Plan of the course

1st lecture **Introduction**: Aim and an example **Chapter 1**: Basics of *D*-modules

2nd lecture **Chapter 2:** Gröbner bases in the ring of differential operators

Chapter 3: Distributions as generalized functions

3rd lecture **Chapter 4:** *D*-module theoretic integration algorithm **Chapter 5:** Integration over the domain defined by polynomial inequalities

5. Integration over the domain defined by polynomial inequalities

5.1 Powers of polynomials and tensor products

Let K be a field of characteristic zero and $f_1, \ldots, f_p \in K[x] = K[x_1, \ldots, x_n]$ be nonzero polynomials. Let us consider a 'function' $f_1^{s_1} \cdots f_p^{s_p}$ with indeterminates (as parameters) $s = (s_1, \ldots, s_p)$. More precisely, set

$$\mathcal{L}:=K[x,(f_1\cdots f_p)^{-1},s]f_1^{s_1}\cdots f_p^{s_p},$$

which is regarded as a free $K[x, (f_1 \cdots f_p)^{-1}, s]$ -module generated by the 'symbol' $f_1^{s_1} \cdots f_p^{s_p}$. Then \mathcal{L} is a left $D_n[s]$ -module with the natural derivations

$$\partial_{x_i}(f_1^{s_1}\cdots f_p^{s_p})=\sum_{j=1}^p s_j\frac{\partial f_j}{\partial x_i}f_j^{-1}f_1^{s_1}\cdots f_p^{s_p} \qquad (i=1,\ldots,n).$$

July 1–4, 2015, MSJ-SI in Osaka 2 /

Tensor product with a holonomic module

Denote $f^s = f_1^{s_1} \cdots f_p^{s_p}$.

Let $M=D_nu=M/I$ be a holonomic left D_n -module generated by an element $u\in M$ with the left ideal $I=\mathrm{Ann}_{D_n}u$.

Let us consider the tensor product

$$M \otimes_{K[x]} \mathcal{L}$$
,

which has a natural strucutre of left $D_n[s]$ -module with the derivations

$$\partial_{x_i}(u'\otimes v)=(\partial_{x_i}u')\otimes v+u'\otimes(\partial_{x_i}v)\quad (u'\in M,\ v\in\mathcal{L},\ i=1,\ldots,n).$$

Toshinori Oaku (Tokyo Woman's Christian UAlgorithms for *D*-modules, integration, and ge

Our aim is to compute the annihilator (in $D_n[s]$) of $u \otimes f^s \in M \otimes_{K[x]} \mathcal{L}$.

For this purpose, define shift (difference) operators E_j by

$$E_j: \mathcal{L} \ni a(x, s_1, \dots, s_p)f^s \longmapsto a(x, s_1, \dots, s_j + 1, \dots, s_p)f_jf^s \in \mathcal{L}$$

for $j=1,\ldots,p$, which are bijective with the inverse shifts $E_j^{-1}:\mathcal{L}\to\mathcal{L}.$

Toshinori Oaku (Tokyo Woman's Christian UAlgorithms for D-modules, integration, and go

Mellin transform

Let $D_n\langle s, E, E^{-1}\rangle$ be the D_n -algebra generated by $s=(s_1,\ldots,s_p)$, $E=(E_1,\ldots,E_p)$, and $E^{-1}=(E_1^{-1},\ldots,E_p^{-1})$.

We introduce new variables $t=(t_1,\ldots,t_p)$ and the associated derivations $\partial_t=(\partial_{t_1},\ldots,\partial_{t_p})$. Let D_{n+p} be the ring of differential operators with respect to the variables $(x,t)=(x_1,\ldots,x_n,t_1,\ldots,t_p)$.

