Q_i \in D^{(h)}$ such that $\operatorname{LM}_{\prec}(Q_i P_i'') \leq \operatorname{LM}_{\prec}(h^{\nu} P^{(h)})$ if $Q_i \neq 0$. This implies that h^{ν} divides each Q_i in view of the definition of \prec . Hence $P^{(h)}$ belongs to the ideal generated by G_1 . Since $P_i''|_{h=1}$ belongs to I, it is also easy to see that G_1 is a subset of $I^{(h)}$.

Step 2. Computation of generators of $\operatorname{gr}_V(I^{(h)})$. Let \prec be a monomial ordering for $D^{(h)}$ compatible with the V-filtration, i.e., satisfying

$$x^{\alpha}\xi^{\beta}h^{i} \prec x^{\alpha'}\xi^{\beta'}h^{j} \quad \text{if} \quad \beta_{1}+\dots+\beta_{d}-\alpha_{1}-\dots-\alpha_{d} < \beta'_{1}+\dots+\beta'_{d}-\alpha'_{1}-\dots-\alpha'_{d},$$

and $1 \prec x_i$ for $d+1 \leq i \leq n$. Let $\{P_1, \ldots, P_r\}$ be a standard base of $I^{(h)}$ with respect to \prec . Then

$$G_2 := \{ \operatorname{gr}_V(P_1), \dots, \operatorname{gr}_V(P_r) \}$$

is a set of generators of $\operatorname{gr}_V(I^{(h)})$.

In fact, let P_0 be a homogeneous nonzero element of $\operatorname{gr}_V(I^{(h)})$ with $\operatorname{ord}_V(P_0) = m$. Then there exists $Q \in V_{m-1}(D^{(h)})$ such that $P_0 + Q \in I^{(h)}$. By Lemma 3, there exist homogeneous $Q_1, \ldots, Q_r \in D^{(h)}$ and a polynomial $a(x) \in \mathbb{C}[x]$ such that

$$(1+a(x))(P_0+Q) = Q_1P_1 + \dots + Q_rP_r,$$

 $\operatorname{LM}_{\prec}(Q_iP_i) \leq \operatorname{LM}_{\prec}(P_0)$ if $Q_i \neq 0$, and $\operatorname{LM}_{\prec}(a(x)) \prec 1$ if $a(x) \neq 0$. The last condition implies that $a(x) \in V_{-1}(D^{(h)})$. In fact, if $a(x) \notin \langle x_1, \ldots, x_d \rangle$, we would have $\operatorname{LM}_{\prec}(a(x)) \succ 1$. From

$$P_0 = Q_1 P_1 + \dots + Q_r P_r - a(x) P_0 - (1 + a(x)) Q$$

it follows that

$$\sigma_V(P_0) = Q_1' \sigma_V(P_1) + \dots + Q_r' \sigma_V(P_r),$$

where $Q'_i := \sigma_V(Q_i)$ if $\operatorname{ord}_V(Q_iP_i) = m$, and $Q'_i := 0$ otherwise. Hence G_2 is a set of generators of $\operatorname{gr}_V(I^{(h)})$. We may assume that each element of G_2 is bihomogeneous, i.e., homogeneous with respect to the graded structure of $\operatorname{gr}_V(D^{(h)})$ as well as to the one coming from $D^{(h)}$.

Step 3. Computation of generators of the ideal

$$J := \operatorname{gr}_V(I^{(h)}) \cap \mathbb{C}[x_{d+1}, \dots, x_n, \theta_1 + \dots + \theta_d, h]$$

with $\theta_i = x_i \theta_i$. Introducing new commutative variables u_i, v_i with i = 1, ..., d, we work in the ring $D^{(h)}[u_1, ..., u_d, v_1, ..., v_d]$. For an element

$$P = \sum_{\alpha,\beta,k} a_{\alpha\beta k} x^{\alpha} \partial^{\beta} h^{k}$$

of $D^{(h)}$, we define its multi-homogenization to be

$$mh(P) = \sum_{\alpha,\beta,k} a_{\alpha\beta k} x^{\alpha} \partial^{\beta} h^{k} u_{1}^{\kappa_{1} - \alpha_{1} + \beta_{1}} \cdots u_{d}^{\kappa_{d} - \alpha_{d} + \beta_{d}} \in D^{(h)}[u_{1}, \dots, u_{d}, v_{1}, \dots, v_{d}]$$

with $\kappa_i := \max\{\alpha_i - \beta_i \mid a_{\alpha\beta k} \neq 0 \text{ for some } k\}.$

