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Abstract

LetM be an algebraic D-module defined on an affine space X and Y be a linear sub-
manifold of X. We give an algorithm to determine if M is regular specializable along
Y , and to find, if so, its regular b-function. (M has a regular b-function by definition
if and only if M is regular specializable.) We also prove that the A-hypergeometric
system of Gelfand-Kapranov-Zelevinsky is always regular specializable along the
origin.
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1 Introduction

Let X be the affine space Cn with the coordinate system x = (x1, . . . , xn) and
Y be the linear subvariety defined by x1 = · · · = xd = 0 with 1 ≤ d ≤ n. We
denote by DX the sheaf on X of linear partial differential operators (of finite
order) with holomorphic coefficients. A section P of DX is written in a finite
sum

P =
∑
α∈Nn

aα(x)∂
α =

∑
α1,...,αn∈N

aα1...αn(x1, . . . , xn)∂
α1
1 · · · ∂αn

n

with aα(x) being holomorphic on an open set of X, where ∂i = ∂/∂xi denotes
the partial derivation with respect to xi, and N is the set of nonnegative
integers. The order of P is defined to be

ordP := max{|α| = α1 + · · ·+ αn | aα(x) ̸= 0}.

We have two filtrations on DX : The order filtration is defined by

Fk(DX) := {P ∈ DX | ordP ≤ k} (k ∈ Z),
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and the V -filtration with respect to Y is defined by

Vk(DX) :=
{
P ∈ DX | Pf ∈ J i−k for any f ∈ J i and i ∈ Z} (k ∈ Z),

where J is the defining ideal of Y in OX , the sheaf of holomorphic functions
on X. (We set J i = OX if i ≤ 0.)

Definition 1 A coherent DX-module M is said to be regular specializable
along Y at p ∈ Y (cf. [13], [18]) if and only if for any germ u of M at p, there
exist a nonzero polynomial b(s) ∈ C[s] and an operator Q ∈ DX defined on a
neighborhood of p such that

(b(x1∂1 + · · ·+ xd∂d) +Q)u = 0, Q ∈ V−1(DX), ordQ ≤ deg b(s). (1)

A polynomial b(s) satisfying (1) is called a regular b-function of u along Y at
p. If I is a left ideal of D, the stalk of DX at 0 ∈ X, and b(s) is a regular
b-function of the residue class of 1 ∈ D in D/I, then we call b(s) simply a
regular b-function of I and say that I is regular specializable along Y .

The b-function of u is the monic polynomial b(s) of the minimum degree which
satisfies (1) without the condition ordQ ≤ deg b(s). Hence a regular b-function
is a multiple of the b-function.

An equation of the form (1) is essential in proving the convergence of the power
series solutions of M. Let OX,0 = C{x1, . . . , xn} be the ring of convergent
power series. The formal completion of OX,0 along Y is defined to be

O
X̂|Y ,0

=
{ ∑
α1,...,αd≥0

aα1,...,αd
(xd+1, . . . , xn)x

α1
1 · · ·xαd

d | aα1,...,αd
(xd+1, . . . , xn)

are holomorphic on some neighborhood U ⊂ Y of 0
}
.

Kashiwara and Kawai [11] proved that if I is regular specializable along Y ,
then one has

ExtkD(D/I, OX,0) = ExtkD(D/I, OX̂|Y ,0
) (∀k ∈ Z). (2)

On the other hand, Laurent [13] (see also [14]) defined the (algebraic) slopes
of M along Y at p. Laurent and Mebkhout [14] proved that (2) holds if and
only if I has no slopes along Y . It was conjectured in [14] that M is regular
specializable along Y if and only if there is no slope of M along Y . (As far
as the author knows, this remains to be an open problem.) Assi et al. [2] (see
also [6]) presented an algorithm for computing the slopes of M when M is
algebraic and Y is a hyperplane.
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We give some examples of regular b-functions for A-hypergeometric systems
of Gelfand-Kapranov-Zelevinsky [8]. We prove that A-hypergeometric sys-
tems are regular specializable along the origin without assuming the homo-
geneity (Theorem 1). In particular, this implies (2) with D/I being the A-
hypergeometric system and Y = {0}.

For a left ideal I of the Weyl algebra D, we also give an algorithm for deter-
mining if DI is regular specializable along a linear submanifold of arbitrary
codimension, and if so, finding a regular b-function of the minimum degree and
an associated operator Q satisfying (1). For that purpose, we make use of the
homogenization (or the Rees algebra) of D with respect to the order filtration,
which we denote by D(h), and (a generalization of) the division algorithm of
[9] in D(h).

Our method consists in calculating the b-function, or the indicial polynomial,
in the homogenized ring D(h). Note that an algorithm for computing the usual
(i.e. non-homogenized) b-function of a D-module was given in [16] for the case
d = 1, and in [17] for the general case. We also generalize the notion of regular
b-function and give an algorithm to compute it. Once a regular b-function
is found, we can compute an associated operator Q by using the division
algorithm.

Remark 1 A regular b-function of the minimum degree is not necessarily
unique up to constant multiple. For example, set n = 2, d = 1 and let

I := D · {∂21 , ∂1 + ∂22}

be the left ideal of D generated by {∂21 , ∂1 + ∂22}. Then

(x1∂1)(x1∂1 − 1 + c) + cx1∂
2
2 = x21∂

2
1 + cx1(∂1 + ∂22)

belongs to I and cx1∂
2
2 belongs to V−1(D) ∩ F2(D). Hence s(s − 1 + c) is a

regular b-function (of the minimum degree) of I along x1 = 0 for any c ∈ C,
while the b-function is s.

Remark 2 Let f = f(x) be a polynomial in x = (x1, . . . , xn). Denote by Dn

the ring of differential operators on the variables x1, . . . , xn with convergent
power series coefficients. Introducing a new variable t, let Dn+1 be the ring
of differential operators on the variables x and t with convergent power series
coefficients. Let If be the left ideal of Dn+1 generated by

t− f(x),
∂

∂xi
+
∂f

∂xi

∂

∂t
(i = 1, . . . , n).

Then b(s) ∈ C[s] is a regular b-function of If along the hyperplane t = 0
if and only if there exists Q(s) ∈ Dn[s] such that the degree of Q(s) in
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∂/∂x1, . . . , ∂/∂xn and s is less than or equal to deg b(s) and

Q(s)f s+1 = b(−s− 1)f s.

