Algebraic and algorithmic study of some generalized functions associated with a real polynomial (or a real analytic function)

Toshinori Oaku

Tokyo Woman's Christian University

Sevilla, September 2014

Distributions (generalized functions)

Definition

Let $C_0^{\infty}(U)$ be the set of the C^{∞} functions on an open set U of \mathbb{R}^n with compact support. A distribution u on U is a linear mapping

$$u: C_0^\infty(U) \ni \varphi \longmapsto \langle u, \varphi \rangle \in \mathbb{C}$$

such that $\lim_{j\to\infty}\langle u, \varphi_j\rangle = 0$ holds for a sequence $\{\varphi_j\}$ of $C_0^\infty(U)$ if there is a compact set $K\subset U$ such that $\varphi_j=0$ on $U\setminus K$ and

$$\lim_{j\to\infty}\sup_{x\in U}|\partial^{\alpha}\varphi_{j}(x)|=0\quad\text{for any }\alpha\in\mathbb{N}^{n},$$

where $x = (x_1, \ldots, x_n)$ and $\partial^{\alpha} = \partial_1^{\alpha_1} \cdots \partial_n^{\alpha_n}$ with $\partial_j = \partial/\partial x_j$. The set of the distributions on U is denoted by $\mathcal{D}'(U)$.

Differential operators

Let \mathcal{D}_X be the sheaf of linear differential operators (of finite order) with holomorphic coefficients on $X:=\mathbb{C}^n$, and $\mathcal{D}_M:=\mathcal{D}_X|_M$ be its sheaf-theoretic restriction to $M:=\mathbb{R}^n$. These are coherent sheaves of rings on X and on M respectively. A section P of \mathcal{D}_M on an open set $U\subset M$ is written in a finite sum

$$P = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha}(x) \partial^{\alpha} \quad (a_{\alpha} \in \mathcal{A}_M(U)),$$

where $A_M := \mathcal{O}_X|_M$ denotes the sheaf of real analytic functions on M.

The derivative $\partial_k u$ of a distribution u on U with respect to x_k is defined by

$$\langle \partial_k u, \varphi \rangle = -\langle u, \partial_k \varphi \rangle$$
 for any $\varphi \in C_0^\infty(U)$.

For a C^{∞} function a on U, the product au is defined by

$$\langle au, \varphi \rangle = \langle u, a\varphi \rangle$$
 for any $\varphi \in C_0^\infty(U)$.

In particular, by these actions of the derivations and the polynomial multiplications, the sheaf \mathcal{D}' of distributions has a natural structure of left \mathcal{D}_M -module.

Example: Dirac's delta function $\delta(x)$ is the distribution defined by

$$\langle \delta(x), \varphi(x) \rangle = \varphi(0) \quad (\forall \varphi \in C_0^{\infty}(\mathbb{R})).$$

 $\delta(x)$ satisfies a holonomic system $x\delta(x)=0$.

Power product of real analytic functions as distribution

Let f_1,\ldots,f_p be real-valued real analytic functions defined on an open set $U\subset M$. We assume that the set $\{x\in U\mid f_i(x)>0\ (i=1,\ldots,p)\}$ is not empty. Then the distribution $v=(f_1)_+^{\lambda_1}\cdots(f_p)_+^{\lambda_p}$ on U is defined to be

$$\langle v, \varphi \rangle = \int_{U_+} f_1(x)^{\lambda_1} \cdots f_p(x)^{\lambda_p} \varphi(x) dx$$

with $U_+ = \{x \in U \mid f_j(x) \le 0 \quad (1 \le j \le p)\}$ for $\varphi \in C_0^\infty(U)$ if $\text{Re } \lambda_i \ge 0$ for each i.

Moreover, v, that is, $\langle v, \varphi \rangle$ for any $\varphi \in C_0^{\infty}(\mathbb{R}^n)$, is holomorphic in $(\lambda_1, \ldots, \lambda_p)$ on the domain

$$\Omega_+ := \{(\lambda_1, \dots, \lambda_p) \in \mathbb{C}^p \mid \text{Re } \lambda_i > 0 \quad (i = 1, \dots, p)\}$$

and is continuous in $(\lambda_1, \ldots, \lambda_p)$ on the closure of Ω_+ . In particular,

$$(f_1)^0_+\cdots (f_p)^0_+=Y(f_1)\cdots Y(f_p),$$

where Y(t) is the Heaviside function; i.e., Y(t) = 1 for t > 0 and Y(t) = 0 for $t \le 0$.

Functional equations

Theorem (Kashiwara)

Let f be a holomorphic function defined on an open neighborhood of $x_0 \in X$. Then there exist a germ P(s) of $\mathcal{D}_X[s]$ at x_0 , and $b_{f,x_0}(s) \in \mathbb{C}[s]$ such that

$$P(s)f^{s+1}=b_{f,x_0}(s)f^s$$

holds formally and $b_{f,x_0}(s) \neq 0$ is of minimum degree (the **Bernstein-Sato polynomial**, or the *b*-function of f at x_0).

Then $P(\lambda)f_+^{\lambda+1} = b_{f,x_0}(\lambda)f_+^{\lambda}$ holds on a neighborhood of x_0 in M.

Theorem (Kashiwara)

The roots of $b_f(s)$ are negative rational numbers.