Let $\{P_1, \ldots, P_r\}$ be a set of bihomogeneous generators of $\operatorname{gr}_V(I^{(h)})$. (Here we identify $\operatorname{gr}_V(D^{(h)})$ with $D^{(h)}$.) Let \tilde{I} be the left ideal generated by

$$\{ \mathrm{mh}(P_1), \ldots, \mathrm{mh}(P_r) \} \cup \{ u_i v_i - 1 \mid i = 1, \ldots, d \}$$

in $D^{(h)}[u_1,\ldots,u_d,v_1,\ldots,v_d]$, and compute a Gröbner base \tilde{G} of \tilde{I} with respect to a monomial ordering for eliminating u_i 's and v_i 's. Set $\tilde{G}_0 := \tilde{G} \cap D^{(h)}$. For each element P of \tilde{G}_0 , there exist unique $\mu = (\mu_1,\ldots,\mu_d)$ and $\nu = (\nu_1,\ldots,\nu_d)$ in \mathbb{N}^d with $\mu_i\nu_i = 0$ $(i=1,\ldots,d)$ so that there exists a $P' \in \mathbb{C}[x_{d+1},\ldots,x_n,\theta_1,\ldots,\theta_d,h]$ satisfying

$$x_1^{\mu_1} \cdots x_d^{\mu_d} \partial_1^{\nu_1} \cdots \partial_d^{\nu_d} P = P'(x_{d+1}, \dots, x_n, \theta_1, \dots, \theta_d, h).$$

Let us denote this P' by $\psi(P)$. Then one can prove that the set $\psi(\tilde{G}_0) := \{\psi(P) \mid P \in \tilde{G}_0\}$ generates

$$\tilde{J} := \operatorname{gr}_V(I^{(h)}) \cap \mathbb{C}[x_{d+1}, \dots, x_n, \theta_1, \dots, \theta_d, h]$$

in the same way as the proof of Proposition 4.3 of [17].

Next compute a set G_3 of generators of the ideal

$$J := \tilde{J} \cap \mathbb{C}[x_{d+1}, \dots, x_n, s, h]$$

with $s = \theta_1 + \cdots + \theta_d$. This can be done by computing the intersection

$$(\tilde{J} + \langle s - \theta_1 - \dots - \theta_d \rangle) \cap \mathbb{C}[x_{d+1}, \dots, x_n, s, h]$$

through a Gröbner base.

Step 4A. Computation of a generalized regular b-function of the minimum degree. Let J be as in Step 3. We denote $x' = (x_{d+1}, \ldots, x_n)$.

(1) Set $J|_{h=0} := \{f|_{h=0} \mid f \in J\}$, which is an ideal of $\mathbb{C}[x', s]$. Compute a set G of generators of

$$\mathbb{C}[x'] \cap ((J|_{h=0}) : s^{\infty})$$

by a Gröbner base (see e.g., [7]).

(2) If there exists $a(x') \in G$ such that $a(0) \neq 0$, then find the minimum integer $m \geq 0$ so that

$$\mathbb{C}[x'] \cap ((J|_{h=0}) : s^m)$$

contains an element a(x') with $a(0) \neq 0$. If there is no $a(x') \in G$ such that $a(0) \neq 0$, then quit (there is no generalized b-function). In view of the homogeneity of J, m gives us the minimum degree in s of generalized b-functions.