2 Regular b-functions of A-hypergeometric systems

Let

A =


a11 . . . a1n
...

...

ad1 · · · adn

 = (a1, . . . , an)

be an integer d×n matrix with rankA = d, and β = (β1, . . . , βd) be a complex
d-dimensional vector. The toric ideal IA is the left ideal of C[∂] = C[∂1, . . . ∂n]
generated by {∂u − ∂v | u, v ∈ Nn, Au = Av}. We denote by ⟨Aθ − β⟩ the
ideal of C[θ] = C[θ1, . . . , θn] generated by

{ n∑
j=1

aijθj − βi | i = 1, . . . , d
}

with θ = (θ1, . . . , θn) = (x1∂1, . . . , xn∂n). Then the A-hypergeometric ideal
HA(β) is defined to be the left ideal of the Weyl algebra

D = Dn = C[x1, . . . , xn]⟨∂1, . . . , ∂n⟩

which are generated by IA and ⟨Aθ−β⟩. The left D-module D/HA(β) is called
the A-hypergeometric system, which was introduced by Gelfand, Kapranov,
Zelevinsky (see e.g., [8]).

The following examples were computed by using algorithms to be presented in
Section 7 with Kan/sm1 [21], a computer algebra system for algebraic analysis.
In the following examples, regular b-functions breg(s) of the minimum degree
are unique up to constant multiple and coincide with the b-functions.

Example 1 Set A =

2 0 1

0 2 1

. Then IA = ⟨∂1∂2 − ∂23⟩, and the regular b-

functions of HA(β) of minimum degree along coordinate submanifolds Y are
as follows:

• Y = {x1 = 0}: The regular b-function breg(s) along Y is s(2s− β1 + β2).
• Y = {x3 = 0} : breg(s) = s(s− 1).
• Y = {x1 = x2 = 0}: breg(s) = (2s+ β1 − β2)(2s− β1 + β2).
• Y = {x1 = x3 = 0}: breg(s) = (2s− β1)(2s− β1 − 1).
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Fig. 1. Column vectors of A for Examples 1–5 (from left to right)

• Y = {0}: breg(s) = 2s− β1 − β2.

Example 2 A =

3 0 2

0 3 2

, IA = ⟨∂21∂22 − ∂33⟩.

• Y = {x1 = 0}: breg(s) = s(s− 1)(3s− β1 + β2)(3s− β1 + β2 − 3).
• Y = {x3 = 0}: not regular specializable.
• Y = {x1 = x2 = 0}: breg(s) = (3s − β1 + β2)(3s − β1 + β2 − 6)(3s + β1 −
β2)(3s+ β1 − β2 − 6).

• Y = {x1 = x3 = 0}: not regular specializable.
• Y = {0}: breg(s) = (6s− 2β1 − β2)(6s− 2β1 − β2 − 3)(6s− β1 − 2β2)(6s−
β1 − 2β2 − 3).

Example 3 A =

3 0 1

0 3 1

, IA = ⟨∂33 − ∂1∂2⟩.

• Y = {x1 = 0}: not regular specializable.
• Y = {x3 = 0}: breg(s) = s(s− 1)(s− 2).
• Y = {x1 = x2 = 0}: not regular specializable.
• Y = {x1 = x3 = 0}: breg(s) = (3s− β1)(3s− β1 − 2)(3s− β1 − 4).
• Y = {0}: breg(s) = (3s− β1 − β2)(3s− β1 − β2 − 1)(3s− β1 − β2 − 2).

Example 4 A =

2 0 −1

0 2 −1

, IA = ⟨∂1∂2∂23 − 1⟩.

• Y = {x1 = 0}: breg(s) = s(2s− β1)(2s− β1 − 1)(2s− β1 + β2).
• Y = {x3 = 0}: breg(s) = s(s− 1)(s+ β1)(s+ β2).
• Y = {x1 = x2 = 0}: breg(s) = (2s − β1 − β2)(2s − β1 − β2 − 2)(2s − β1 +
β2)(2s+ β1 − β2).

• Y = {x1 = x3 = 0}: breg(s) = (s+ β1)(2s− β1)(2s− β1 − 3)(2s− β1 + 3β2).
• Y = {0}: breg(s) = (2s−β1−β2)(2s−β1−β2−4)(2s−β1+3β2)(2s+3β1−β2).

Example 5 A =

1 2 0 1

0 0 1 1

, IA = ⟨∂21 − ∂2, ∂1∂3 − ∂4, ∂2∂3 − ∂1∂4⟩.
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• regular specializable along x1 = 0, x3 = 0,
x1 = x2 = 0, x1 = x3 = 0, x1 = x4 = 0, x3 = x4 = 0
x1 = x2 = x3 = 0, x1 = x3 = x4 = 0,
x1 = x2 = x3 = x4 = 0.

• not regular specializable along x2 = 0, x4 = 0,
x2 = x3 = 0, x2 = x4 = 0,
x1 = x2 = x4 = 0, x2 = x3 = x4 = 0.

• Y = {0}: breg(s) = (s− β2)(2s− β1 − β2)(2s− β1 − β2 − 1).

For Y = {0}, an associated Q ∈ V−1(D) ∩ F3(D) such that

breg(θ1 + θ2 + θ3 + θ4)−Q ∈ HA(β)

is given by

Q = −2x21x2∂
2
2 + 6x21x3∂2∂3 + 4x1x2x3∂2∂4 − 12x1x

2
3∂3∂4

− 14x1x3x4∂
2
4 + 2x2x

2
3∂

2
4 + 2(β1 − β2)x

2
1∂2 + (14β2 − 10)x1x3∂4.

(In fact, Q ∈ F2(D).)

Theorem 1 Assume rankA = d. Then HA(β) is regular specializable along
{0} for any β ∈ Cd. In particular,

ExtkD(D/HA(β), C{x1, . . . , xn}) = ExtkD(D/HA(β), C[[x1, . . . , xn]]) (3)

holds for any integer k, where C[[x1, . . . , xn]] denotes the formal power series
ring.

