Plan of the course

1st lecture **Introduction**: Aim and an example **Chapter 1**: Basics of *D*-modules

2nd lecture **Chapter 2:** Gröbner bases in the ring of differential operators

Chapter 3: Distributions as generalized functions

3rd lecture **Chapter 4:** *D*-module theoretic integration algorithm **Chapter 5:** Integration over the domain defined by polynomial inequalities

2. Gröbner bases in the ring of differential operators

References of Chapter 2

• M. Saito, B. Sturmfels, N. Takayama: *Gröbner Deformations of Hypergeometric Differential Equations*, Springer 2000.

2.1. Definitions and basic properties

Recall that $\xi = (\xi_1, \dots, \xi_n)$ are the commutative variables corresponding to derivations $\partial_1 = \partial_{x_1}, \dots, \partial_n = \partial_{x_n}$. Let

$$M(x,\xi) = \{ x^{\alpha} \xi^{\beta} \mid \alpha, \beta \in \mathbb{N}^n \}$$

be the set of the monomials in $K[x,\xi]$. A total order \prec on $M(x,\xi)$ is called a *monomial order* if it satisfies for $u,v,w\in M(x,\xi)$

- $1 \prec x_i \xi_i$ for any $i = 1, \ldots, n$.

A monomial order is called a term order if

- \bullet $1 \prec x^{\alpha} \xi^{\beta}$ for any $(\alpha, \beta) \in \mathbb{N}^{2n} \setminus \{(\mathbf{0}, \mathbf{0})\}.$
- This is equivalent to the condition that the monomial order \prec be a well-ordering.

Now fix a monomial order \prec . For a nonzero element $P = \sum_{\alpha,\beta} a_{\alpha\beta} x^{\alpha} \partial^{\beta}$ of D_n , its initial monomial $\operatorname{in}_{\prec}(P)$ is defined to be the maximum nonzero monomial

$$\operatorname{in}_{\prec}(P) = \max_{\prec} \{ x^{\alpha} \xi^{\beta} \mid a_{\alpha\beta} \neq 0 \}$$

of $P(x, \xi)$ with respect to \prec .

Note that $\operatorname{in}_{\prec}(P)$ belongs to $K[x,\xi]$ instead of D_n so that monomial ideals make sense.

Toshinori Oaku (Tokyo Woman's Christian UAlgorithms for D-modu<u>les, integration, and g</u>e

By using the Leibniz formula and the conditions (1) and (2), we can verify that $\operatorname{in}_{\prec}(PQ) = \operatorname{in}_{\prec}(P)\operatorname{in}_{\prec}(Q) = \operatorname{in}_{\prec}(QP)$ holds in $K[x,\xi]$ for nonzero $P,Q \in D_n$.

Definition (Gröbner basis)

Let I be a left ideal of D_n . A finite subset G of I is called a Gröbner basis of I with respect to a monomial order \prec if

- \bullet G generates I as a left ideal;
- ② $\operatorname{in}_{\prec}(G) := \{ \operatorname{in}_{\prec}(P) \mid P \in G \}$ generates the monomial ideal $\operatorname{in}_{\prec}(I)$ in $K[x, \xi]$ which is generated by the set $\{\operatorname{in}_{\prec}(P) \mid P \in I, P \neq 0 \}$.

Proposition

For any left ideal I of D_n , and any monomial order \prec , there exists a Gröbner basis G of I with respect to \prec .

Proof: Let G be a finite generating set of I. Since $\operatorname{in}_{\prec}(I)$ is a monomial ideal of $K[x,\xi]$, there exists a finite set G' of I such that $\{\operatorname{in}_{\prec}(P)\mid P\in G'\}$ generates $\operatorname{in}_{\prec}(I)$. Then $G\cup G'$ is a Gröbner basis of I with respect to \prec .

For a term order, we can compute a Gröbner basis of I by using division and Buchberger's criterion applied to D_n .

Now let $w \in \mathbb{Z}^{2n}$ be a weight vector. A monomial order \prec on $M(x,\xi)$ is adapted to w if

$$x^{\alpha}\xi^{\beta} \prec x^{\alpha'}\xi^{\beta'} \Rightarrow \langle w, (\alpha, \beta) \rangle \leq \langle w, (\alpha', \beta') \rangle.$$

There exists a term order that is adapted to w if and only if $w_i \geq 0$ for any $i = 1, \ldots, n$.