(3) Let \prec be a monomial ordering for $\mathbb{C}[x', s, h]$ such that

$$x_{d+1}^{\alpha_{d+1}} \cdots x_n^{\alpha_n} s^{\mu} h^i \prec x_{d+1}^{\beta_{d+1}} \cdots x_n^{\beta_n} s^{\nu} h^j$$
 if $\mu < \nu$

and $x_i \prec 1$ for i = d + 1, ..., n. Let $\{f_1, ..., f_k\}$ be a standard base of J with respect to \prec consisting of homogeneous elements. By applying

Algorithm 1 to the commutative subring $\mathbb{C}[x', s, h]$ of $D^{(h)}$, we can find $a(x') \in \mathbb{C}[x']$ and $q_1, \ldots, q_k, r \in \mathbb{C}[x', s, h]$ such that

$$(1 + a(x'))s^m = q_1 f_1 + \dots + q_k f_k + r,$$

 $a(x') \prec 1$ if $a(x') \neq 0$, $LM_{\prec}(r)$ is not divisible by any $LM_{\prec}(f_i)$ with $LM_{\prec}(r) \leq s^m$ if $r \neq 0$. In fact, we have $LM_{\prec}(r) \prec s^m$ since s^m belongs to the monomial ideal generated by $\{LM_{\prec}(f) \mid f \in J\}$ in view of the definition of m. Hence r can be written in a form

$$r = c_0(x')s^m + c_1(x')s^{m-1}h + \dots + c_m(x')h^m$$

with $c_j(x') \in \mathbb{C}[x']$ and $c_0(0) = 0$. This implies that

$$b'(x', s, h) := (1 + a(x') - c_0(x'))s^m - c_1(x')s^{m-1}h - \dots - c_m(x')h^m$$

belongs to J. Thus $b(x', s) := (1 + a(x') - c_0(x'))^{-1}b'(x', s, 1)$ is a (monic) generalized b-function of \mathcal{I} of the minimum degree.

Step 4B. Computation of a regular b-function of the minimum degree. Compute a primary decomposition of J:

$$J = Q_1 \cap \dots \cap Q_l.$$

Set

$$K := \{k \in \{1, \dots, l\} \mid a(0) = 0 \text{ for any } a(x') \in Q_k \cap \mathbb{C}[x']\}.$$

Compute a Gröbener base G_4 of of the intersection

$$B := \bigcap_{k \in K} (Q_k \cap \mathbb{C}[s, h])$$

with respect to a monomial ordering such that 1 is the minimum monomial. Choose, if any, an element b'(s,h) of G_4 of the minimum degree such that $b'(s,0) \neq 0$. Then b'(s,1) is a regular b-function of \mathcal{I} of the minimum degree. If there is no such b'(s,h), then \mathcal{I} is not regular specializable along Y at 0.

In fact, we can prove that

$$B = \{b(s, h) \in \mathbb{C}[s, h] \mid \exists a(x') \in \mathbb{C}[x'] : a(0) \neq 0, \ a(x')b(s, h) \in J\}$$

in the same way as the proof of Lemma 4.4 of [17].

Step 5. Computation of an associated operator Q. Let b(x', s) be a (generalized) regular b-function of \mathcal{I} computed in Step 4A or 4B. Let \prec be a monomial ordering for $D^{(h)}$ which is compatible with the V-filtration and satisfies $x_i \prec 1$ for $i = d + 1, \ldots, n$. Let $G = \{P_1, \ldots, P_r\}$ be a standard base of $I^{(h)}$ w.r.t. \prec . Take a homogeneous polynomial b'(x', s, h) such that b'(x', s, 1) = b(x', s)

and $b'(x', s, 0) \neq 0$. Dividing $b'(x', \theta_1 + \cdots + \theta_d, h)$ by P_1, \ldots, P_r , we get an expression

$$(1+a)b'(x', \theta_1 + \dots + \theta_d, h) = Q_1P_1 + \dots + Q_rP_r + R$$

with the conditions (2),(3),(4) in Algorithm 1. Then R belongs to $(D^{(h)})_m \cap V_{-1}(D^{(h)})$ with m being the degree of b(x',s) in s, and