The proof of this theorem will be given in Section 4. Note that the dimensions
of the cohomology groups of the right-hand side of (3) are computable (see
Algorithm 5.4 of [17]). In particular, the cohomology groups of (3) all vanish
if the b-function along the origin has no integral roots. That is the case with
Examples 1–5 above for generic β. Note also that Schulze and Walther [20]
described the slopes of HA(β) along coordinate subvarieties in terms of what
they call (A,L)-umbrellas under the condition that the column vectors of A
are contained in a proper convex cone with vertex at the origin.

3 Homogenization of the ring of differential operators

In order to prove Theorem 1 as well as to deduce algorithms for computing a
regular b-function and an associated operator, we work in the Weyl algebra,
i.e., the ring of differential operators with polynomial coefficientsD = Dn. The
following constructions are also valid for the ring D of differential operators
with convergent power series coefficients.
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We introduce the homogenized ring D(h) of D with respect to the order fil-
tration. That is, D(h) is a C-algebra generated by x1, . . . , xn, ∂1, . . . , ∂n and h
with the commutation relations

∂ixj = xj∂i + δijh, xixj = xjxi, ∂i∂j = ∂j∂i, ∂ih = h∂i, xih = hxi

for 1 ≤ i, j ≤ n. Then D(h) is a (non-commutative) graded ring with respect
to the following weights:

x1 · · · xn ∂1 · · · ∂n h

0 · · · 0 1 · · · 1 1

The homogeneous part of degree m of D(h) is the set (D(h))m consisting of 0
and the homogeneous operators of D(h) of weight m.

The homogenization of an element P =
∑

α∈Nn aα(x)∂
α of D is defined to be

P (h) :=
∑
α∈Nn

aα(x)∂
αhm−|α| ∈ D(h) (m := ordP ).

The homogenization I(h) of a left ideal I of D is the left ideal of D(h) generated
by {P (h) | P ∈ I}, which is homogeneous with respect to the above weights.

The V -filtration of D(h) with respect to Y is defined by

Vk(D
(h)) :=

{
P =

∑
α,β∈Nn,ν∈N

aαβνx
α∂βhν ∈ D(h) | aαβν ∈ C,

aαβν = 0 if β1 + · · ·+ βd − α1 − · · · − αd > k
}

For an element P of D(h), we define its V -order ordV (P ) to be the minimum
integer k such that P ∈ Vk(D

(h)). For a left ideal I ′ of D(h), its V -graded ideal
is

grV (I
′) :=

⊕
k∈Z

(Vk(D
(h)) ∩ I ′)/(Vk−1(D

(h)) ∩ I ′),

which is a left ideal of the V -graded ring

grV (D
(h)) :=

⊕
k∈Z

Vk(D
(h))/Vk−1(D

(h)) ≃ D(h).

For a nonzero element P of D(h) with ordV (P ) = k, we denote by σV (P ) the
residue class of P in Vk(D

(h))/Vk−1(D
(h)) ⊂ grV (D

(h)). Note that σV (P ) can
be regarded as an element of D(h) since grV (D

(h)) is isomorphic to D(h) as
graded ring with respect to the V -filtration.
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4 Regular specializability of the A-hypergeometric system — proof
of Theorem 1

We denote by {Vk(D)}k∈Z and {Vk(D(h))}k∈Z the V -filtrations with respect to
the origin on the Weyl algebra D and on its homogenization D(h) respectively.
Restricted to the commutative subring C[∂] = C[∂1, . . . , ∂n] of D, the V -
filtration coincides with the order filtration, which we denote by {Vk(C[∂])}k∈Z.
For an ideal I of C[∂], we denote by

grV (I) :=
⊕
k≥0

(I ∩ Vk(C[∂]))/(I ∩ Vk−1(C[∂]))

the graded ideal with respect to this filtration, which is an ideal of grV (C[∂]) ≃
C[∂]. Its zero set V(grV (I)) ⊂ Cn is the characteristic variety of I regarded
as a system of linear partial differential equations with constant coefficients.

Let A = (a1, . . . , an) be an integer d× n matrix with rankA = d. We denote
by ∆A the convex hull of the set {0, a1, . . . , an} in Rd, and by FA the set of
the facets of ∆A which do not contain the origin.

Lemma 1 (Adolphson)

V(grV (IA)) ⊂
∪

γ∈FA

{ξ = (ξ1, . . . , ξn) ∈ Cn | ξj = 0 if aj ̸∈ γ}.

Proof: This inclusion follows directly from (the proof of) Lemma 3.2 of Adolph-
son [1]. 2

For example, if A =

1 2 0 1

0 0 1 1

, then the toric ideal IA is generated by {∂21 −

∂2, ∂1∂3−∂4, ∂2∂3−∂1∂4}, and grV (IA) is generated by {∂21 , ∂1∂3, ∂2∂3−∂1∂4}.
Thus we have

V(grV (IA)) = {ξ1 = ξ2 = 0} ∪ {ξ1 = ξ3 = 0}.

Let I
(h)
A be the homogenization of IA in the commutative subring C[∂, h] of

D(h). We denote by grV (I
(h)
A ) the graded ideal of I

(h)
A with respect to the

V -filtration of D(h) restricted to C[∂, h]. Then from the definition of I
(h)
A , it

follows that
V(grV (I

(h)
A )) = V(grV (IA))× C.

In general, for a homogeneous ideal I of C[∂, h], we define its distraction to
be

dist(I) := D(h)I ∩ C[θ1, . . . , θn, h]
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with θi = xi∂i, which is a homogeneous ideal of the commutative subring
C[θ, h] = C[θ1, . . . , θn, h] of D(h). Note that this definition slightly differs from
the one given in [19]. The following lemma is an immediate consequence of
the definition:

Lemma 2 Let I be an ideal of C[∂, h] generated by {∂α | α = (α1, . . . , αn) ∈
Λ} with a finite subset Λ of Nn. Then dist(I) is an ideal of C[θ, h] generated
by {

n∏
i=1

θi(θi − h) · · · (θi − (αi − 1)h) | α ∈ Λ

}
.

The following is an immediate consequence of this lemma.

Corollary 1 Let I1 and I2 be ideals of C[θ, h] which are generated by mono-
mials in ∂. Then dist(I1 ∩ I2) = dist(I1) ∩ dist(I2) holds.

Now by lemma 1, we have

V(grV (I
(h)
A )) ⊂

∪
γ∈FA

{(ξ, h) ∈ Cn+1 | ξj = 0 if aj ̸∈ γ}.

