Plan of the course

1st lecture **Introduction**: Aim and an example **Chapter 1**: Basics of *D*-modules

2nd lecture **Chapter 2:** Gröbner bases in the ring of differential operators

Chapter 3: Distributions as generalized functions

3rd lecture **Chapter 4:** *D*-module theoretic integration algorithm **Chapter 5:** Integration over the domain defined by polynomial inequalities

4. D-module theoretic integration algorithm

4.1. Integration as an operation on D-modules

Let D_{n+p} be the ring of differential operators in the variables (x, t) with $x = (x_1, \ldots, x_n)$ and $t = (t_1, \ldots, t_d)$. Let $\pi: K^{n+d} \ni (x, t) \longmapsto x \in K^n$ be the projection.

The *integral* of a left D_{n+d} -module M along the fibers of π , or the direct image by π , is defined by

$$\pi_*M:=M/(\partial_{t_1}M+\cdots+\partial_{t_d}M).$$

This is a left D_n -module since any element of D_n commutes with ∂_{t_j} .

Toshinori Oaku (Tokyo Woman's Christian U $\mathsf{Algorithms}$ for D-modules, integration, and $\mathsf{goledom}$

For the sake of simplicity, let us assume that M is generated by a single element $u \in M$ as left D_{n+d} -module. Let [u] be the residue class of u in π_*M . Then π_*M is generated by $\{t^{\gamma}[u] \mid \gamma \in \mathbb{N}^d\}$ over D_n .

Now assume $K = \mathbb{C}$ and let φ be an element of $\operatorname{Hom}_{\mathcal{D}_{n+d}}(M, \mathcal{D}'\mathcal{E}'(U))$. Then $f := \varphi(u)$ belongs to $\mathcal{D}'\mathcal{E}'(U)$.

Define a \mathbb{C} -homomorphism $\varphi': M \to \mathcal{D}'(U)$ by

$$\varphi'(Pu) = \int_{\mathbb{R}^d} Pf(x,t) dt \qquad (\forall P \in D_{n+d}).$$

This is well-defined since Pu = 0 in M implies Pf = 0 in $\mathcal{D}'\mathcal{E}'(U)$.

Note that φ' is D_n -linear by differentiation under the integral sign.

For any $P \in D_n$, $\varphi \in C_0^{\infty}(U)$, and $1 \le j \le d$, we have

$$\left\langle \int_{\mathbb{R}^d} \partial_{t_j} Pf(x,t) dt, \ \varphi(x) \right\rangle = \left\langle \partial_{t_j} Pf(x,t), \ \varphi(x) 1(t) \right\rangle$$
$$= -\left\langle Pf(x,t), \ \partial_{t_j} (\varphi(x) 1(t)) \right\rangle = 0.$$

Hence φ' induces

$$\pi_*(\varphi) \in \operatorname{Hom}_{D_n}(\pi_*M, \mathcal{D}'(U)).$$

In conclusion, we have a \mathbb{C} -linear map

$$\pi_*$$
: $\operatorname{Hom}_{D_{n+d}}(M, \mathcal{D}'\mathcal{E}'(U)) \longrightarrow \operatorname{Hom}_{D_n}(\pi_*M, \mathcal{D}'(U)).$

Toshinori Oaku (Tokyo Woman's Christian UAlgorithms for D-modules, integration, and ge

The argument so far works with $\mathcal{D}'\mathcal{E}'(U)$ replaced by $\mathcal{ES}(U)$, and also by $\mathcal{ES}(U) + \mathcal{D}'\mathcal{E}'(U)$ giving a \mathbb{C} -linear map

$$\pi_* \; : \; \operatorname{Hom}_{\mathcal{D}_n}(M, \, \mathcal{ES}(U) + \mathcal{D}'\mathcal{E}'(U)) \longrightarrow \operatorname{Hom}_{\mathcal{D}_{n-d}}(\pi_*(M), \mathcal{D}'(U)).$$

This means that for a solution in $\mathcal{DS}(U) + \mathcal{D'E'}(U)$ of a system M of differential equations, its integral with respect to t satisfies the system π_*M .