$$b'(x', \theta_1 + \dots + \theta_d) - (1+a)^{-1}R|_{h=1} \in \mathcal{I}.$$

In fact, it is easy to see that $\sigma_V(G) = \{\sigma_V(P_1), \ldots, \sigma_V(P_r)\}$ is a standard base of $\operatorname{gr}_V(I^{(h)})$ in view of the definition of \prec . In particular, we have $\langle \operatorname{LM}_{\prec}(G) \rangle = \langle \operatorname{LM}_{\prec}(\sigma_V(G)) \rangle$. Note that $\operatorname{ord}_V(R) \leq 0$. Since there exists a $c(x) \in \mathbb{C}[x]$ such that c(0) = 0 and

$$(1 + c(x))b'(x', \theta_1 + \dots + \theta_d, h) \in \operatorname{gr}_V(I^{(h)}),$$

it follows that $\sigma_V((1+c)R)$ would also belong to $\operatorname{gr}_V(I^{(h)})$ if $\operatorname{ord}_V(R) = 0$. Hence $\operatorname{LM}_{\prec}(\sigma_V(R)) = \operatorname{LM}_{\prec}(R)$ would belong to $\langle \operatorname{LM}_{\prec}(\sigma_V(G)) \rangle = \langle \operatorname{LM}_{\prec}(G) \rangle$. This contradicts the property (3) of Algorithm 1. Thus we have $\operatorname{ord}_V(R) \leq -1$.

This completes the description of the algorithms. The proof of the correctness of the above algorithms will be completed in the next section.

8 Analytic versus algebraic regular b-functions

We denote by \mathcal{D} the stalk of \mathcal{D}_X at the origin, i.e., the ring of differential operators with convergent power series coefficients. As was introduced in [3], the homogenized ring $\mathcal{D}^{(h)}$ of \mathcal{D} is defined to be the set of operators P expressed in a finite sum

$$P = \sum_{\alpha \in \mathbb{N}^n, k \ge 0} a_{\alpha k}(x) \partial^{\alpha} h^k \quad (a_{\alpha k}(x) \in \mathbb{C}\{x\})$$

with the commutation relations

$$\partial_i a = a\partial_i + \frac{\partial a}{\partial x_i}h, \quad \partial_i \partial_j = \partial_j \partial_i, \quad \partial_i h = h\partial_i, \quad ah = ha$$

for $a \in \mathbb{C}\{x\}$ and $1 \leq i, j \leq n$. This is a graded ring with respect to the total degree in $\partial_1, \ldots, \partial_n, h$. Then $D^{(h)}$ is a graded subring of $\mathcal{D}^{(h)}$.

For an operator $P = \sum_{\alpha} a_{\alpha}(x) \partial^{\alpha}$ of \mathcal{D} , its homogenization is defined to be

$$P^{(h)} := \sum_{\alpha \in \mathbb{N}^n} a_{\alpha}(x) \partial^{\alpha} h^{m-|\alpha|} \in \mathcal{D}^{(h)}$$

with $m := \operatorname{ord} P$. The homogenization $\mathcal{I}^{(h)}$ of a left ideal \mathcal{I} of \mathcal{D} is the left ideal of $\mathcal{D}^{(h)}$ generated by the homogenizations of the elements of \mathcal{I} .

Lemma 4 Let I be a left ideal of D and $\mathcal{I} = \mathcal{D}I$ be the left ideal of \mathcal{D} generated by I. Then $\mathcal{I}^{(h)}$ is generated by $I^{(h)}$ over $\mathcal{D}^{(h)}$.

Proof: Let \prec be a monomial ordering for D such that

$$x^{\alpha}\xi^{\beta} \prec x^{\alpha'}\xi^{\beta'}$$
 if $|\beta| < |\beta'|$

and $x_i \prec 1$ for i = 1, ..., n. Let $G = \{P_1, ..., P_r\}$ be a standard base of I with respect to \prec . Applying the Buchberger criterion to \mathcal{D} , we see that G is also a standard base of \mathcal{I} . Hence by using the division in \mathcal{D} (see [5]), or by the flatness of \mathcal{D} over D, we see that for any $P \in \mathcal{I}$, there exist $Q_1, ..., Q_r \in \mathcal{D}$ such that