This implies √
grV (I

(h)
A ) ⊃

∩
γ∈FA

⟨∂j | aj ̸∈ γ⟩,

and hence
grV (I

(h)
A ) ⊃

∩
γ∈FA

⟨∂nγ,j

j | aj ̸∈ γ⟩

with some positive integers nγ,j. It follows, in view of Lemma 2 and Corollary
1, that

dist(grV (I
(h)
A )) ⊃

∩
γ∈FA

⟨
nγ,j−1∏
ν=0

(θj − νh) | aj ̸∈ γ⟩.

Define an ideal J of C[θ1, . . . , θn, h] by

J := dist(grV (I
(h)
A )) + ⟨Aθ − βh⟩,

where ⟨Aθ − βh⟩ denotes the ideal of C[θ1, . . . , θn, h] generated by{ n∑
j=1

aijθj − βih | i = 1, . . . , d
}
.

Then we have
J ⊂ C[θ1, . . . , θn, h] ∩ grV (HA(β)

(h))

and the set V(J) is contained in

∪
γ∈FA

{
(θ, h) |

nγ,j−1∏
ν=0

(θj − νh) = 0 if aj ̸∈ γ,
n∑

j=1

aijθj = βih (i = 1, . . . , d)
}
.
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For each γ, there exist cγ,i ∈ Q such that

d∑
i=1

cγ,iaij = 1 if aj ∈ γ

since γ is contained in a hyperplane of Rd which does not contain the origin.
Hence we get an element

d∑
i=1

cγ,i

 n∑
j=1

aijθj − βih

 =
∑
aj∈γ

θj +
∑
aj ̸∈γ

µjθj −
d∑

i=1

cγ,iβih

of ⟨Aθ − βh⟩ with some µj ∈ C. This implies that V(J) is contained in

∪
γ∈FA

(θ, h) |
nγ,j−1∏
ν=0

(θj − νh) = 0 if aj ̸∈ γ,
∑
aj∈γ

θj +
∑
aj ̸∈γ

µjθj =
d∑

i=1

cγ,iβih

 .

In particular, there exist Nγ ∈ N and bγ,k ∈ C such that

V(J) ⊂
∪

γ∈FA

Nγ∪
k=1

{(θ, h) | θ1 + · · ·+ θn = bγ,kh}.

By Hilbert’s Nullstellensatz,

b(θ1 + · · ·+ θn, h) :=
∏

γ∈FA

Nγ∏
k=1

(θ1 + · · ·+ θn − bγ,kh)
mγ,k

belongs to J ⊂ grV (HA(β)
(h)) with some positive integers mγ,k. In view of the

definition of grV (HA(β)
(h)), there exists an element Q of V−1(D

(h)) homoge-
neous of the same degree as b(s, h) such that

b(θ1 + · · ·+ θn, h) +Q ∈ HA(β)
(h).

Substituting 1 for h, we conclude that HA(β) is regular specializable along the
origin noting that ord(Q|h=1) ≤ degQ = deg b(s, h) = deg b(s, 1).

5 Generalized regular b-function

Let us generalize the definition of regular b-function. Let I be a sheaf of
left ideals of DX and Y a submanifold of X which is defined by Y = {x =
(x1, . . . , xn) | x1 = · · · = xd = 0} in terms of a local coordinate x of X.
Then a generalized regular b-function of I along Y at p is a monic polynomial
b(x′, s) = sm + c1(x

′)sm−1 + · · · + cm(x
′) in s with coefficients ci(x

′) being
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analytic functions of x′ = (xd+1, . . . , xn) on a neighborhood of p ∈ Y satisfying

b(x′, x1∂1 + · · ·+ xd∂d) +Q ∈ I

with a germ Q of V−1(DX) ∩ Fm(DX) at p. If there exists a generalized b-
function, I is said to be regular specializable in a weak sense along Y at p.

This definition coincides with that of b-function if Y is a point. In case d = 1,
I is regular specializable in a weak sense if and only if I is regular singular in
a weak sense in the terminology of [12], or equivalently, it is Fuchsian along Y
in the sense of [15] (or [4] for a single equation). For general d, I is Fuchsian
along Y in the sense of [15] if it is regular specializable in a weak sense. It was
proved in [15] that (2) holds if I is Fuchsian along Y .

6 Division algorithm and standard bases

Our algorithms for regular b-functions are based on the following division
algorithm, which is a generalization of the one given in [9] (Algorithm 2.2) to
general monomial orderings. In what follows we present only the scalar version
for the sake of simplicity.

We make use of the second homogenization by introducing a new variable s
in addition to h. For a homogeneous element P =

∑
α,β,k aαβkx

α∂βhk of D(h),
we define its second homogenization to be

P (s) :=
∑
α,β,k

aαβkx
α∂βhksm−|α|+|β| ∈ D(h)[s]

with
m := max{|α| − |β| | aαβk ̸= 0 for some k}.

An element of D(h)[s] is said to be bihomogeneous if it is simultaneously ho-
mogeneous with respect to both weights defined by the rows of the following
table:

x1 · · · xn ∂1 · · · ∂n h s

0 · · · 0 1 · · · 1 1 0

1 · · · 1 −1 · · · −1 0 1

Let ≺ be a monomial ordering for D(h), i.e., a total ordering on the set of
monomials {xαξβhk | α, β ∈ Nn, k ∈ N} which is invariant under the multi-
plication by the same monomial on both sides, with the additional condition

h ≺ xiξi (i = 1, . . . , n). (4)
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For an element P =
∑

α,β,k aαβkx
α∂βhk of D(h), its leading monomial with

respect to ≺ is

lm≺(P ) := max ≺{xαξβhk | aαβk ̸= 0},
which is a monomial in the commutative polynomial ring C[x, ξ, h] with ξ =
(ξ1, . . . , ξn) being the commutative variables corresponding to ∂. We call the
element

P (x, ξ, h) =
∑
α,β,k

aαβkx
αξβhk

of C[x, ξ, h] the total symbol of P .

A monomial ordering ≺s for D
(h)[s] is defined so that xαξβhisµ ≺s x

α′
ξβ

′
hjsν

if and only if

|α| − |β|+ µ < |α′| − |β′|+ ν

or (|α| − |β|+ µ = |α′| − |β′|+ ν and xαξβhi ≺ xα
′
ξβ

′
hj).