Laurent coefficients of f_+^{λ}

Let f be a real-valued real analytic function on an open set $U \subset M$. Then by using the functional equation $b(\lambda)f_+^{\lambda} = P(\lambda)f_+^{\lambda+1}$, the distribution f_+^{λ} is extended to a $\mathcal{D}'(U)$ -valued meromorphic function on \mathbb{C} . Let $\lambda = \lambda_0$ be a (possible) pole of f_+^{λ} . Then f_+^{λ} can be expressed as a Laurent series

$$f_+^{\lambda} = \sum_{k=-1}^{\infty} (\lambda - \lambda_0)^j u_k$$

with $u_k \in \mathcal{D}'(U)$ and $l \in \mathbb{N}$. In particular, u_{-1} is called the *residue* of f_+^{λ} at λ_0 , which we denote by $\operatorname{Res}_{\lambda=\lambda_0} f_+^{\lambda}$.

Non-singular case

ullet If f=0 is non-singular, then f_+^λ has only simple poles at negative integers with

$$\operatorname{Res}_{\lambda=-k-1} f_+^{\lambda} = \frac{(-1)^k}{k!} \delta^{(k)}(f) \quad (k=0,1,2,\dots).$$

 $\delta(f)$ represents the layer (the Dirac delta function) concentrated on the hypersurface f=0,

 $\delta^{(1)}(f) = \delta'(f)$ represents the double layer (dipole),...

Cf. Gelfand-Shilov: 'Generalized Functions, Vol. 1'

Singular case

Definition

For a non-negative integer k, set

$$\begin{split} \delta_+^{(k)}(f) &:= (-1)^k k! \operatorname{Res}_{\lambda = -k - 1} f_+^{\lambda}, \\ \delta_-^{(k)}(f) &:= k! \operatorname{Res}_{\lambda = -k - 1} f_-^{\lambda} = k! \operatorname{Res}_{\lambda = -k - 1} (-f)_+^{\lambda} = (-1)^k \delta_+^{(k)}(-f). \end{split}$$

Then we have

Proposition

- (1) $f^{k+1}\delta_{\pm}^{(k)}(f) = 0 \quad (k \ge 0).$
- (2) $\frac{\partial}{\partial x_i} Y(\pm f) = \frac{\partial f}{\partial x_i} \delta_{\pm}(f)$ for $i = 1, \dots, n$.
- (3) $f \delta_{\pm}^{(k)}(f) = -k \delta_{\pm}^{(k-1)}(f) \quad (k \ge 1).$

Theorem (well-known?)

Each Laurent coefficient u_k satisfies a holonomic left \mathcal{D}_M -module.

Problems:

- Determine the annihilator $\operatorname{Ann}_{\mathcal{D}_M} u_k = \{ P \in \mathcal{D}_M \mid Pu_k = 0 \}.$
- Is it a coherent left ideal of \mathcal{D}_M ?
- If so, what is its characteristic cycle?

Remark: Set $X = \mathbb{C}$ and $M = \mathbb{R}$. Then

$$\operatorname{Ann}_{(\mathcal{D}_M)_{x_0}} Y(x) = \left\{ \begin{array}{ll} (\mathcal{D}_M)_{x_0} \partial_x & \text{if } x_0 > 0 \\ (\mathcal{D}_M)_{x_0} x \partial_x & \text{if } x_0 = 0 \\ (\mathcal{D}_M)_{x_0} & \text{if } x_0 < 0 \end{array} \right.$$

Hence $\operatorname{Ann}_{\mathcal{D}_M} Y(x)$ is not coherent as sheaf of left ideals of \mathcal{D}_M .

Normal crossing case

Let f_1, \ldots, f_m be (real-valued) real analytic functions defined on a neighborhood of $x_0 \in M$ such that $df_1 \wedge \cdots \wedge df_m \neq 0$ at x_0 . Let

$$(f_1 \cdots f_m)_+^{\lambda} = (\lambda + 1)^{-m} u_{-m} + (\lambda + 1)^{-m+1} u_{-m+k}$$

$$+ \cdots + (\lambda + 1)^{-1} u_1 + u_0 + (\lambda + 1) u_1 + \cdots$$

be the Laurent expansion about $\lambda = -1$. Let v_1, \ldots, v_n be real analytic vector fields defined on a neighborhood of x_0 which are linearly independent at x_0 and satisfy

$$v_i(f_j) = \begin{cases} 1 & \text{(if } i = j \le m) \\ 0 & \text{(otherwise)} \end{cases}$$

Theorem

For $k=0,1,\ldots,m-1$, the annihilator $\operatorname{Ann}_{(\mathcal{D}_X)_{x_0}}u_{-m+k}=\{P\in(\mathcal{D}_X)_{x_0}\mid Pu=0\}$ is generated by $f_{j_1}\cdots f_{j_{k+1}}\quad (1\leq j_1<\cdots< j_{k+1}\leq m), \\ f_1v_1-f_iv_i\quad (2\leq i\leq m),\quad v_i\quad (m+1\leq j\leq n).$

Corollary

The sheaf $\operatorname{Ann}_{\mathcal{D}_M} u_{-n+k}$ of left ideals of \mathcal{D}_M is coherent on a neighborhood of $x_0 \in M$ for each $k = 0, 1, \ldots, n-1$.