For an arbitrary monomial order \prec , define another monomial order \prec_{w} by

$$x^{\alpha}\xi^{\beta} \prec_{w} x^{\alpha'}\xi^{\beta'} \iff \langle w, (\alpha, \beta) \rangle < \langle w, (\alpha', \beta') \rangle$$

or $(\langle w, (\alpha, \beta) \rangle = \langle w, (\alpha', \beta') \rangle$ and $x^{\alpha}\xi^{\beta} \prec x^{\alpha'}\xi^{\beta'})$.

Then \prec_w is adapted to w.

Recall: For a weight vector $w \in \mathbb{Z}^{2n}$, the w-filtration of D_n is

$$F_k^w(D_n) = \{P = \sum_{\alpha, \beta \in \mathbb{N}^n} a_{\alpha\beta} x^{\alpha} \partial^{\beta} \mid a_{\alpha\beta} = 0 \text{ if } \langle w, (\alpha, \beta) \rangle > k \}.$$

The associated graded ring is

$$\operatorname{gr}^w(D_n) := \bigoplus \operatorname{gr}_k^F(D_n), \qquad \operatorname{gr}_k^F(D_n) := F_k^w(D_n)/F_{k-1}^w(D_n).$$

If $P \in F_k(D_n) \setminus F_{k-1}(D_n)$, let \overline{P} be the residue class in $\operatorname{gr}_k^w(D_n)$.

Proposition

Let I be a left ideal of D_n and G be a Gröbner basis of I with respect to a monomial order \prec which is adapted to a weight vector w. Then $gr(G) := {\overline{P} \mid P \in G}$ generates the w-graded left ideal

$$\operatorname{gr}(I) := \bigoplus (I \cap F_k^w(D_n))/(I \cap F_{k-1}^w(D_n))$$

of $\operatorname{gr}^w(D_n)$. Such G is called a w-involutive basis, $\inf_{L^1 \cap S} f_1 = 0$.

Computing Char(*M*)

Corollary

If P_1, \ldots, P_r are a Gröbner basis of a left ideal I of D_n with respect to a term order which is adapted to $(\mathbf{0}, \mathbf{1})$, then

$$\operatorname{Char}(D_n/I) = \{(x,\xi) \in K^{2n} \mid \sigma(P_i)(x,\xi) = 0 \ (1 \le \forall i \le r)\}.$$

Example As a left D_n -module, $K[x] \cong D_n/(D_n\partial_1 + \cdots + D_n\partial_n)$. Since $\partial_1, \ldots, \partial_n$ are a Gröbner basis with respect to any term order which is adapted to $(\mathbf{0}, \mathbf{1})$, and $\sigma(\partial_i) = \xi_i$, we have

Char
$$(K[x]) = \{(x, \xi) \in K^{2n} \mid \xi = 0\},\$$

and it follows that $\operatorname{Sing}(K[x]) = \emptyset$.

July 1–4, 2015, MSJ-SI in Osaka 9/

2.2. Homogenization trick

For a monomial order \prec in which 1 is not the smallest element, the division algorithm cannot be performed directly. To bypass this difficulty, we introduce the (1,1)-homogenized ring. First, recall the Rees algebra

$$R^{(1,1)}(D_n) = \bigoplus_{k \in \mathbb{Z}} F_k^{(1,1)}(D) T^n$$

of D_n with respect to the (1, 1)-filtration.

Let $D_n^{(h)}$ be the K-vector space with the basis $\{x^{\alpha}\partial^{\beta}h^{k}\mid \alpha,\beta\in\mathbb{N}^{n},\ k\in\mathbb{N}\}$, where h is a new indeterminate.

July 1–4, 2015, MSJ-Sl in Osaka 10 / Toshinori Oaku (Tokyo Woman's Christian UAlgorithms for *D*-modules, integration, and g

Define a K-isomorphism $\Psi: R^{(1,1)}(D_n) \to D_n^{(h)}$ by

$$\Psi(x^{\alpha}\partial^{\beta}T^{k}) = x^{\alpha}\partial^{\beta}h^{k-|\alpha|-|\beta|}.$$

Note that $x^{\alpha} \partial^{\beta} T^{k} \in R^{(1,1)}(D_{n})$ means $|\alpha| + |\beta| < k$.