Let P,Q be bihomogeneous elements of D(h)[s]. If lm≺s(P ) devides lm≺s(Q),
then we set

Red(P,Q) = (R,U) with R := P − UQ,

where U is an element of D(h)[s] whose total symbol is lm≺s(Q)/lm≺s(P ).

Algorithm 1 (Division algorithm in D(h))

Input: homogeneous elements P, P1, . . . , Pm of D(h), a monomial ordering ≺
for D(h).

Output: homogeneous Q1, . . . , Qm ∈ D(h) and a ∈ C[x] such that
(1) (1 + a)P = Q1P1 + · · ·+QmPm +R,
(2) lm≺(a) ≺ 1 if a ̸= 0,
(3) If R ̸= 0, then lm≺(R) is not divisible by any lm≺(Pi),
(4) lm≺(QiPi) ⪯ lm≺(P ) if Qi ̸= 0.

G := (P
(s)
1 , . . . , P (s)

m ) (a list), R := P (s), A := 1
Q = (Q1, . . . , Qm) := (0, . . . , 0) ∈ (D(h))m

IF R ̸= 0 THEN
F := {P ′ ∈ G | lm≺s(P

′) divides lm≺s(s
ℓR) for some ℓ ∈ N}

ELSE F := ∅ (an empty set)
H := ( ) (an empty list)
WHILE (F ̸= ∅) DO

Choose P ′ ∈ F with ℓ minimal, which is the i-th element of G
IF ℓ > 0 THEN

G := G ∪ (R) (append R to G as the last element)
H := H ∪ ((A,Q)) (append a list (A,Q) to H as the last element)

(R,U) := Red(sℓR,P ′)

12



IF i ≤ m THEN Qi := Qi + U
IF i > m THEN

(A′, Q′) := H[i−m] (the (i−m)-th element of H)
A := A− UA′

FOR j = 1, . . . ,m DO Qj := Qj − UQ′
j

IF R ̸= 0 THEN
ν := the highest power of s dividing R
R := R/sν

F := {P ′ ∈ G | lm≺s(P
′) divides lm≺s(s

ℓR) for some ℓ ∈ N}
ELSE F := ∅

FOR j = 1, . . . ,m DO Qj := Qj|s=1

R := R|s=1, a := A|s=1

The correctness of this algorithm can be proved in a way similar to [9]. See
also [10, Chapter 2] for the commutative case.

By using this division in the Buchberger algorithm, we can compute a Gröbner
(or a standard) base of a given homogeneous left ideal of D

(h)
≺ with respect

to an arbitrary monomial ordering ≺ for D(h). See [9] for details. Here D
(h)
≺ is

the localization with respect to the multiplicative subset

S≺ := {1} ∪ {1 + a(x) | a(x) ∈ C[x], a(x) ̸= 0, lm≺(a(x)) ≺ 1}

of D(h). An element P of D
(h)
≺ is expressed in a finite sum

P =
∑
α,k

aαk(x)

bαk(x)
∂αhk (aαk(x) ∈ C[x], bαk(x) ∈ S≺).

In fact, all computations can be done in D(h) not in D
(h)
≺ . For this purpose,

let us introduce the following definition:

Definition 2 Let I be a left homogeneous ideal of D(h) and ≺ be a mono-
mial ordering for D(h). Then a finite set G ⊂ I consisting of homogeneous
elements is called a standard base of I with respect to ≺ if the ideal ⟨lm≺(I)⟩
of C[x, ξ, h], which is generated by the leading monomials with respect to ≺
of the elements of I, coincides with the ideal ⟨lm≺(G)⟩ which is generated by
the leading monomials of the elements of G. If, in addition, G generates I,
then G is called a Gröbner base of I.

Lemma 3 Let G = {P1, . . . , Pr} be a standard base of a homogeneous left
ideal I of D(h) with respect to a monomial ordering ≺ for D(h). Then for any
P , there exist homogeneous Q1, . . . , Qr ∈ D(h) and a ∈ C[x] such that

(1 + a)P = Q1P1 + · · ·+QrPr,
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lm≺(a) ≺ 1 if a ̸= 0, lm≺(QiPi) ⪯ lm≺(P ) if Qi ̸= 0.

Proof: Applying Alogorithm 1, we get an expression

(1 + a)P = Q1P1 + · · ·+QrPr +R

with the conditions (2),(3),(4) of Alogorithm 1. If R ̸= 0, then lm≺(R) does
not belong to ⟨lm≺(G)⟩, which contradicts the fact that R ∈ I and G is a
standard base of I. 2

Given a finite set of generators of a homogeneous left ideal I of D(h), we can
compute a standard base of I with respect to an arbitrary monomial ordering
≺ by the Buchberger algorithm with the usual division replaced by Algorithm
1. Then by the preceding lemma, G generates D

(h)
≺ I in D

(h)
≺ .

7 Algorithms for (generalized) regular b-functions

Let us describe the whole algorithm in several steps. The inputs are a finite set
of generators of a left ideal I of the Weyl algebra D, and a linear submanifold
Y = {x1 = · · · = xd = 0}. The outputs are a (generalized) regular b-function
of I := DI along Y of the minimum degree, and an associated operator Q ∈ D
satisfying (1), where D is the stalk of DX at 0.

Step 1. Computation of generators of the homogenized ideal I(h). Let ≺ be
a monomial ordering for D(h) such that

xαξβhi ≺ xα
′
ξβ

′
hj if |β| < |β′|

and that 1 is the minimum monomial. Let {P1, . . . , Pr} be a set of generators
of a given left ideal I of D. Let {P ′

1, . . . , P
′
k} be a Gröbner base with respect to

≺ of the ideal of D(h) generated by {P (h)
1 , . . . , P (h)

r }. Let νi be the maximum
nonnegative integer such that hνi divides P ′

i and set P ′′
i := P ′

i/h
νi . Then

G1 := {P ′′
1 , . . . , P

′′
k } is a set of generators of the homogenized ideal I(h) of I.