The theorem above follows from the special case below:

Theorem

Let

$$(x_1 \cdots x_n)_+^{\lambda} = (\lambda + 1)^{-n} u_{-n} + (\lambda + 1)^{-n+1} u_{-n+1} + \cdots + (\lambda + 1)^{-1} u_{-1} + u_0 + (\lambda + 1) u_1 + \cdots$$

be the Laurent expansion of the distribution $(x_1 \cdots x_n)_+^{\lambda}$ with respect to the holomorphic parameter λ about $\lambda = -1$. Then for $k = 0, 1, \ldots, n-1$, the annihilator of u_{-n+k}

$$\operatorname{Ann}_{(\mathcal{D}_M)_0} u_{-n+k} = \{ P \in (\mathcal{D}_M)_0 \mid P u_{-n+k} = 0 \}$$

is generated by

$$x_{j_1} \cdots x_{j_{k+1}} \quad (1 \leq j_1 < \cdots < j_{k+1} \leq n), \quad x_1 \partial_1 - x_i \partial_i \quad (2 \leq i \leq n).$$

Proof

We set $\mathcal{D}_0 := (\mathcal{D}_X)_0$. In one variable t, we have

$$\begin{split} t_{+}^{\lambda} &= (\lambda + 1)^{-1} \partial_{t} t_{+}^{\lambda + 1} \\ &= (\lambda + 1)^{-1} \partial_{t} \left\{ Y(t) + (\lambda + 1) \log t_{+} + \frac{1}{2} (\lambda + 1)^{2} (\log t_{+})^{2} + \cdots \right\} \\ &= (\lambda + 1)^{-1} \delta(t) + \partial_{t} \log t_{+} + \frac{1}{2} (\lambda + 1) \partial_{t} (\log t_{+})^{2} + \cdots , \end{split}$$

where $(\log t_+)^m$ is the distribution defined by the pairing

$$\langle (\log t_+)^m, \, \varphi \rangle = \int_0^\infty (\log t)^m \varphi(t) \, dt$$

for $\varphi \in C_0^{\infty}(\mathbb{R})$ and $m = 1, 2, 3, \ldots$

Let us introduce the following notations:

 \bullet For a nonnegative integer j, we set

$$h_j(t) = \begin{cases} \delta(t) & (j=0), \\ \frac{1}{j!} \partial_t (\log t_+)^j & (j \geq 1) \end{cases}$$

with $\partial_t = \partial/\partial_t$ and

$$h_{\alpha}(x) = h_{\alpha_1}(x_1) \cdots h_{\alpha_n}(x_n)$$

for
$$\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$$
 with $\mathbb{N} = \{0, 1, 2, \dots\}$.

• For a multi-index $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$, we set

$$|\alpha| = \alpha_1 + \dots + \alpha_n, \quad [\alpha] = \max\{\alpha_i \mid 1 \le i \le n\}.$$

• $S(n) = {\sigma = (\sigma_1, \dots, \sigma_n) \in {1, -1}^n \mid \sigma_1 \cdots \sigma_n = 1}.$

Since

$$(x_1\cdots x_n)_+^{\lambda}=\sum_{\sigma\in S(n)}(\sigma_1x_1)_+^{\lambda}\cdots(\sigma_nx_n)_+^{\lambda},$$

we have

$$u_{-n+k}(x) = \sum_{\sigma \in S(n)} \sum_{|\alpha|=k} h_{\alpha}(\sigma x),$$

and in particular,

$$u_{-n}(x) = \sum_{\sigma \in S(n)} \delta(\sigma_1 x_1) \cdots \delta(\sigma_n x_n) = 2^{n-1} \delta(x_1) \cdots \delta(x_n).$$

It follows that $\mathrm{Ann}_{\mathcal{D}}u_{-n}$ is generated by x_1,\ldots,x_n . This proves the assertion for k=0 since $x_1\partial_1-x_i\partial_i=\partial_1x_1-\partial_ix_i$ belongs to the left ideal of \mathcal{D}_0 generated by x_1,\ldots,x_n .

We shall prove the assertion by induction on k. Assume $k \geq 1$ and $P \in \mathcal{D}_0$ annihilates u_{-n+k} , that is, $Pu_{-n+k} = 0$. By division, there exist $Q_1, \ldots, Q_r, R \in \mathcal{D}_0$ such that

$$P = Q_1 \partial_1 x_1 + \dots + Q_n \partial_n x_n + R,$$
 $R = \sum_{\alpha_1 \beta_1 = \dots = \alpha_n \beta_n = 0} a_{\alpha, \beta} x^{\alpha} \partial^{\beta} \qquad (a_{\alpha, \beta} \in \mathbb{C}).$

Since

$$u_{-n+k}(x) = \sum_{\sigma \in S(n)} \sum_{|\alpha|=k, |\alpha|=1} h_{\alpha}(\sigma x) + \sum_{\sigma \in S(n)} \sum_{|\alpha|=k, |\alpha| \ge 2} h_{\alpha}(\sigma x), \quad (1)$$

we have

$$u_{-n+k}(x) = 2^{n-k-1}\delta(x_1)\cdots\delta(x_{n-k})h_1(x_{n-k+1})\cdots h_1(x_n)$$

= $2^{n-k-1}\delta(x_1)\cdots\delta(x_{n-k})\frac{1}{x_{n-k+1}}\cdots\frac{1}{x_n}$

on the domain $x_{n-k+1} > 0, \ldots, x_n > 0$. Hence

$$0 = Pu_{-n+k} = Ru_{-n+k}$$

$$= \sum_{\alpha_1 = \dots = \alpha_{n-k} = 0, \alpha_{n-k+1}\beta_{n-k+1} = \dots = \alpha_n\beta_n = 0} (-1)^{\beta_{n-k+1} + \dots + \beta_n}$$

$$\times \beta_{n-k+1}! \cdots \beta_n! a_{\alpha,\beta}$$

$$\times \delta^{(\beta_1)}(x_1) \cdots \delta^{(\beta_{n-k})}(x_{n-k}) x_{n-k+1}^{\alpha_{n-k+1} - \beta_{n-k+1} - 1} \cdots x_n^{\alpha_n - \beta_n - 1}$$

holds there.