The generators $t^{\gamma}[u]$ of π_*M with $\gamma' \in \mathbb{N}^d$ are sent by $\pi_*(\varphi)$ to

$$\pi_*(\varphi)(t^{\gamma}[u]) = \int_{\mathbb{R}^d} t^{\gamma} f(x,t) dt \in \mathcal{D}'(U).$$

Toshinori Oaku (Tokyo Woman's Christian UAlgorithms for D-modules, integration, and go

Theorem (Bernstein, Kashiwara)

If M is a holonomic D_n -module, then π_*M is a holonomic D_n -module. In particular, π_*M is finitely generated over D_n .

Hence π_*M is generated by a finite subset of $\{t^{\gamma}[u] \mid \gamma \in \mathbb{N}^d\}$, and π_*M represents the relations among these generators.

Example

Set n = d = 1 and write $x = x_1$, $t = t_1$. Consider

$$M:=\frac{D_2}{D_2t(t-1)(\partial_t-x)+D_2(\partial_x-t)}.$$

Set $u = \overline{1} \in M$. Then

$$t(t-1)(\partial_t - x)u = (\partial_x - t)u = 0$$
 in M .

Let [u] be the residue class of u in $\pi_*M = M/\partial_t M$.

 π_*M is generated by [u] since $tu=\partial_x u$ by the 2nd equation for u.

From $\partial_t t(t-1) = t(t-1)\partial_t + 2t - 1$, it follows

$$\{t(t-1)\partial_t + 2t - 1\}[u] = 0.$$

This gives, combined with $t(t-1)\partial_t u = xt(t-1)u = x\partial_x(\partial_x - 1)u$,

$$\{x\partial_x^2 - (x-2)\partial_x - 1\}[u] = 0.$$

July 1–4, 2015, MSJ-SI in Osaka 7 /

Toshinori Oaku (Tokyo Woman's Christian UAlgorithms for D-modules, integration, and go

4.2 An algorithm for integration

Let M be a left D_{n+d} -module generated by $u \in M$. Set

$$D_{\pi} := D_{n+d}/(\partial_{t_1}D_{n+d} + \cdots + \partial_{t_d}D_{n+d}).$$

Then D_{π} has a structure of (D_n, D_{n+d}) -bimodule and we have

$$\pi_*M = M/(\partial_{t_1}M + \cdots + \partial_{t_d}M) = D_{\pi} \otimes_{D_{n+d}} M$$

as left D_n -module. Set

$$\theta := \partial_{t_1} t_1 + \cdots + \partial_{t_d} t_d = t_1 \partial_{t_1} + \cdots + t_d \partial_{t_d} + d.$$

Toshinori Oaku (Tokyo Woman's Christian UAlgorithms for *D*-modules, integration, and ge

Now let us fix the weight vector

$$w := (0, \ldots, 0, 1, \ldots, 1; 0, \ldots, 0, -1, \ldots, -1) \in \mathbb{Z}^{2(n+d)}.$$

That is, we define the weight of x_i and ∂_{x_i} to be 0, while the weight of t_j and ∂_{t_i} are 1 and -1 respectively. Set

$$F_k(M) := F_k^w(D_{n+d})u, \qquad \operatorname{gr}_k(M) := F_k(M)/F_{k-1}(M) \qquad (k \in \mathbb{Z}).$$

Then $\{F_k(M)\}$ is a good w-filtration of M.

Toshinori Oaku (Tokyo Woman's Christian UAlgorithms for D-modules, integration, and g

Theorem

If $M = D_{n+d}$ is holonomic, then there exists a nonzero polynomial $b(s) \in \mathbb{C}[s]$ in s such that $b(\theta)\operatorname{gr}_0(M) = 0$. Such b(s) of minimum degree is called the b-function of M with respect to the weight vector w.

The *b*-function can be comptuted by using a *w*-involutive basis of $I := \operatorname{Ann}_{D_{n+d}} u$.