In fact, let P be an arbitrary nonzero element of I. Then it is easy to see
that there exists a nonnegative integer ν such that hνP (h) belongs to the ideal
generated by G1. Hence by division we have

hνP (h) = Q1P
′′
1 + · · ·+QkP

′′
k

with homogeneous Qi ∈ D(h) such that lm≺(QiP
′′
i ) ⪯ lm≺(h

νP (h)) if Qi ̸= 0.
This implies that hν divides each Qi in view of the definition of ≺. Hence P (h)

belongs to the ideal generated by G1. Since P
′′
i |h=1 belongs to I, it is also easy

to see that G1 is a subset of I(h).
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Step 2. Computation of generators of grV (I
(h)). Let≺ be a monomial ordering

for D(h) compatible with the V -filtration, i.e., satisfying

xαξβhi ≺ xα
′
ξβ

′
hj if β1+· · ·+βd−α1−· · ·−αd < β′

1+· · ·+β′
d−α′

1−· · ·−α′
d,

and 1 ≺ xi for d+1 ≤ i ≤ n. Let {P1, . . . , Pr} be a standard base of I(h) with
respect to ≺. Then

G2 := {grV (P1), . . . , grV (Pr)}
is a set of generators of grV (I

(h)).

In fact, let P0 be a homogeneous nonzero element of grV (I
(h)) with ordV (P0) =

m. Then there exists Q ∈ Vm−1(D
(h)) such that P0 + Q ∈ I(h). By Lemma

3, there exist homogeneous Q1, . . . , Qr ∈ D(h) and a polynomial a(x) ∈ C[x]
such that

(1 + a(x))(P0 +Q) = Q1P1 + · · ·+QrPr,

lm≺(QiPi) ⪯ lm≺(P0) if Qi ̸= 0, and lm≺(a(x)) ≺ 1 if a(x) ̸= 0. The last
condition implies that a(x) ∈ V−1(D

(h)). In fact, if a(x) ̸∈ ⟨x1, . . . , xd⟩, we
would have lm≺(a(x)) ≻ 1. From

P0 = Q1P1 + · · ·+QrPr − a(x)P0 − (1 + a(x))Q

it follows that
σV (P0) = Q′

1σV (P1) + · · ·+Q′
rσV (Pr),

where Q′
i := σV (Qi) if ordV (QiPi) = m, and Q′

i := 0 otherwise. Hence G2

is a set of generators of grV (I
(h)). We may assume that each element of G2

is bihomogeneous, i.e., homogeneous with respect to the graded structure of
grV (D

(h)) as well as to the one coming from D(h).

Step 3. Computation of generators of the ideal

J := grV (I
(h)) ∩ C[xd+1, . . . , xn, θ1 + · · ·+ θd, h]

with θi = xiθi. Introducing new commutative variables ui, vi with i = 1, . . . , d,
we work in the ring D(h)[u1, . . . , ud, v1, . . . , vd]. For an element

P =
∑
α,β,k

aαβkx
α∂βhk

of D(h), we define its multi-homogenization to be

mh(P ) =
∑
α,β,k

aαβkx
α∂βhkuκ1−α1+β1

1 · · ·uκd−αd+βd
d ∈ D(h)[u1, . . . , ud, v1, . . . , vd]

with κi := max{αi − βi | aαβk ̸= 0 for some k}.

Let {P1, . . . , Pr} be a set of bihomogeneous generators of grV (I
(h)). (Here we

identify grV (D
(h)) with D(h).) Let Ĩ be the left ideal generated by

{mh(P1), . . . ,mh(Pr)} ∪ {uivi − 1 | i = 1, . . . , d}
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in D(h)[u1, . . . , ud, v1, . . . , vd], and compute a Gröbner base G̃ of Ĩ with re-
spect to a monomial ordering for eliminating ui’s and vi’s. Set G̃0 := G̃ ∩
D(h). For each element P of G̃0, there exist unique µ = (µ1, . . . , µd) and
ν = (ν1, . . . , νd) in Nd with µiνi = 0 (i = 1, . . . , d) so that there exists a
P ′ ∈ C[xd+1, . . . , xn, θ1, . . . , θd, h] satisfying

xµ1
1 · · ·xµd

d ∂
ν1
1 · · · ∂νdd P = P ′(xd+1, . . . , xn, θ1, . . . , θd, h).

Let us denote this P ′ by ψ(P ). Then one can prove that the set ψ(G̃0) :=
{ψ(P ) | P ∈ G̃0} generates

J̃ := grV (I
(h)) ∩ C[xd+1, . . . , xn, θ1, . . . , θd, h]

in the same way as the proof of Proposition 4.3 of [17].

Next compute a set G3 of generators of the ideal

J := J̃ ∩ C[xd+1, . . . , xn, s, h]

with s = θ1 + · · ·+ θd. This can be done by computing the intersection(
J̃ + ⟨s− θ1 − · · · − θd⟩

)
∩ C[xd+1, . . . , xn, s, h]

through a Gröbner base.

Step 4A. Computation of a generalized regular b-function of the minimum
degree. Let J be as in Step 3. We denote x′ = (xd+1, . . . , xn).

(1) Set J |h=0 := {f |h=0 | f ∈ J}, which is an ideal of C[x′, s]. Compute a set
G of generators of

C[x′] ∩ ((J |h=0) : s
∞)

by a Gröbner base (see e.g., [7]).
(2) If there exists a(x′) ∈ G such that a(0) ̸= 0, then find the minimum

integer m ≥ 0 so that

C[x′] ∩ ((J |h=0) : s
m)

contains an element a(x′) with a(0) ̸= 0. If there is no a(x′) ∈ G such
that a(0) ̸= 0, then quit (there is no generalized b-function). In view of
the homogeneity of J , m gives us the minimum degree in s of generalized
b-functions.