This implies $a_{\alpha,\beta}=0$ if $\alpha_1=\cdots=\alpha_{n-k}=0$. In the same way, we know that $a_{\alpha,\beta}=0$ if the components of α are zero except at most k components. This implies that R is contained in the left ideal generated by $x_{j_1}\cdots x_{j_{k+1}}$ with $1\leq j_1<\cdots< j_{k+1}\leq n$. In the right-hand-side of (1), each term contains the product of at least n-k delta functions. Hence $x_{j_1}\cdots x_{j_{k+1}}$ with $1\leq j_1<\cdots< j_{k+1}\leq n$, and consequently R also, annihilates $u_{-n+k}(x)$. Hence we have

$$0 = Pu_{-n+k} = \sum_{i=1}^{n} Q_i \partial_i x_i u_{-n+k}.$$

On the other hand, since

$$\partial_i x_i (x_1 \cdots x_n)_+^{\lambda} = (x_i \partial_i + 1)(x_1 \cdots x_n)_+^{\lambda} = (\lambda + 1)(x_1 \cdots x_n)_+^{\lambda},$$

we have

$$\partial_i x_i u_{-k} = u_{-k-1}$$
 $(k \le n-1, \ 1 \le i \le n)$

and consequently

$$0 = \sum_{i=1}^{n} Q_{i} \partial_{i} x_{i} u_{-n+k} = \sum_{i=1}^{n} Q_{i} u_{-n+k-1}.$$

By the induction hypothesis, $\sum_{i=1}^{n} Q_i$ belongs to the left ideal of \mathcal{D}_0 generated by

$$x_{j_1} \cdots x_{j_k} \quad (1 \leq j_1 < \cdots < j_k \leq n), \quad x_1 \partial_1 - x_i \partial_i \quad (2 \leq i \leq n).$$

Then we have

$$P = \sum_{i=1}^{n} Q_i \partial_1 x_1 + \sum_{i=2}^{n} Q_i (\partial_i x_i - \partial_1 x_1) + R.$$

If $j_1 > 1$, we have

$$x_{j_1}\cdots x_{j_k}\partial_1 x_1=\partial_1 x_1 x_{j_1}\cdots x_{j_k}.$$

If $j_1 = 1$, let l be an integer with $2 \le l \le n$ such that $l \ne j_2, \ldots, l \ne j_k$. Then we have

$$x_{j_1} \cdots x_{j_k} \partial_1 x_1 = x_{j_2} \cdots x_{j_k} x_1 \partial_1 x_1$$

= $x_{j_2} \cdots x_{j_k} x_1 (\partial_1 x_1 - \partial_I x_I) + \partial_I x_{j_2} \cdots x_{j_k} x_1 x_I.$

We conclude that *P* belongs to the left ideal generated by

$$x_{j_1} \cdots x_{j_{k+1}} \quad (1 \leq j_1 < \cdots < j_{k+1} \leq n), \quad x_1 \partial_1 - x_i \partial_i \quad (2 \leq i \leq n).$$

Conversely it is easy to see that these generators annihilate u_{-n+k} since

$$x_1\partial_1(x_1\cdots x_n)_+^{\lambda}=x_i\partial_i(x_1\cdots x_n)_+^{\lambda}=\lambda(x_1\cdots x_n)_+^{\lambda}.$$

The characteristic cycle

For a subset J of $\{1, \ldots, n\}$, set

$$X_J := \{x = (x_1, \dots, x_n) \in X = \mathbb{C}^n \mid x_j = 0 \text{ for any } j \in J\}$$

and let $T_{X_J}^*X$ be its conormal bundle.

Theorem

Under the same assumptions as the theorem above, the characteristic cycle of $\mathcal{D}_M u_{-n+k} = \mathcal{D}_M / \mathrm{Ann}_{\mathcal{D}_M} u_{-n+k}$ is

$$\sum_{|J| \geq n-k} (k+1-n+|J|) T_{X_J}^* X$$

on a neighborhood of $M \times_X T_{X_i}^* X$.

Comparison with local cohomology

Let f(x) be holomorphic on an open set \tilde{U} of $X = \mathbb{C}^n$. The (algebraic) local cohomology group supported by f = 0 is defined to be the sheaf

$$\mathcal{H}^1_{[f=0]}(\mathcal{O}_X) = \mathcal{O}_X[f^{-1}]/\mathcal{O}_X,$$

which consists of residue classes $[af^{-k}]$ modulo \mathcal{O}_X with an analytic function a and a non-negative integer k.