Lemma

Let b(s) be the *b*-function of M with respect to w. Then $b(\theta - k)\operatorname{gr}_k(M) = 0$ holds for any $k \in \mathbb{Z}$.

Proof: Note that $\theta \cdot t_j = t_j(\theta + 1)$ and $\theta \cdot \partial_j = \partial_j(\theta - 1)$. Hence $b(\theta)P = Pb(\theta + k)$ holds if P is homogeneous of order k with respect to w. This proves the lemma.

The proof of the following proposition also provides us with an algorithm to compute the D_n -module structure of π_*M .

Proposition

Suppose that a left D_{n+d} -module $M = D_{n+d}u = D_{n+d}/I$ has a b-function b(s). Let $-k_1$ be the smallest integral root, if any, of b(s). Set $k_1 = -1$ if b(s) has no integral root. Then as a left D_n -module, π_*M is generated by the set

$$\{t^{\gamma}[u] \mid \gamma \in \mathbb{N}^d, |\gamma| \leq k_1\}$$

In particular, $\pi_* M = 0$ if $k_1 < 0$.

Proof

Since π_*M is the cokernel of $M^d \xrightarrow{(\partial_{t_1}, \dots, \partial_{t_d})} M$, we have an exact sequence

$$M^d \stackrel{(\partial_{t_1}, \dots, \partial_{t_d})}{\longrightarrow} M \longrightarrow \pi_* M \longrightarrow 0$$

of left D_n -modules. First let us show that the induced sequence

$$F_{k_1+1}(M)^d \stackrel{(\partial_{t_1,\ldots,\partial_{t_d}})}{\longrightarrow} F_{k_1}(M) \longrightarrow \pi_*M \longrightarrow 0$$

is also exact. Let $k > k_1$ and $u_k \in F_k(M)$ with nonzero modulo class $\overline{u}_k \in \operatorname{gr}_k(M)$. We have $b(\theta - k)\overline{u}_k = 0$. There exists $c(s) \in \mathbb{C}[s]$ such that $b(\theta - k) - b(\theta) = \theta c(\theta)$. Then $b(-k)\overline{u}_k = \theta c(\theta)\overline{u}_k$ holds. Since $b(-k) \neq 0$, this implies that there exist $v_1, \ldots, v_d \in F_{k+1}(M)$ such that

$$u_k - (\partial_{t_1} v_1 + \cdots + \partial_{t_d} v_d) \in F_{k-1}(M).$$

Toshinori Oaku (Tokyo Woman's Christian UAlgorithms for *D*-modules, integration, and g

Continuing this argument, we conclude that there exist $v_1, \ldots, v_d \in F_{k+1}$ such that

$$u_k - (\partial_{t_1}v_1 + \cdots + \partial_{t_d}v_d) \in F_{k_1}(M).$$

Now assume that $v_1, \ldots, v_d \in F_k(M)$ with $k > k_1 + 1$. Let \overline{v}_i be the modulo class of v_i in $gr_{\nu}(M)$. Then we have

$$\partial_{t_1}\overline{\mathbf{v}}_1+\cdots+\partial_{t_d}\overline{\mathbf{v}}_d=0\in\operatorname{gr}_{k_1}(M).$$

We want to show that $\overline{v}_i = 0$ for any j. Since this is rather technical, let us show only in case d=1. Since $0=b(\partial_1 t_1-k)\overline{v}_1=0$ and $\partial_1 t_1 - k = t_1 \partial_1 - k + 1$, we get $b(-k+1)\overline{v}_1 = c(t_1 \partial_{t_1})\partial_t \overline{v}_1 = 0$ with some $c(s) \in \mathbb{C}[s]$. Since $b(-k+1) \neq 0$ by the assumption, $\overline{v}_1 = 0$.