$$P = Q_1 P_1 + \dots + Q_r P_r$$

and $\operatorname{ord}(Q_i P_i) \leq \operatorname{ord} P$. Then by homogenization we get

$$P^{(h)} = h^{\nu_1} Q_1^{(h)} P_1^{(h)} + \dots + h^{\nu_r} Q_r^{(h)} P_r^{(h)}$$

with $\nu_i = \operatorname{ord} P - \operatorname{ord}(Q_i P_i)$. Hence $\mathcal{I}^{(h)}$ is generated by $P_1^{(h)}, \dots, P_r^{(h)} \in I^{(h)}$.

Lemma 5 Let I be a left ideal of D and set $\mathcal{I} = \mathcal{D}I$. Then $\operatorname{gr}_V(\mathcal{I}^{(h)})$ is generated by $\operatorname{gr}_V(I^{(h)})$ over $\operatorname{gr}_V(\mathcal{D}^{(h)})$.

Proof: Let \prec be a monomial ordering for $D^{(h)}$ adapted to the V-filtration such that $x_i \prec 1$ for $i = d+1, \ldots, n$. Let $G = \{P_1, \ldots, P_r\}$ be a standard base of $I^{(h)}$ with respect to \prec . Then G is also a standard base of $\mathcal{I}^{(h)} = \mathcal{D}^{(h)}I^{(h)}$ with respect to \prec (see Theorem 3.2 of [9]). Let P be an arbitrary element of $\mathcal{I}^{(h)}$. Then by the division algorithm of Assi-Castro-Granger [3] for $\mathcal{D}^{(h)}$, there exist $Q_1, \ldots, Q_r \in \mathcal{D}^{(h)}$ such that

$$P = Q_1 P_1 + \dots + Q_r P_r$$

with $\operatorname{ord}_V(Q_i P_i) \leq \operatorname{ord}_V(P)$. Hence $\sigma_V(P)$ belongs to the left ideal of $\mathcal{D}^{(h)}$ generated by $\{\sigma_V(P_1), \ldots, \sigma_V(P_r)\}$. This completes the proof. \square

Lemma 6 Let I be a left ideal of D and set $\mathcal{I} = \mathcal{D}I$. Then

$$\tilde{J}^{\mathrm{an}} := \operatorname{gr}_V(\mathcal{I}^{(h)}) \cap \mathbb{C}\{x'\}[\theta_1, \dots, \theta_d, h]$$

is generated by

$$\tilde{J} := \operatorname{gr}_V(I^{(h)}) \cap \mathbb{C}[x', \theta_1, \dots, \theta_d, h]$$

over $\mathbb{C}\{x'\}[\theta_1,\ldots,\theta_d,h]$.

Proof: Let \prec be a monomial ordering for $D^{(h)}[u,v]$ such that

$$x^{\alpha} \partial^{\beta} h^{j} u^{\mu} v^{\nu} \prec x^{\alpha'} \partial^{\beta'} h^{k} u^{\mu'} v^{\nu'} \quad \text{if } |\mu| + |\nu| < |\mu'| + |\nu'|$$

and $x_i \prec 1$ for $i = 1, \ldots, n$, where we denote $u = (u_1, \ldots, u_d)$ and $v = (v_1, \ldots, v_d)$. Let $\tilde{G} = \{P_1, \ldots, P_r\}$ be a standard base of the left ideal \tilde{I} of $D^{(h)}[u, v]$ defined in Step 3. (Note that \tilde{G} is not necessarily the same as in Step 3.) Then \tilde{G} is also a standard base of $\operatorname{gr}_V(\mathcal{D}^{(h)})[u, v]\tilde{I}$ with respect to \prec . We can show that $\tilde{J}^{\operatorname{an}}$ is generated by $\psi(\tilde{G}_0)$ with

$$\tilde{G}_0 := \tilde{G} \cap \operatorname{gr}_V(\mathcal{D}^{(h)}) = \tilde{G} \cap D^{(h)}$$

in the same way as the proof of Proposition 4.3 of [17]. By substituting 1 for each u_i and v_i , we see that $\psi(\tilde{G}_0)$ is contained in $\operatorname{gr}_V(I^{(h)})$. This completes the proof. \square

Now we are ready to prove the following theorem, which implies the correctness of the algorithms given in the preceding section.