Set $U = \tilde{U} \cap M$. We define an \mathcal{A}_M -homomorphism

$$\rho : \mathcal{H}^1_{[f=0]}(\mathcal{O}_X)|_U \ni [af^{-k}] \longmapsto \operatorname{Res}_{\lambda=0} af_+^{\lambda-k} \in \mathcal{D}_M'|_U$$

for $a(x) \in \mathcal{A}_M$ and $k \in \mathbb{N}$. Note that supp $\rho(u) \subset \{f = 0\}$.

Theorem

Assume

(A) For any negative integer -k, $\lambda = -k$ is at most a simple pole of f_{+}^{λ} .

Then ρ is a homomorphism of sheaves of left $\mathcal{D}_M|_U$ -modules. In particular,

$$\operatorname{Ann}_{\mathcal{D}_M} u \subset \operatorname{Ann}_{\mathcal{D}_M} \rho(u)$$

holds for any $u \in \mathcal{H}^1_{[f=0]}(\mathcal{O}_X)|_U$, where $\mathcal{D}_M := \mathcal{D}_X|_M$.

Corollary

Assume

(A') $\tilde{b}_{f,y_0}(-k)$ does not vanish for any negative integer -k and for any point y_0 of U such that $f(y_0) = 0$.

Then ρ is a homomorphism of sheaves of left \mathcal{D}_{M} -modules. In particular,

$$\operatorname{Ann}_{\mathcal{D}_M} u \subset \operatorname{Ann}_{\mathcal{D}_M} \rho(u)$$

holds for any $u \in \mathcal{H}^1_{[f=0]}(\mathcal{O}_X)|_U$.

Now let us introduce the following condition:

Condition (B):

Let f(x) be real analytic on a neighborhood of $x_0 \in M$. By a real analytic local coordinate transformation, f(x) can be written in the form

$$f(x) = c(x)(x_1^m + a_1(x')x_1^{m-1} + \cdots + a_m(x'))$$

with $m \geq 1$ and real-valued real analytic functions c(x) and $a_j(x')$ with $x' = (x_2, \ldots, x_n)$ which are defined on a neighborhood of $x_0 = (0, x'_0)$ such that $c(x_0) \neq 0$ and $a_j(x'_0) = 0$ for $1 \leq j \leq m$. Moreover, for any neighborhood V of x_0 in M there exists $y'_0 \in \mathbb{R}^{n-1}$ such that $(0, y'_0) \in V$ and the equation

$$x_1^m + a_1(y_0')x_1^{m-1} + \cdots + a_m(y_0') = 0$$

in x_1 has m distinct real roots.

Theorem

Assume (B). Then

$$\operatorname{Ann}_{(\mathcal{D}_X)_{x_0}}\rho(u)\subset\operatorname{Ann}_{(\mathcal{D}_X)_{x_0}}u$$

holds for any germ $u \in \mathcal{H}^1_{[f=0]}(\mathcal{O}_X)_{x_0}$.

Corollary

- (B) $\Rightarrow \rho$ is an injective A_M -homomorphism.
- (A) and (B) $\Rightarrow \rho$ is an injective \mathcal{D}_M -homomorphism.

Examples

Example 1

Let f_1, \ldots, f_m $(m \ge 2)$ be real analytic functions such that $df_1 \wedge \cdots \wedge df_m \ne 0$ at $x_0 \in M$. Then $f = f_1 \cdots f_m$ satisfies (B) (but not (A)). In fact $\operatorname{Ann}_{\mathcal{D}_{x_0}} \operatorname{Res}_{\lambda = -1} f_+^{\lambda}$ is generated by

$$f$$
, $f_1v_1-f_iv_i$ $(2 \leq i \leq m)$, v_j $(m+1 \leq j \leq n)$,

while $\operatorname{Ann}_{\mathcal{D}_{xn}}[1/f]$ is generated by

$$f$$
, $v_i f_i = f_i v_i + 1$ $(1 \le i \le m)$, v_j $(m+1 \le j \le n)$.

In particular, $\operatorname{Ann}_{\mathcal{D}_M} \rho([1/f]) \subsetneq \operatorname{Ann}_{\mathcal{D}_M}[1/f]$.

Example 2

 $f=x_1^2x_2^2+x_3^p$ with n=3 and an odd integer $p\geq 3$ satisfies (A) and (B). In fact, the reduced b-function $b_{f,0}(s)/(s+1)$ of f at the origin does not have integral roots (T. Yano).

By a coordinate transformation $y_1 = x_1 + x_2$, $y_2 = x_1 - x_2$, $y_3 = x_3$, f takes the form

$$f = (y_1^2 - y_2^2)^2 + y_3^p = y_1^4 - 2y_1^2y_2^2 + y_2^4 + y_3^p.$$

Hence the equation f = 0 in y_1 has four distinct real roots if and only if $y_3 < 0$ and $y_2^4 + y_3^p > 0$.

Hence we have $\operatorname{Ann}_{\mathcal{D}_M} u = \operatorname{Ann}_{\mathcal{D}_M} \rho(u)$ for any section u of $\mathcal{H}^1_{[f=0]}(\mathcal{O}_X)|_M$.