Let $\mu:D_{n+p}\to D_n\langle s,E,E^{-1}\rangle$ be the D_n -algebra homomorphism (Mellin transform) of D_n defined by

$$\mu(t_j) = E_j, \quad \mu(\partial_{t_j}) = -s_j E_j^{-1}.$$

This homomorphism is well-defined since

$$\mu(\partial_{t_i} t_i - t_i \partial_{t_i}) = \mu(\partial_{t_i}) \mu(t_i) - \mu(t_i) \mu(\partial_{t_i})$$

= $-s_i E_{s_i}^{-1} E_i - E_{s_i} (-s_i) E_i^{-1} = 1.$

July 1-4, 2015, MSJ-SI in Osaka 5 /

Toshinori Oaku (Tokyo Woman's Christian UAlgorithms for D-modules, integration, and go

Since μ is injective, we can regard $E\langle s, E, E^{-1}\rangle$ as a subring of D_{n+p} through μ . With this identification, we have

$$t_j = E_j, \qquad \partial_{t_j} = -s_j E_j^{-1}, \qquad s_j = -\partial_{t_j} t_j = -t_j \partial_{t_j} - 1.$$

Hence we have inclusions

$$D_n[s] \subset D_n\langle s, E \rangle \subset D_{n+p} \subset D_n\langle s, E, E^{-1} \rangle$$

of rings. We will be mostly concerned with $D_n[s]$ and D_{n+p} .

• $M \otimes_{K[x]} \mathcal{L}$ is a left $D_n \langle s, E, E^{-1} \rangle$ -module, and cosequently left modules over the subrings above. (s and E act only on \mathcal{L} .)

Algorithm (a holonomic D_{n+p} -module for $u \otimes f^s$)

Input: A set G_0 of generators of I with $M = D_n/I$ and nonzero polynomials $f_1, \ldots, f_p \in K[x]$.

For
$$P = P(x, \partial_{x_1}, \dots, \partial_{x_n}) \in G_0$$
, set

$$\tau(P) := P\left(x, \partial_{x_1} + \sum_{j=1}^{p} \frac{\partial f_j}{\partial x_1} \partial_{t_j}, \dots, \partial_{x_n} + \sum_{j=1}^{p} \frac{\partial f_j}{\partial x_n} \partial_{t_j}\right).$$

This substitution is well-defined in the ring D_{n+p} since the operators which are substituted for $\partial_{x_1}, \ldots, \partial_{x_n}$ commute with each other.

Output: $G := \{ \tau(P) \mid P \in G_0 \} \cup \{ t_j - f_j(x) \mid j = 1, \dots, p \}$ generates a left ideal J of D_{n+p} such that $J \subset \operatorname{Ann}_{D_{n+p}} u \otimes f^s$ and D_{n+p}/J is holonomic.

July 1–4, 2015, MSJ-SI in Osaka

Case M = K[x]

In particular, setting M = K[x] with u = 1, this gives the left ideal J of D_{n+p} generated by

$$\partial_{x_i} + \sum_{i=1}^{p} \frac{\partial f_j}{\partial x_i} \partial_{t_j} \quad (i = 1, \dots, n), \quad t_j - f_j \quad (j = 1, \dots, m),$$

which annihilates f^s in \mathcal{L} .

Toshinori Oaku (Tokyo Woman's Christian UAlgorithms for D-modules, integration, and go

Sketch of the proof of the correctness

In view of the equality

$$\left(\partial_{x_i} + \sum_{j=1}^{p} \frac{\partial f_j}{\partial x_i} \partial_{t_j}\right) (u \otimes f^s)$$

$$= (\partial_{x_i} u) \otimes f^s + u \otimes \left(\partial_{x_i} + \sum_{j=1}^{p} \frac{\partial f_j}{\partial x_i} \partial_{t_j}\right) f^s$$

$$= (\partial_{x_i} u) \otimes f^s + u \otimes \left(\partial_{x_i} + \sum_{j=1}^{p} (-s_j) f_j^{-1} \frac{\partial f_j}{\partial x_i}\right) f^s$$

$$= (\partial_{x_i} u) \otimes f^s$$

in $M \otimes_{K[x]} \mathcal{L}$, we have, for $j = 1, \ldots, p$,

$$\tau(P)(u\otimes f^s)=(Pu)\otimes f^s=0,\quad (t_j-f_j)(u\otimes f^s)=u\otimes (t_j-f_j)f^s=0.$$

Hence J annihilates $u \otimes f^s$ in $M \otimes_{K[x]} \mathcal{L}$.