Theorem 2 Let I be a left ideal of D and set $\mathcal{I} = \mathcal{D}I$.

- (1) If $b(x',s) \in \mathbb{C}\{x'\}[s]$ is a generalized regular b-function of \mathcal{I} along Y, then there exists a generalized regular b-function $\tilde{b}(x',s)$ along Y which belongs to $\mathbb{C}[x',s]$ and is of the same degree (in s) as b(x',s).
- (2) A polynomial $b(x',s) \in \mathbb{C}[x',s]$ is a generalized regular b-function of \mathcal{I} along Y if and only if there exist a homogeneous $b'(x',s,h) \in \mathbb{C}[x',s,h]$ with $b'(x',s,0) \neq 0$ and b'(x',s,1) = b(x',s), and a polynomial $c(x') \in \mathbb{C}[x']$ with $c(0) \neq 0$ such that

$$c(x')b'(x', x_1\partial_1 + \dots + x_d\partial_d, h) \in \operatorname{gr}_V(I^{(h)}).$$

Proof: Let J be as in Step 3 of the preceding section and set

$$J^{\mathrm{an}} := \mathbb{C}\{x'\}[s,h] \cap \operatorname{gr}_V(\mathcal{I}^{(h)})$$

with $s = \theta_1 + \cdots + \theta_d$. Then by Lemmas 4,5,6, it is easy to see that J^{an} is generated by J over $\mathbb{C}\{x'\}[s,h]$. Let \prec be the same monomial ordering for $\mathbb{C}[x',s,h]$ as in (3) of Step 4A and $G = \{f_1,\ldots,f_k\}$ be a standard base of J with respect to \prec . Then G is also a standard base of J^{an} with respect to \prec . Set m be as in (2) of Step 4A. It follows that m is also the minimum integer such that $\mathbb{C}\{x'\} \cap ((J^{\mathrm{an}}|_{h=0}) : s^m)$ contains a $c(x') \in \mathbb{C}\{x'\}$ with $c(0) \neq 0$, or equivalently, that s^m is contained in $\langle \mathrm{LM}_{\prec}(G) \rangle$. This completes the proof of (1).

Now in order to prove (2), let $b(x',s) \in \mathbb{C}[x',s]$ be a (generalized) regular b-function of \mathcal{I} of degree m in s. Then there eixsts $Q \in V_{-1}(\mathcal{D}) \cap F_m(\mathcal{D})$ such that

$$b(x', \theta_1 + \dots + \theta_d) + Q \in \mathcal{I}.$$

By homogenization, there eixst a homogeneous $b'(x', s, h) \in \mathbb{C}[x', s, h]$ with b'(x', s, 1) = b(x', s) and $b(x', s, 0) \neq 0$, and a $\nu \in \mathbb{N}$ such that

$$b'(x', \theta_1 + \dots + \theta_d, h) + h^{\nu} Q^{(h)} \in \mathcal{I}^{(h)}.$$

This implies that

$$b'(x', \theta_1 + \cdots + \theta_d, h) \in \operatorname{gr}_V(\mathcal{I}^{(h)})$$

and hence b'(x', s, h) belongs to J^{an} . By division in $\mathbb{C}[x', s, h]$, there exist $q_1, \ldots, q_k, r \in \mathbb{C}[x', s, h]$ and $a(x') \in \mathbb{C}[x']$ such that a(0) = 0,

$$(1 + a(x'))b'(x', s, h) = q_1f_1 + \dots + q_kf_k + r,$$

 $\operatorname{LM}_{\prec}(q_i f_i) \leq s^m$ if $q_i \neq 0$, and $\operatorname{LM}_{\prec}(r)$ is not divisible by $\operatorname{LM}_{\prec}(f_i)$ for any $i=1,\ldots,k$ if $r\neq 0$. Since r belongs to J^{an} and G is a standard base of J^{an} , it follows that r=0. Thus (1+a(x'))b'(x',s,h) belongs to $\operatorname{gr}_V(I^{(h)})$. The converse implication of the statement (2) is obvious. \square