For example, if p=3, the characteristic cycle of $\mathcal{H}^1_{[f=0]}(\mathcal{O}_X)=\mathcal{D}_X[f^{-1}]$ is given by

$$2T^*_{\{x_1=x_2=x_3=0\}\setminus\{0\}}\mathbb{C}^3+T^*_{\{x_1=x_3=0\}\setminus\{0\}}\mathbb{C}^3+T^*_{\{x_2=x_3=0\}\setminus\{0\}}\mathbb{C}^3+T^*_{Y'}\mathbb{C}^3$$

with

$$Y' := \{(x_1, x_2, x_3) \mid x_1^2 x_2^2 + x_3^3 = 0\} \setminus \{(x_1, x_2, x_3) \mid x_1 x_2 = x_3 = 0\}.$$

Example 3

 $f=x_1(x_2^2+x_3^2+x_4^2)$ with n=4 and $u:=[f^{-1}]$. Then f^s satisfies a functional equation

$$\frac{1}{4}\partial_1(\partial_2^2+\partial_3^2+\partial_4^2)f^{s+1}=(s+1)^2\left(s+\frac{3}{2}\right)f^s.$$

Let

$$f_+^{\lambda} = (\lambda + 1)^{-2} v_{-2}(x) + (\lambda + 1)^{-1} v_{-1}(x) + v_0(x) + \cdots$$

be the Laurent expansion around $\lambda = -1$. Then we have

$$\begin{split} v_{-2}(x) &= \frac{1}{2} \partial_1 (\partial_2^2 + \partial_3^2 + \partial_4^2) Y(x_1) = 0, \\ v_{-1}(x) &= \frac{1}{4} \partial_1 (\partial_2^2 + \partial_3^2 + \partial_4^2) \left\{ \lim_{\lambda \to -1} \frac{\partial}{\partial \lambda} \left(\left(\lambda + \frac{3}{2} \right)^{-1} f_+^{\lambda + 1} \right) \right\} \\ &= \frac{1}{4} \partial_1 (\partial_2^2 + \partial_3^2 + \partial_4^2) \left\{ -4 Y(x_1) \right. \\ &+ 2 Y(x_1) (\log x_1 + \log(x_2^2 + x_3^2 + x_4^2)) \\ &= \delta(x_1) (x_2^2 + x_3^2 + x_4^2)^{-1}. \end{split}$$

Thus $\lambda = -k$ is a simple pole of f_+^{λ} for any positive integer k. Hence (A) is satisfied with $U = M = \mathbb{R}^4$.

 $\mathrm{Ann}_{\mathcal{D}_X} u$ is generated by

$$x_1(x_2^2 + x_3^2 + x_4^2), \quad x_1\partial_1 + 1, \quad x_2\partial_2 + x_3\partial_3 + x_4\partial_4 + 2, x_2\partial_3 - x_3\partial_2, \quad x_2\partial_4 - x_4\partial_2, \quad x_3\partial_4 - x_4\partial_3.$$

 $\operatorname{Ann}_{\mathcal{D}_M} \rho(u)$ is generated by

$$x_1$$
, $x_2\partial_2 + x_3\partial_3 + x_4\partial_4 + 2$, $x_2\partial_3 - x_3\partial_2$, $x_2\partial_4 - x_4\partial_2$, $x_3\partial_4 - x_4\partial_3$.

Hence $\operatorname{Ann}_{\mathcal{D}_M} u \subsetneq \operatorname{Ann}_{\mathcal{D}_M} \rho(u)$.

The characteristic cycle of $\mathcal{H}^1_{[f=0]}(\mathcal{O}_X) = \mathcal{D}_X u$ is

$$\begin{split} T^*_{\{0\}}\mathbb{C}^4 + T^*_{\{x_2 = x_3 = x_4 = 0\} \setminus \{0\}}\mathbb{C}^4 + T^*_{\{x_1 = x_2^2 + x_3^2 + x_4^2 = 0\} \setminus \{0\}}\mathbb{C}^4 \\ + T^*_{\{x_1 = 0, x_2^2 + x_3^2 + x_4^2 \neq 0\}}\mathbb{C}^4 + T^*_{\{x_2^2 + x_3^2 + x_4^2 = 0, x_1 \neq 0, (x_2, x_3, x_4) \neq (0, 0, 0)\}}\mathbb{C}^4, \end{split}$$

while that of $\mathcal{D}_M \rho(u)$ is

$$T_{\{0\}}^*\mathbb{C}^4 + T_{\{x_1=x_2^2+x_3^2+x_4^2=0\}\setminus\{0\}}^*\mathbb{C}^4 + T_{\{x_1=0,x_2^2+x_3^2+x_4^2\neq0\}}^*\mathbb{C}^4.$$

Normal forms satisfying (B) at 0

Among the normal forms of real hypersurface singularities in $M = \mathbb{R}^n$, at least the following ones satisfy the condition (B) at the origin, where $q(x_k, \ldots, x_n)$ denotes a non-degenerate quadratic form in the variables x_k, \ldots, x_n and a is a real constant:

•
$$x_1^2 + \cdots + x_p^2 - x_{p+1}^2 - \cdots - x_n^2$$
 $(1 \le p \le n-1)$,

•
$$D_4^-: x_1^2x_2-x_2^3+q(x_3,\ldots,x_n),$$

•
$$E_7: x_1^3 + x_1x_2^3 + q(x_3, \ldots, x_n),$$

•
$$P_8^{\pm}$$
: $x_1^3 + ax_1^2x_3 \pm x_1x_3^2 + x_2^2x_3 + q(x_4, \dots, x_n)$ with $-a^2 \pm 4 < 0$,

•
$$J_{10}^{\pm}$$
: $x_1^3 + ax_1^2x_2^2 \pm x_1x_2^4 + q(x_3, \dots, x_n)$ with $-a^2 \pm 4 < 0$,