Toshinori Oaku (Tokyo Woman's Christian UAlgorithms for *D*-modules, integration, and g

Now let

$$(D_{n+d})^r \xrightarrow{\psi} D_{n+d} \xrightarrow{\varphi} M \longrightarrow 0$$

be a presentation of M, where

$$\varphi(P) = Pu \quad (\forall P \in D_{n+d}),$$

$$\psi((Q_1, \dots, Q_r)) = Q_1 P_1 + \dots + Q_r P_r \quad (\forall Q_1, \dots, Q_r \in D_{n+d}).$$

Here we assume that P_1, \ldots, P_r are a *w*-involutive basis of $I = \operatorname{Ann}_{D_{n+d}} u$ with $\operatorname{ord}_w(P_i) = m_i$. This implies that the sequence

$$\bigoplus_{i=1}^{r} F_{k-m_i}(D_{n+d}) \xrightarrow{\psi} F_k(D_{n+d}) \xrightarrow{\varphi} F_k(M) \longrightarrow 0$$

is exact. Set $F_k[\mathbf{m}]((D_\pi)^r) := \bigoplus_{i=1}^r F_{k-m_i}(D_\pi)$ with $\mathbf{m} = (m_1, \dots, m_r)$, and so on.

Then ψ induces homomorphisms

$$\overline{\psi}: (D_{\pi})^{r} \longrightarrow D_{\pi},
\overline{\psi}: F_{k}[\mathbf{m}]((D_{\pi})^{r}) := \bigoplus_{i=1}^{r} F_{k-m_{i}}(D_{\pi}) \longrightarrow F_{k}(D_{\pi}),$$

where $\{F_k(D_\pi)\}$ denotes the filtration induced by $\{F_k^w(D_{n+d})\}$.

We have a commutative diagram with exact rows:

$$F_{k_{1}+1}[\mathbf{m}]((D_{n+d})^{r})^{d} \longrightarrow F_{k_{1}}[\mathbf{m}]((D_{n+d})^{r}) \longrightarrow F_{k_{1}}[\mathbf{m}]((D_{\pi})^{r}) \longrightarrow 0$$

$$\downarrow^{(\psi,\dots,\psi)} \qquad \downarrow^{\psi} \qquad \qquad \downarrow^{\overline{\psi}}$$

$$F_{k_{1}+1}(D_{n+d})^{d} \xrightarrow{(\partial_{t_{1}},\dots,\partial_{t_{d}})} F_{k_{1}}(D_{n+d}) \longrightarrow F_{k_{1}}(D_{\pi}) \longrightarrow 0$$

$$\downarrow^{(\varphi,\dots,\varphi)} \qquad \qquad \downarrow^{\varphi} \qquad \qquad \downarrow^{\psi}$$

$$F_{k_{1}+1}(M)^{d} \xrightarrow{(\partial_{t_{1}},\dots,\partial_{t_{d}})} F_{k_{1}}(M) \longrightarrow \pi_{*}M \longrightarrow 0$$

$$\downarrow^{\psi} \qquad \qquad \downarrow^{\psi} \qquad \qquad \downarrow^{\psi}$$

$$\downarrow^{\psi} \qquad \qquad \downarrow^{\psi} \qquad \qquad \downarrow^{\psi} \qquad \qquad \downarrow^{\psi}$$

$$\downarrow^{\psi} \qquad \qquad \downarrow^{\psi} \qquad \qquad \downarrow^{\psi} \qquad \qquad \downarrow^{\psi}$$

$$\downarrow^{\psi} \qquad \qquad \downarrow^{\psi} \qquad \qquad \downarrow^{\psi} \qquad \qquad \downarrow^{\psi} \qquad \qquad \downarrow^{\psi}$$

$$\downarrow^{\psi} \qquad \qquad \downarrow^{\psi} \qquad$$

exact exact

where the upper leftmost morphisms send

$$egin{pmatrix} Q_{11} & \cdots & Q_{1r} \ dots & & dots \ Q_{d1} & \cdots & Q_{dr} \end{pmatrix} \in F_{k_1+1}[\mathbf{m}]((D_{n+d})^r)^d$$

to

$$\begin{pmatrix} Q_{11} & \cdots & Q_{1r} \\ \vdots & & \vdots \\ Q_{d1} & \cdots & Q_{dr} \end{pmatrix} \begin{pmatrix} P_1 \\ \vdots \\ P_r \end{pmatrix} \in F_{k_1+1}(D_{n+d})^d,$$

$$(\partial_{t_1} & \cdots & \partial_{t_d}) \begin{pmatrix} Q_{11} & \cdots & Q_{1r} \\ \vdots & & \vdots \\ Q_{d1} & \cdots & Q_{dr} \end{pmatrix} \in F_{k_1}[\mathbf{m}]((D_{n+d})^r)$$

respectively.