(3) Let ≺ be a monomial ordering for C[x′, s, h] such that

x
αd+1

d+1 · · · xαn
n sµhi ≺ x

βd+1

d+1 · · ·xβn
n s

νhj if µ < ν

and xi ≺ 1 for i = d + 1, . . . , n. Let {f1, . . . , fk} be a standard base of
J with respect to ≺ consisting of homogeneous elements. By applying
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Algorithm 1 to the commutative subring C[x′, s, h] of D(h), we can find
a(x′) ∈ C[x′] and q1, . . . , qk, r ∈ C[x′, s, h] such that

(1 + a(x′))sm = q1f1 + · · ·+ qkfk + r,

a(x′) ≺ 1 if a(x′) ̸= 0, lm≺(r) is not divisible by any lm≺(fi) with
lm≺(r) ⪯ sm if r ̸= 0. In fact, we have lm≺(r) ≺ sm since sm belongs
to the monomial ideal generated by {lm≺(f) | f ∈ J} in view of the
definition of m. Hence r can be written in a form

r = c0(x
′)sm + c1(x

′)sm−1h+ · · ·+ cm(x
′)hm

with cj(x
′) ∈ C[x′] and c0(0) = 0. This implies that

b′(x′, s, h) := (1 + a(x′)− c0(x
′))sm − c1(x

′)sm−1h− · · · − cm(x
′)hm

belongs to J . Thus b(x′, s) := (1+ a(x′)− c0(x
′))−1b′(x′, s, 1) is a (monic)

generalized b-function of I of the minimum degree.

Step 4B. Computation of a regular b-function of the minimum degree. Com-
pute a primary decomposition of J :

J = Q1 ∩ · · · ∩Ql.

Set

K := {k ∈ {1, . . . , l} | a(0) = 0 for any a(x′) ∈ Qk ∩ C[x′]}.
Compute a Gröbener base G4 of of the intersection

B :=
∩
k∈K

(Qk ∩ C[s, h])

with respect to a monomial ordering such that 1 is the minimum monomial.
Choose, if any, an element b′(s, h) of G4 of the minimum degree such that
b′(s, 0) ̸= 0. Then b′(s, 1) is a regular b-function of I of the minimum degree.
If there is no such b′(s, h), then I is not regular specializable along Y at 0.

In fact, we can prove that

B = {b(s, h) ∈ C[s, h] | ∃a(x′) ∈ C[x′] : a(0) ̸= 0, a(x′)b(s, h) ∈ J}

in the same way as the proof of Lemma 4.4 of [17].

Step 5. Computation of an associated operator Q. Let b(x′, s) be a (general-
ized) regular b-function of I computed in Step 4A or 4B. Let ≺ be a monomial
ordering for D(h) which is compatible with the V -filtration and satisfies xi ≺ 1
for i = d + 1, . . . , n. Let G = {P1, . . . , Pr} be a standard base of I(h) w.r.t.
≺. Take a homogeneous polynomial b′(x′, s, h) such that b′(x′, s, 1) = b(x′, s)
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and b′(x′, s, 0) ̸= 0. Dividing b′(x′, θ1 + · · · + θd, h) by P1, . . . , Pr, we get an
expression

(1 + a)b′(x′, θ1 + · · ·+ θd, h) = Q1P1 + · · ·+QrPr +R

with the conditions (2),(3),(4) in Algorithm 1. Then R belongs to (D(h))m ∩
V−1(D

(h)) with m being the degree of b(x′, s) in s, and

b′(x′, θ1 + · · ·+ θd)− (1 + a)−1R|h=1 ∈ I.

In fact, it is easy to see that σV (G) = {σV (P1), . . . , σV (Pr)} is a standard base
of grV (I

(h)) in view of the definition of ≺. In particular, we have ⟨lm≺(G)⟩ =
⟨lm≺(σV (G))⟩. Note that ordV (R) ≤ 0. Since there exists a c(x) ∈ C[x] such
that c(0) = 0 and

(1 + c(x))b′(x′, θ1 + · · ·+ θd, h) ∈ grV (I
(h)),

it follows that σV ((1 + c)R) would also belong to grV (I
(h)) if ordV (R) = 0.

Hence lm≺(σV (R)) = lm≺(R) would belong to ⟨lm≺(σV (G))⟩ = ⟨lm≺(G)⟩.
This contradicts the property (3) of Algorithm 1. Thus we have ordV (R) ≤ −1.

This completes the description of the algorithms. The proof of the correctness
of the above algorithms will be completed in the next section.

8 Analytic versus algebraic regular b-functions

We denote by D the stalk of DX at the origin, i.e., the ring of differential
operators with convergent power series coefficients. As was introduced in [3],
the homogenized ringD(h) ofD is defined to be the set of operators P expressed
in a finite sum

P =
∑

α∈Nn,k≥0

aαk(x)∂
αhk (aαk(x) ∈ C{x})

with the commutation relations

∂ia = a∂i +
∂a

∂xi
h, ∂i∂j = ∂j∂i, ∂ih = h∂i, ah = ha

for a ∈ C{x} and 1 ≤ i, j ≤ n. This is a graded ring with respect to the total
degree in ∂1, . . . , ∂n, h. Then D

(h) is a graded subring of D(h).

For an operator P =
∑

α aα(x)∂
α of D, its homogenization is defined to be

P (h) :=
∑
α∈Nn

aα(x)∂
αhm−|α| ∈ D(h)

18



with m := ordP . The homogenization I(h) of a left ideal I of D is the left
ideal of D(h) generated by the homogenizations of the elements of I.

Lemma 4 Let I be a left ideal of D and I = DI be the left ideal of D generated
by I. Then I(h) is generated by I(h) over D(h).

Proof: Let ≺ be a monomial ordering for D such that

xαξβ ≺ xα
′
ξβ

′
if |β| < |β′|

and xi ≺ 1 for i = 1, . . . , n. Let G = {P1, . . . , Pr} be a standard base of I
with respect to ≺. Applying the Buchberger criterion to D, we see that G is
also a standard base of I. Hence by using the division in D (see [5]), or by the
flatness of D over D, we see that for any P ∈ I, there exist Q1, . . . , Qr ∈ D
such that

P = Q1P1 + · · ·+QrPr

and ord(QiPi) ≤ ordP . Then by homogenization we get

P (h) = hν1Q
(h)
1 P

(h)
1 + · · ·+ hνrQ(h)

r P (h)
r

with νi = ordP − ord(QiPi). Hence I(h) is generated by P
(h)
1 , . . . , P (h)

r ∈ I(h).
2

Lemma 5 Let I be a left ideal of D and set I = DI. Then grV (I(h)) is
generated by grV (I

(h)) over grV (D(h)).