Let us show that D_{n+p}/J is holonomic. Since D_n/I is holonomic, its characteristic variety $\operatorname{Char}(D_n/I)$ is an *n*-dimensional algebraic set of K^{2n} . By the definition, we have

$$\operatorname{Char}(D_{n+p}/J)$$

$$\subset \left\{ (x,t,\xi,\tau) \in K^{2(n+p)} \mid \sigma(P)\left(x,\xi_1 + \sum_{j=1}^p \frac{\partial f_j}{\partial x_1} \tau_j, \dots \right) = 0 \right.$$

$$\left(\forall P \in I \right), \quad t_j = f_j(x) \; (j=1,\dots,p) \right\}$$

$$= \left\{ (x,t,\xi,\tau) \in K^{2(n+p)} \mid \left(x,\xi_1 + \sum_{j=1}^p \frac{\partial f_j}{\partial x_1} \tau_j, \dots \right) \in \operatorname{Char}(D_n/I), \right.$$

$$t_j = f_j(x) \; (j=1,\dots,p) \right\}.$$

Since the set on the last line is in one-to-one correspondence with the set $\operatorname{Char}(D_n/I) \times \mathbb{C}^p$, the dimension of $\operatorname{Char}(D_{n+p}/J)$ is n+p, which implies that D_{n+p}/J is a holonomic module. This completes the proof.

Next aim is to compute a $D_n[s]$ -module for $u \otimes f^s$.

Algorithm (intersection with the subring $D_n[s]$)

Input: A set G_0 of generators of a left ideal J of D_{n+p} . **Output:** A set G of generators of the left ideal $J \cap D_n[s]$ of $D_n[s]$.

- 1. Introducing new variables u_j , v_j for $j=1,\ldots,p$, let $h(P)\in D_{n+p}[u]$ be the multi-homogenization of $P\in D_{n+p}$; i.e., h(P) is homogeneous with respect to the weight -1 for t_j and u_j , and 1 for ∂_{t_j} , for each j.
- 2. Let N be the left ideal of $D_{n+p}[u, v]$ generated by the set

$$\{h(P) \mid P \in G_0\} \cup \{1 - u_i v_i \mid j = 1, \dots, p\}.$$

3. Compute a set G_1 of generators of the ideal $N \cap D_{n+p}$ by eliminating u, v via an appropriate Gröbner basis.

July 1–4, 2015, MSJ-SI in Osaka 12 /

4. Since each element P of G_1 is multi-homogeneous without u, v, there exist a monomial S in t, ∂_t and an operator $Q(s) \in D_n[s]$ such that

$$SP = Q(-\partial_{t_1}t_1,\ldots,-\partial_{t_\rho}t_\rho).$$

Let G be the set of such Q for each $P \in G_1$.

By using the two algorithms above, we get a left $D_n[s]$ -module for $u \otimes f^s$ (especially for $f^s \in \mathcal{L}$).

Powers of polynomials as distributions

From now on, let us assume $K = \mathbb{C}$ and $f_1, \ldots, f_p \in \mathbb{R}[x]$. Set

$$\Omega:=\{(z_1,\ldots,z_p)\in\mathbb{C}^p\mid \operatorname{Re} z_1>0,\ldots,\operatorname{Re} z_p>0\}.$$

We define the local integrable function $(f_i)_+^{\lambda_j}$ on \mathbb{R}^n by

$$f_j(x)_+^{\lambda_j} = \left\{ egin{array}{ll} f_j(x)^{\lambda_j} & ext{if } f_j(x) > 0 \\ 0 & ext{otherwise} \end{array} \right.$$

for $\lambda_i \in \mathbb{C}$ with nonnegative real part $\operatorname{Re} \lambda_i \geq 0$. Their product $f_+^s := (f_1)_+^{\lambda_1} \cdots (f_n)_+^{\lambda_p}$ is a locally integrable function on \mathbb{R}^n if $(\lambda_1,\ldots,\lambda_n)$ belongs to the closure $\overline{\Omega}$ of Ω .

Let v = v(x) be a distribution defined on an open set U of \mathbb{R}^n . Let I be a left ideal of D_n which annihilates v(x) such that $M := D_n/I$ is holonomic. Set $M = M/I = D_n u$ with $u = \overline{1}$ and $\mathcal{L} = K[x, (f_1 \cdots f_p)^{-1}, s]f^s$ as before with $K = \mathbb{C}$.

