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Plan of the course

1st lecture Introduction: Aim and an example
Chapter 1: Basics of D-modules

2nd lecture Chapter 2: Gröbner bases in the ring of differential
operators
Chapter 3: Distributions as generalized functions

3rd lecture Chapter 4: D-module theoretic integration algorithm
Chapter 5: Integration over the domain defined by
polynomial inequalities
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Introduction

A D-module is a system of linear (partial or ordinary) differential
equations with polynomial (or analytic) coefficients.

There is a special class of D-modules which are called holonomic, the
solution spaces of which are finite dimensional vector spaces.

A holonomic function is a differentiable or generalized function which
is a solution of a holonomic system. For example, exp(f ) = e f is a
holonomic function for any polynomial f = f (x1, . . . , xn).

Aim: To find a holonomic system which the integral of a holonomic
function satisfies. The integration is to be performed over a domain
defined by polynomial inequalities.
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Example

Let us consider the integral

v(x) =

∫ 1

0

exy dy =
ex − 1

x

and assume that we did not know the answer. The integrand
u(x , y) := exy satisfies a holonomic system

(∂x − y)u(x , y) = (∂y − x)u(x , y) = 0

with ∂x = ∂/∂x and ∂y = ∂/∂y .

In order to apply integration algorithms for holonomic functions, we
have to get rid of the boundary y = 0, 1.
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The Heaviside function and the delta function

The Heaviside function Y (t) is defined by Y (t) = 1 for t > 0 and
Y (t) = 0 for t < 0. (Never mind the value at t = 0.)

t
0

1

Y (t)

t
0

δ(t)

Y (t) is discontinuous at t = 0 and its derivative Y ′(t) as a
generalized function coincides with Dirac’s delta function δ(t).

δ(t) vanishes outside of t = 0 and tδ(t) = 0 holds everywhere in R.
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Olvier Heaviside (1850–1925)

a self-taught English electrical engineer, mathematician,
and physicist who adapted complex numbers to the study of
electrical circuits, invented mathematical techniques for the
solution of differential equations (later found to be
equivalent to Laplace transforms), reformulated Maxwell’s
field equations in terms of electric and magnetic forces and
energy flux, and independently co-formulated vector
analysis.

an excerpt from Wikipedia
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Example (continued)

We rewrite the integral as

v(x) =

∫ ∞

−∞
exyY (y)Y (1− y) dy .

The new integrand ũ(x , y) := exyY (y)Y (1− y) satisfies a holonomic
system

y(y − 1)(∂y − x)ũ(x , y) = (∂x − y)ũ(x , y) = 0. (1)

In fact one has

y(y−1)(∂y−x)(exyY (y)Y (1−y)) = y(y−1)exy (δ(y)−δ(y−1)) = 0.
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The integration algorithm applied to (1) outputs an answer

(x∂2x − (x − 2)∂x − 1)v(x) = 0.

By rewriting the differential operator on the left-hand side as

x∂2x − (x − 2)∂x − 1 = ∂x(∂x − 1)x ,

we know that v(x) = x−1(C1e
x + C2) holds for x ̸= 0 with some

constants C1,C2. We get C1 = 1 and C2 = −1 from the fact that
v(x) is continuous at x = 0 with v(0) = 1. Thus we get

v(x) =
ex − 1

x
.
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General integrals

For a holonomic function u(x1, . . . , xn), consider the integral

v(x1, . . . , xn−d) =

∫
D(x1,...,xn−d )

u(x1, . . . , xn) dxn−d+1 · · · dxn,

D(x1, . . . , xn−d)

:= {(xn−d+1, . . . , xn) ∈ Rd | fj(x1, . . . , xn) ≥ 0 (1 ≤ j ≤ m)}

with polynomials f1, . . . , fm with real coefficients. We rewrite it as

v(x1, . . . , xn−d) =

∫
Rd

u(x1, . . . , xn)Y (f1) · · ·Y (fm) dxn−d+1 · · · dxn
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and apply the D-module theoretic integration algorithm. Since
generalized functions are involved, we cannot use differential
operators with rational function coefficients.

For example, xδ(x) = 0 DOES NOT imply

δ(x) =
1

x
(xδ(x)) =

1

x
0 = 0.

Hence we must work exclusively with differential operators with
polynomial coefficients, that is, in the framework of (algebraic)
D-modules.

We also need an algorithm to compute a holonomic system for the
product uY (f1) · · ·Y (fm) as a generalized function.

(The end of Introduction)
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1. Basics of D-modules

References of Chapter 1

J.-E. Björk: Rings of Differential Operators, North-Holland,
1979.

M. Kashiwara: Systems of Microdifferential Equations (Progress
in Math.), Birkhauser, 1983.

M. Saito, B. Sturmfels, N. Takayama: Gröbner Deformations of
Hypergeometric Differential Equations, Springer 2000.

R. Hotta: Introduction to Algebra — Groups and Modules (in
Japanese), Shokabo, 1987

T. Tanisaki: Non-commutative Algebra (in Japanese), Iwanami,
2006
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1.1 The ring of differential operators

Let K be a field of characteristic zero. In this course, we assume
mostly that K is C, the field of complex numbers.

Let K [x ] := K [x1, . . . , xn] be the ring of polynomials in
indeterminates x = (x1, . . . , xn) with coefficients in K .

A derivation θ : K [x ] → K [x ] is a K -linear map that satisfies

θ(fg) = θ(f )g + f θ(g) (∀f , g ∈ K [x ]).