•
$$J_{10+k}^{\pm}$$
: $x_1^3 \pm x_1^2 x_2^2 + a x_2^{6+k} + q(x_3, \ldots, x_n)$ with $k \ge 1$ and $(\pm a < 0 \text{ or } k \text{: odd})$,

- P_{8+k}^{\pm} : $x_1^3 \pm x_1^2 x_3 + x_2^2 x_3 + a x_3^{k+3} + q(x_4, \dots, x_n)$ with $k \ge 1$ and $a \ne 0$ and $(\pm a < 0 \text{ or } k: \text{ odd})$,
- $R_{l,m}$: $x_1(x_1^2 + x_2x_3) \pm x_2^l \pm ax_3^m + q(x_4, \dots, x_n)$ with $a \neq 0, m \geq l \geq 5$,
- \tilde{R}_m^- : $x_1(-x_1^2+x_2^2+x_3^2)+ax_2^m+q(x_4,\ldots,x_n)$ with $a\neq 0,\ m\geq 5,$
- E_{12} : $x_1^3 + x_2^7 \pm x_3^2 + ax_1x_2^5 + q(x_4, \dots, x_n)$,
- E_{13} : $x_1^3 + x_1x_2^5 \pm x_3^2 + ax_2^8 + q(x_4, \ldots, x_n)$,
- $E_{14}: x_1^3 \pm x_2^8 \pm x_3^2 + ax_1x_2^6 + q(x_4, \ldots, x_n),$
- $Z_{11}: x_1^3x_2+x_2^5\pm x_3^2+ax_1x_2^4+q(x_4,\ldots,x_n),$
- Z_{12} : $x_1^3x_2 + x_1x_2^4 \pm x_3^2 + ax_1^2x_2^3 + q(x_4, \ldots, x_n)$,
- Z_{13} : $x_1^3x_2 \pm x_2^6 \pm x_3^2 + ax_1x_2^5 + q(x_4, \ldots, x_n)$,
- W_{12} : $\pm x_1^4 + x_2^5 \pm x_3^2 + ax_1^2x_2^3 + q(x_4, \dots, x_n)$,
- W_{13} : $\pm x_1^4 + x_1 x_2^4 \pm x_3^2 + a x_2^6 + q(x_4, \ldots, x_n)$,
- $Q_{11}: x_1^3 + x_2^2 x_3 \pm x_1 x_3^3 + a x_2^5 + g(x_4, \dots, x_n).$

Algorithm

Let f be a real polynomial in $x = (x_1, \ldots, x_n)$ and D_n be the n-th Weyl algebra; i.e., the ring of differential operators with polynomial coefficients.

Aim

Compute a holonomic system for the Laurent coefficient u_k $(k \in \mathbb{Z})$ for f_+^{λ} about λ_0 . (i.e. to find a left ideal $I \subset \operatorname{Ann}_{D_n} u_k$ such that D_n/I is holonomic.)

Step 1

- (1) Take $m \in \mathbb{N} = \{0, 1, 2, \dots\}$ such that $\operatorname{Re} \lambda_0 + m \geq 0$.
- (2) Find a functional equation $b_f(s)f^s = P(s)f^{s+1}$.
- (3) $Q(s) := P(s)P(s+1)\cdots P(s+m-1),$ $b(s) := b_f(s)b_f(s+1)\cdots b_f(s+m-1).$ Then we have $b(\lambda)f_+^{\lambda} = Q(\lambda)f_+^{\lambda+m}.$

Step 2

Factorize b(s) as $b(s) = c(s)(s - \lambda_0)^l$ with $c(\lambda_0) \neq 0$ and $l \in \mathbb{N}$. Then we have

$$f_+^{\lambda} = (\lambda - \lambda_0)^{-l} c(\lambda)^{-1} Q(\lambda) f_+^{\lambda+m} = \sum_{k=-l}^{\infty} (\lambda - \lambda_0)^k u_k(x),$$

where $u_k(x) \in \mathcal{D}'(\mathbb{R}^n)$ are given by

$$u_k(x) = \frac{1}{(l+k)!} \left[\left(\frac{\partial}{\partial \lambda} \right)^{l+k} (c(\lambda)^{-1} Q(\lambda) f_+^{\lambda+m}) \right]_{\lambda = \lambda_0}$$
$$= \sum_{j=0}^{l+k} Q_j (f_+^{\lambda_0 + m} (\log f)^j)$$

with
$$Q_j := rac{1}{j!(l+k-j)!} \left[\left(rac{\partial}{\partial \lambda}
ight)^{l+k-j} (c(\lambda)^{-1}Q(\lambda))
ight]_{\lambda=\lambda_0}.$$

Algorithm (continued)

Step 3

Compute a holonomic system for $(f_+^{\lambda}, \dots, f_+^{\lambda}(\log f)^{k+l})$ as follows:

- (1) Compute a set G_0 of generators of the annihilator $\mathrm{Ann}_{D_n[s]}f^s$.
- (2) Let $e_1=(1,0,\ldots,0), \cdots, e_{k+l}=(0,\ldots,0,1)$ be the canonical basis of \mathbb{Z}^{k+l+1} . For each $P(s)\in G_0$ and an integer j with $0\leq j\leq k+l$, set

$$P^{(j)}(s) := \sum_{i=0}^{j} {j \choose i} \frac{\partial^{j-i} P(s)}{\partial s^{j-i}} e_{i+1} \in (D_n[s])^{k+l+1}.$$

(3) Set $G_1 := \{ P^{(j)}(\lambda_0 + m) \mid P(s) \in G_0, 0 \le j \le k + l \}.$

The output G_1 of Step 3 generates a left D_n -module N such that $(D_n)^{k+l+1}/N$ is holonomic and

$$P_0 f_+^{\lambda_0 + m} + P_1 (f_+^{\lambda_0 + m} \log f) + \dots + P_{k+l} (f_+^{\lambda_0 + m} (\log f)^{k+l}) = 0$$

holds for any $P = (P_0, \ldots, P_{k+l}) \in G_1$.