Proof: Let ≺ be a monomial ordering for D(h) adapted to the V -filtration such
that xi ≺ 1 for i = d + 1, . . . , n. Let G = {P1, . . . , Pr} be a standard base of
I(h) with respect to ≺. Then G is also a standard base of I(h) = D(h)I(h) with
respect to ≺ (see Theorem 3.2 of [9]). Let P be an arbitrary element of I(h).
Then by the division algorithm of Assi-Castro-Granger [3] for D(h), there exist
Q1, . . . , Qr ∈ D(h) such that

P = Q1P1 + · · ·+QrPr

with ordV (QiPi) ≤ ordV (P ). Hence σV (P ) belongs to the left ideal of D(h)

generated by {σV (P1), . . . , σV (Pr)}. This completes the proof. 2

Lemma 6 Let I be a left ideal of D and set I = DI. Then

J̃an := grV (I(h)) ∩ C{x′}[θ1, . . . , θd, h]

is generated by

J̃ := grV (I
(h)) ∩ C[x′, θ1, . . . , θd, h]

over C{x′}[θ1, . . . , θd, h].
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Proof: Let ≺ be a monomial ordering for D(h)[u, v] such that

xα∂βhjuµvν ≺ xα
′
∂β

′
hkuµ

′
vν

′
if |µ|+ |ν| < |µ′|+ |ν ′|

and xi ≺ 1 for i = 1, . . . , n, where we denote u = (u1, . . . , ud) and v =
(v1, . . . , vd). Let G̃ = {P1, . . . , Pr} be a standard base of the left ideal Ĩ of
D(h)[u, v] defined in Step 3. (Note that G̃ is not necessarily the same as in
Step 3.) Then G̃ is also a standard base of grV (D(h))[u, v]Ĩ with respect to ≺.
We can show that J̃an is generated by ψ(G̃0) with

G̃0 := G̃ ∩ grV (D(h)) = G̃ ∩D(h)

in the same way as the proof of Proposition 4.3 of [17]. By substituting 1 for
each ui and vi, we see that ψ(G̃0) is contained in grV (I

(h)). This completes
the proof. 2

Now we are ready to prove the following theorem, which implies the correctness
of the algorithms given in the preceding section.

Theorem 2 Let I be a left ideal of D and set I = DI.

(1) If b(x′, s) ∈ C{x′}[s] is a generalized regular b-function of I along Y ,
then there exists a generalized regular b-function b̃(x′, s) along Y which
belongs to C[x′, s] and is of the same degree (in s) as b(x′, s).

(2) A polynomial b(x′, s) ∈ C[x′, s] is a generalized regular b-function of I
along Y if and only if there exist a homogeneous b′(x′, s, h) ∈ C[x′, s, h]
with b′(x′, s, 0) ̸= 0 and b′(x′, s, 1) = b(x′, s), and a polynomial c(x′) ∈
C[x′] with c(0) ̸= 0 such that

c(x′)b′(x′, x1∂1 + · · ·+ xd∂d, h) ∈ grV (I
(h)).

Proof: Let J be as in Step 3 of the preceding section and set

Jan := C{x′}[s, h] ∩ grV (I(h))

with s = θ1 + · · · + θd. Then by Lemmas 4,5,6, it is easy to see that Jan is
generated by J over C{x′}[s, h]. Let ≺ be the same monomial ordering for
C[x′, s, h] as in (3) of Step 4A and G = {f1, . . . , fk} be a standard base of J
with respect to ≺. Then G is also a standard base of Jan with respect to ≺.
Set m be as in (2) of Step 4A. It follows that m is also the minimum integer
such that C{x′} ∩ ((Jan|h=0) : s

m) contains a c(x′) ∈ C{x′} with c(0) ̸= 0, or
equivalently, that sm is contained in ⟨lm≺(G)⟩. This completes the proof of
(1).

Now in order to prove (2), let b(x′, s) ∈ C[x′, s] be a (generalized) regular
b-function of I of degree m in s. Then there eixsts Q ∈ V−1(D)∩ Fm(D) such
that

b(x′, θ1 + · · ·+ θd) +Q ∈ I.
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By homogenization, there eixst a homogeneous b′(x′, s, h) ∈ C[x′, s, h] with
b′(x′, s, 1) = b(x′, s) and b(x′, s, 0) ̸= 0, and a ν ∈ N such that

b′(x′, θ1 + · · ·+ θd, h) + hνQ(h) ∈ I(h).

This implies that
b′(x′, θ1 + · · ·+ θd, h) ∈ grV (I(h))

and hence b′(x′, s, h) belongs to Jan. By division in C[x′, s, h], there exist
q1, . . . , qk, r ∈ C[x′, s, h] and a(x′) ∈ C[x′] such that a(0) = 0,

(1 + a(x′))b′(x′, s, h) = q1f1 + · · ·+ qkfk + r,

lm≺(qifi) ⪯ sm if qi ̸= 0, and lm≺(r) is not divisible by lm≺(fi) for any
i = 1, . . . , k if r ̸= 0. Since r belongs to Jan and G is a standard base of
Jan, it follows that r = 0. Thus (1+ a(x′))b′(x′, s, h) belongs to grV (I

(h)). The
converse implication of the statement (2) is obvious. 2
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M. Aroca, T. Sanchez-Giralda, J.-L. Vicente (Eds.), Géométrie algébrique et
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[6] F.J. Castro-Jiménez, N. Takayama, Singularities of the hypergeometric system
associated with a monomial curve, Trans. Amer. Math. Soc. 355 (2003) 3761–
3775.

[7] D. Cox, J. Little, D. O’Shea, Ideals, Varieties, and Algorithms, Springer-Verlag,
New York, 1991.

[8] I.M. Gel’fand, A.V. Zelevinsky, M.M. Kapranov, Hypergeometric functions and
toric varieties, Funct. Anal. Appl. 23 (1989) 94–106.

[9] M. Granger, T. Oaku, N. Takayama, Tangent cone algorithm for homogenized
differential operators, J. Symbolic Comput. 39 (2005) 417–431.

21



[10] G.M. Greuel, G. Pfister, A Singular Introduction to Commutative Algebra,
Springer, Berlin Heidelberg, 2002.

[11] M. Kashiwara, T. Kawai, On holonomic systems of micro-differential operators
III, Publ. Res. Inst. Math. Sci. 17 (1981) 813–979.

[12] M. Kashiwara, T. Oshima, Systems of differential equations with regular
singularities and their boundary value problems, Ann. of Math. 106 (1977)
145–200.
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