We can make $D_n^{(h)}$ a graded K-algebra by using the graded K-algebra structure of $R^{(1,1)}(D_n)$ via Ψ .

Let us call this $D^{(h)}$ the homogenized Weyl algebra, which was introduced, in connection with Gröbner bases, by Takayama and Assi-Castro-Granger independently. In fact, $D^{(h)}$ was implemented by Takayama in his computer algebra system Kan as early as 1994.

Toshinori Oaku (Tokyo Woman's Christian UAlgorithms for *D*-modules, integration, and g

The image of $F_{\nu}^{(1,1)}(D_n)$ by Ψ consists of the elements of $D_n^{(h)}$ which are homogeneous of degree k in x, ∂, h . For an element P of D_n , we set

$$P^{(h)} := \Psi(PT^k)$$
 with $k := \operatorname{ord}_{(1,1)}P$,

which is called the ((1,1)-) homogenization of P. For example, since $\partial_i x_i T^2 = (x_i \partial_i + \delta_{ii}) T^2$ holds in $R^{(1,1)}(D_n)$, we have

$$\partial_i x_j = \Psi(\partial_i x_j T^2) = \Psi(x_i \partial_j T^2) + \delta_{ij} \Psi(T^2) = x_i \partial_j + \delta_{ij} h^2.$$

Toshinori Oaku (Tokyo Woman's Christian UAlgorithms for *D*-modules, integration, and g

More generally, for elements P, Q of $D_n^{(h)}$, let $P(x, \xi, h)$ and $Q(x,\xi,h)$ be their total symbols defined in a similar manner as in D_n . Then the total symbol of R := PQ is given by

$$R(x,\xi,h) = \sum_{\nu \in \mathbb{N}^n} \frac{h^{2\nu}}{\nu!} \left(\frac{\partial}{\partial \xi}\right)^{\nu} P(x,\xi,h) \cdot \left(\frac{\partial}{\partial x}\right)^{\nu} Q(x,\xi,h).$$

Now let \prec be an arbitrary monomial order on $M(x,\xi)$. We define a monomial order \prec_h on $M(x, \xi, h)$ by

$$x^{\alpha}\xi^{\beta}h^{j} \prec_{h} x^{\alpha'}\xi^{\beta'}h^{k} \iff |\alpha| + |\beta| + j < |\alpha'| + |\beta'| + k$$

or $(|\alpha| + |\beta| + j = |\alpha'| + |\beta'| + k \text{ and } x^{\alpha}\xi^{\beta} \prec x^{\alpha'}\xi^{\beta'}).$

Then \prec_h is clearly a term order. Hence the division and the Buchberger algeorithm works with \prec_h in $D_n^{(h)}$.

Theorem (Takayama, Assi-Castro-Granger)

Let I be the left ideal of D_n generated by nonzero P_1, \ldots, P_r . and \prec an arbitrary monomial order on $M(x,\xi)$. Let J be a left ideal of $D_n^{(h)}$ generated by $P_1^{(h)}, \ldots, P_r^{(h)}$. Let $\{Q_1', \ldots, Q_l'\}$ be a Gröbner basis of J with respect to \prec_h , which can be computed by Buchberger's algorithm.

Set $Q_i := Q_i'|_{h=1}$ for i = 1, ..., r. Then $\{Q_1, ..., Q_r\}$ is a Gröbner basis of I with respect to \prec . Moreover, for any nonzero element P of I, there exist $U_1, ..., U_I \in D_n$ such that

$$P = U_1Q_1 + \cdots + U_IQ_I$$
, $\operatorname{in}_{\prec}(U_iQ_i) \leq \operatorname{in}_{\prec}P$ if $U_iQ_i \neq 0$.

In particular, if \prec is adapted to w, then for any $k \in \mathbb{Z}$, we have

$$I \cap F_k^w(D_n) = F_{k-m_1}^w(D_n)\overline{P}_1 + \dots + F_{k-m_l}^w(D_n)\overline{P}_l$$
 with $m_i := \operatorname{ord}_w P_i$.

July 1–4, 2015, MSJ-SI in Osaka 14 /