Remark Step 3 is essentially differentiation of the equations

$$P(s)f_+^s = 0 \quad (P(s) \in \operatorname{Ann}_{D_n[s]}f^s)$$

with respect to s.

Algorithm (the final step)

Step 4

Let N be the left D_n -submodule of $(D_n)^{l+k+1}$ generated by the output G_1 of Step 3 and let $Q_0, Q_1, \ldots, Q_{l+k}$ be the operators computed in Step 2. Compute a set G_2 of generators of the left ideal

$$I := \{ P \in D_n \mid (PQ_0, PQ_1, \dots, PQ_{l+k}) \in N \}$$

by using quotient or syzygy computation.

Output

The ideal I annihilates the distribution u_k and D_n/I is holonomic.

Holonomicity of the output

Theorem

Let I be the left ideal of D_n computed by the preceding algorithm. Then D_n/I is holonomic.

Sketch of the proof:

(1) The left D_n -module $(D_n)^{k+l+1}/N$ is holonomic. In fact, set

$$N_j := \{(P_0, \dots, P_j, 0, \dots, 0) \in N\}.$$

Then $N_j/N_{j-1} \simeq \operatorname{Ann}_{D_n[s]} f^s/(s-\lambda_0-m) \operatorname{Ann}_{D_n[s]} f^s$ is holonomic.

(2) D_n/I with $I:=\{P\in D_n\mid (PQ_0,PQ_1,\ldots,PQ_{l+k})\in N\}$ is holonomic since the map $h:D_n/I\to (D_n)^{k+l+1}/N$ defined by $h([P])=(PQ_0,\ldots,PQ_{k+l+1})$ is an injective homomorphism of left D_n -modules.

An example: $f = x_1^2 - x_2^2$

- The functional equation is $(\lambda + 1)^2 f_+^{\lambda} = \frac{1}{4} (\partial_1^2 \partial_2^2) f_+^{\lambda+1}$ $\Rightarrow f_+^{\lambda}$ has poles (of order at most 2) only at $\lambda = -1, -2, -3, \dots$
- ullet The Laurent expansion around $\lambda=-1$ is

$$f_+^\lambda=(\lambda+1)^{-2}u_{-2}(x)+(\lambda+1)^{-1}u_{-1}(x)+u_0(x)+(\lambda+1)u_1(x)+\cdots$$
 with

$$u_{-2}(x) = \frac{1}{4}(\partial_1^2 - \partial_2^2)f_+^0 = \frac{1}{4}(\partial_1^2 - \partial_2^2)Y(f),$$

$$u_{-1}(x) = \frac{1}{4}(\partial_1^2 - \partial_2^2)(Y(f)\log f).$$

Differentiating

$$(x_2\partial_1 + x_1\partial_2)f_+^s = (x_1\partial_1 + x_2\partial_2 - 2s)f_+^s = 0$$

with respect to s, we get

$$(x_2\partial_1 + x_1\partial_2)f_+^s = 0, \quad (x_2\partial_1 + x_1\partial_2)(f_+^s \log f) = 0,$$

 $2f^s + (x_1\partial_1 + x_2\partial_2 - 2s)(f_+^s \log f) = 0,$
 $(x_1\partial_1 + x_2\partial_2 - 2s)f_+^s = 0.$

Hence $(Y(f), Y(f) \log f)$ satisfies a holonomic system

$$(x_2\partial_1 + x_1\partial_2)Y(f) = 0, \quad (x_2\partial_1 + x_1\partial_2)(Y(f)\log f) = 0,$$

 $2Y(f) + (x_1\partial_1 + x_2\partial_2)(Y(f)\log f) = 0,$
 $(x_1\partial_1 + x_2\partial_2)Y(f) = 0.$

Let N be the left D_2 -submodule of D_2^2 genererated by these vectors of differential operators. Then

$$P \cdot (\partial_1^2 - \partial_2^2, 0) \in N \quad \Rightarrow \quad Pu_{-2} = 0,$$

$$P \cdot (0, \partial_1^2 - \partial_2^2) \in N \quad \Rightarrow \quad Pu_{-1} = 0.$$

By module quotient (via intersection or syzygy computation in D_2)

u_{−2} satisfies

$$x_1u_{-2}(x) = x_2u_{-2}(x) = 0$$

Hence $u_{-2}(x) = c\delta(x)$ ($\exists c \in \mathbb{C}$).

u_{−1} satisfies

$$(x_2\partial_1+x_1\partial_2)u_{-1}(x)=(x_1^2-x_2^2)u_{-1}(x)=0.$$

(This coincides with $Ann_{D_2}u_{-1}$.)