In the commutaive diagram, the three horizontal sequences and the two vertical sequences except the rightmost one are exact. This implies that the rightmost vertical sequence is also exact; i.e.,

$$\pi_*M = \operatorname{coker}(\overline{\psi}: F_{k_1}[\mathbf{m}]((D_{\pi})^r) \longrightarrow F_{k_1}(D_{\pi})).$$

Note that

$$F_{k_1}(D_\pi) = \bigoplus_{|\gamma| \leq k_1} t^\gamma D_n, \qquad F_{k_1}[\mathbf{m}]((D_\pi)^r) = \bigoplus_{i=1}^r \bigoplus_{|\gamma| \leq k_1 - m_i} t^\gamma D_n$$

as left D_n -modules. Hence ψ is a homomorphisms of free left D_n -modules of finite rank, $\operatorname{coker} \psi$ can be explicitly computed by linear algebra over D_n . This gives the relations among the generators $\{t^\gamma[u] \mid |\gamma| \leq k_1\}$ of π_*M . By elimination, we can obtain $\operatorname{Ann}_{D_n}[u]$ so that $D_n[u] \cong D_n/\operatorname{Ann}_{D_n}[u]$ is a left D_n -submodule of π_*M .

July 1–4, 2015, MSJ-SI in Osaka 18 /

Example (again)

Set n = d = 1 and write $x = x_1$, $t = t_1$. Consider

$$M := D_2/(D_2P_1 + D_2P_2)$$
 with $P_1 = t - \partial_x$, $P_2 = t(t-1)(\partial_t - x)$.

Set $u := \overline{1} \in M$ and $F_k(M) := F_k^w(D_n)u$.

Let \overline{u} be the residue class of u in $\operatorname{gr}_0(M)$. Since $0 = \partial_t P_1 \overline{u} = \partial_t t \overline{u}$, the b-function of M w.r.t. w is b(s) = s. So $k_1 = 0$.

A Gröbner basis of $I:=D_2P_1+D_2P_2$ with respect to a monomial order adapted to (1,0,-1,0) is $\{P_1,P_2,P_3\}$ with

$$P_3 = x\partial_x^2 - x\partial_x + 2\partial_x - 1 - \partial_t\partial_x^2 + \partial_t\partial_x.$$

The w-order of P_1 , P_2 , P_3 are 1, 2, 0 respectively.

Hence we have an exact sequence

$$F_{-2}(D_{\pi}) \oplus F_{-1}(D_{\pi}) \oplus F_{0}(D_{\pi}) \xrightarrow{\overline{\psi}} F_{0}(D_{\pi}) \longrightarrow \pi_{*}M \longrightarrow 0,$$

where $\overline{\psi}$ is induced from the column vector ${}^t(P_1\ P_2\ P_3)$. Since $D_\pi\cong D_1[t]$, we have $F_k(D_\pi)=0$ for k<0 and $F_0(D_\pi)=D_1$. Since operators of the form $\partial_t P$ with $P\in D_2$ vanishes in D_π ,

$$\overline{\psi}((0\ 0\ Q)) = QP_3 = Q(x,\partial_x)(x\partial_x^2 - x\partial_x + 2\partial_x - 1)$$

holds for any $Q = Q(x, \partial_x) \in D_1$. This implies

$$\pi_* M = D_1/D_1(x\partial_x^2 - x\partial_x + 2\partial_x - 1)$$

Toshinori Oaku (Tokyo Woman's Christian UAlgorithms for D-modules, integration, and ge