Theorem

Let v(x) be a complex-valued C^{∞} function on an open set $U \subset \mathbb{R}^n$ such that

$$U\supset \{x\in\mathbb{R}^n\mid f(x)\geq 0\quad (j=1,\ldots,p)\}.$$

Assume that v(x) is holonomic; i.e, there exists a left ideal of I such that I annihilates v(x) and M/I is holonomic. Let J be the left ideal of $D_n[s]$ obtained by the preceding two algorithms. Then for any $\lambda = (\lambda_1, \ldots, \lambda) \in \overline{\Omega}$, $J(\lambda) := \{P(\lambda) \mid P(s) \in J\}$ annihilates $v(x)f_+^{\lambda}$ and $D_n/J(\lambda)$ is holonomic.

July 1–4, 2015, MSJ-SI in Osaka 15 /

Especially, $D_n/J(0)$ is a holonomic system for $v(x)Y(f_1(x))\cdots Y(f_p(x))$. Combined with the integration algorithm, this gives us an algorithm to compute a holonomic system for

$$v(x_1,...,x_{n-d}) = \int_{D(x_1,...,x_{n-d})} u(x_1,...,x_n) dx_{n-d+1} \cdots dx_n,$$

$$D(x_1,...,x_{n-d})$$

$$:= \{(x_{n-d+1},...,x_n) \in \mathbb{R}^d \mid f_j(x_1,...,x_n) \ge 0 \quad (1 \le j \le p)\}.$$

Sketch of the proof of Theorem

Let $P(s) \in J$. Then $P(s)(u \otimes f^s) = 0$ holds in $M \otimes \mathcal{L}$. This does not necessarily imlies $P(\lambda)(v(x)f_+^{\lambda}) = 0$ since we used the inverse shift E_j^{-1} with $E_j^{-1}f^s = f_j^{-1}f^s$ in order to derive a holonomic system for $u \otimes f^s$. However, we can deduce $P(\lambda)(v(x)f_+^{\lambda}) = 0$ for any $\lambda \in \overline{\Omega}$ by using the unique continuation property with respect to the holomorphic parameters λ .

July 1–4, 2015, MSJ-SI in Osaka 16 /

For example, let $u(x) = u(x_1, ..., x_n)$ be a C^{∞} holonomic function on $V \times \mathbb{R}$ with an open set V of \mathbb{R}^{n-1} . Set $x' = (x_1, ..., x_{n-1})$. Then the indefinite integral

$$v(x):=\int_0^{x_n}u(x',t)\,dt=\int_{\mathbb{R}}u(x',t)Y(t)Y(x_n-t)\,dt$$

is a holonomic function.

Example (posed by A. Takemura)

Set $D(t) := \{(x, y) \in \mathbb{R}^2 \mid x^3 + y^3 \le t\}$, then the integral

$$v(t) = \int_{D(t)} e^{-x^2 - y^2} dx dy = \int_{\mathbb{R}^2} e^{-x^2 - y^2} Y(t - x^3 - y - 3) dx dy.$$

satisfies the ordinary differential equation Pv(t)=0 with

$$P = 729t^{3}\partial_{t}^{7} + 6561t^{2}\partial_{t}^{6} + 12555t\partial_{t}^{5} + (648t^{2} + 3240)\partial_{t}^{4} + 1944t\partial_{t}^{3} + 480\partial_{t}^{2} + 128t\partial_{t}.$$

Toshinori Oaku (Tokyo Woman's Christian UAlgorithms for D-modules, integration, and ${f g}$

Exercise 1 (for beginners)

- (1) Find a holonomic system for the function $e^{tx-t^3}=\exp(tx-t^3)$. Confirm that it is holonomic. (Hint: Differentiate the function with respect to x and t. See pages 43–44 of Oaku 1 for the characterisic variety.)
- (2) Find a holonomic system for the distribution $e^{tx-t^3}Y(t)$. Confirm that it is holonomic. (Hint: One method is to apply the operators of (1) to the distribution and kill the delta function as in the example in Introduction (Oaku 1).)
- (3) Find a holonomic system, i.e., a linear ordinary differential equation for

$$v(x) := \int_0^\infty e^{tx-t^3} dt = \int_0^\infty e^{tx-t^3} Y(t) dt.$$

(Hint: Mimic the example on page 7 of Oaku 4.)

Exercise 2 (for specialists)

Deduce a linear differential equation (in x) for

$$v(x; a, b) := \int_0^1 e^{tx} t^a (1-t)^b dt$$

regarding a, b as parameters.

Beginners do not stay beginners forever.

(from the preface of a book by D. Eisenbud and J. Harris)