References

- [1] A. Adolphson, Hypergeometric functions and rings generated by monomials, Duke Math. J. 73 (1994) 269–290.
- [2] A. Assi, F.J. Castro-Jiménez, M. Granger, How to compute the slopes of a D-module, Compositio Math. 104 (1996) 107–123.
- [3] A. Assi, F.J. Castro-Jiménez, M. Granger, The analytic standard fan of a D-module, J. Pure Appl. Algebra 164 (2001) 3–21.
- [4] M.S. Baouendi, C. Goulaouic, Cauchy problems with characteristic initial hypersurface, Comm. Pure Appl. Math. 26 (1973) 455–475.
- [5] F. Castro, Calcul effectifs pour les idéaux d'opérateurs différentiels, in: J.-M. Aroca, T. Sanchez-Giralda, J.-L. Vicente (Eds.), Géométrie algébrique et applications, III, Hermann, Paris, 1987, pp. 53–98.
- [6] F.J. Castro-Jiménez, N. Takayama, Singularities of the hypergeometric system associated with a monomial curve, Trans. Amer. Math. Soc. 355 (2003) 3761– 3775.
- [7] D. Cox, J. Little, D. O'Shea, Ideals, Varieties, and Algorithms, Springer-Verlag, New York, 1991.
- [8] I.M. Gel'fand, A.V. Zelevinsky, M.M. Kapranov, Hypergeometric functions and toric varieties, Funct. Anal. Appl. 23 (1989) 94–106.
- [9] M. Granger, T. Oaku, N. Takayama, Tangent cone algorithm for homogenized differential operators, J. Symbolic Comput. 39 (2005) 417–431.

- [10] G.M. Greuel, G. Pfister, A Singular Introduction to Commutative Algebra, Springer, Berlin Heidelberg, 2002.
- [11] M. Kashiwara, T. Kawai, On holonomic systems of micro-differential operators III, Publ. Res. Inst. Math. Sci. 17 (1981) 813–979.
- [12] M. Kashiwara, T. Oshima, Systems of differential equations with regular singularities and their boundary value problems, Ann. of Math. 106 (1977) 145–200.
- [13] Y. Laurent, Y., Polygône de Newton et *b*-fonctions pour les modules microdifférentiels, Ann. Sci. École Norm. Sup. 20 (1987) 391–441.
- [14] Y. Laurent, Z. Mebkhout, Pentes algébriques et pentes analytiques d'un \mathcal{D} -module, Ann. Sci. École Norm. Sup. 32 (1999) 39–69.
- [15] Y. Laurent, T. Monteiro Fernandes, Systèmes différentiels fuchsiens le long d'une sous-variété, Publ. Res. Inst. Math. Sci. 24 (1988) 397–431.
- [16] T. Oaku, An algorithm of computing *b*-functions, Duke Math. J. 87 (1997) 115-132.
- [17] T. Oaku, N. Takayama, Algorithms for D-modules restriction, tensor product, localization, and local cohomology groups, J. Pure Appl. Algebra 156 (2001) 267–308.
- [18] C. Sabbah, D-modules et cycles évanescents, in: J.-M. Aroca, T. Sanchez-Giralda, J.-L. Vicente (Eds.), Géométrie algébrique et applications, III, Hermann, Paris, 1987, pp. 53–98.
- [19] M. Saito, B. Sturmfels, N. Takayama, Gröbner Deformations of Hypergeometric Differential Equations, Springer, Berlin Heidelberg, 2000.
- [20] M. Schulze, U. Walther, Irregularity of hypergeometric systems via slopes along coordinate subspaces. Preprint (2006–2008), arXiv:math/0608668v3
- [21] N. Takayama, Kan/sm1, http://www.math.kobe-u.ac.jp/KAN/.