The set DerKK [x ] of the derivations constitutes a K [x ]-module.
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For i = 1, . . . , n, define a derivation ∂i by the partial derivative

∂i = ∂xi : K [x ] ∋ f 7−→ ∂f

∂xi
∈ K [x ].

Then ∂1, . . . , ∂n are a K [x ]-basis of DerKK [x ].

In fact, if θ ∈ DerKK [x ], then it is easy to see that

θ = θ(x1)∂1 + · · ·+ θ(xn)∂n.

Let EndKK [x ] be the K -algebra consisting of the K -linear
endomorphisms of K [x ].

The ring Dn is defined as the K -subalgebra of EndKK [x ] that is
generated by K [x ] and DerKK [x ], or equivalently, by x1, . . . , xn and
∂1, . . . , ∂n.
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An element a = a(x) of K [x ] is regarded as an element of Dn as the
multiplication f 7→ af for f ∈ K [x ]. With this identification, Dn

contains K [x ] as a subring.

Dn is called the ring of differential operators in the variables
x = (x1, . . . , xn) with polynomial coefficients, or, more simply, the
n-thWeyl algebra over K .

Dn is a non-commutative K -algebra. In fact, for a ∈ K [x ] regarded as
an element of Dn, the product in Dn satisfies

∂ia = a∂i + ∂i(a) = a∂i +
∂a

∂xi
(i = 1, . . . , n).
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For a multi-index α = (α1, . . . , αn) ∈ Nn with N = {0, 1, 2, . . . }, we
use the notation xα = xα1

1 · · · xαn
n and ∂α = ∂αx = ∂α1

1 · · · ∂αn
n . Then

an element P of Dn is uniquely written in a finite sum

P = P(x , ∂) =
∑
α,β∈Nn

aα,βx
α∂β (aα,β ∈ K ), (2)

which is called the normal form of P .

Introducing commutative indeterminates ξ = (ξ1, . . . , ξn)
correspoinding to ∂, we associate with this P a polynomial

P(x , ξ) :=
∑
α,β∈Nn

aα,βx
αξβ ∈ K [x , ξ] = K [x1, . . . , xn, ξ1, . . . , ξn]

and call it the total symbol of P . Note that P must be in the normal
form when ξ is substituted for ∂.
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By this correspondence, Dn is isomorphic to K [x , ξ] as a K -vector
space but not as a ring, of course.

The product R = PQ in Dn can be effectively computed by using the
Leibniz formula
.

......

R(x , ξ) =
∑
ν∈Nn

1

ν!

(
∂

∂ξ

)ν

P(x , ξ) ·
(
∂

∂x

)ν

Q(x , ξ)

where ν! = ν1! · · · νn! for ν = (ν1, . . . , νn) ∈ Nn.
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Example
Set n = 1 and write x = x1 and ∂ = ∂1. Consider the product
R := ∂mxm with a non-negative integer m. Since the total symbol of
∂m and xm are ξm and xm respectively, the Leibniz formula gives the
total symbol R(x , ξ) as

R(x , ξ) =
∞∑
ν=0

1

ν!

(
∂

∂ξ

)ν

ξm ·
(
∂

∂x

)ν

xm

=
m∑
ν=0

1

ν!
{m(m − 1) · · · (m − ν + 1)}2 ξm−νxm−ν .

This implies

∂mxm =
m∑
ν=0

1

ν!
{m(m − 1) · · · (m − ν + 1)}2 xm−ν∂m−ν .
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Exercise 1.1. Prove the Leibniz formula.

Exercise 1.2. Set n = 1 and x = x1, ∂ = ∂1. For a positive integer
m, prove

xm∂m = x∂(x∂ − 1) · · · (x∂ −m + 1).
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The D-module formalism

Given P1, . . . ,Pr ∈ Dn, let us consider a system of linear (partial or
ordinary) differential equations

P1u = · · · = Pru = 0 (3)

for an unknown function u. Let I := DnP1 + · · ·+ DnPr be the left
ideal of Dn generated by P1, . . . ,Pr . Then (3) is equivalent to

Pu = 0 (∀P ∈ I ).

Here we suppose that the unknown function u belongs to some
‘function space’ F which is a left Dn-module.

Toshinori Oaku (Tokyo Woman’s Christian University)Algorithms for D-modules, integration, and generalized functions
July 1–4, 2015, MSJ-SI in Osaka 19 /

47



. . . . . .

For F to be a left Dn-module, it is necessary that any function f
belonging to F be infinitely differentiable and multiplication af by an
aribrtrary polynomial a ∈ K [x ] make sense.

Here are examples of ‘function spaces’:

Example By the definition, K [x ] has a natural structure of left
Dn-module since Dn is a subalgebra of EndKK [x ]. So K [x ] has two
structures: a subring of Dn and a left Dn-module. Hence for f ∈ K [x ]
and P ∈ Dn, Pf has two meanings:

Pf as the product in Dn with f regarded as an element of the
subring K [x ] of Dn.

Pf as the action of P on the element f of the left Dn-module
K [x ]. In other words, we regard f as a function subject to
derivations.
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This might cause some confusion.

In “Gröbner Deformations of Hypergeometric Differential Equations”
by Saito, Sturmfels, Takayama (Springer, 2000), the action of P on
an element f of a left Dn-module is denoted conspicuously by P • f
for distinction, which is new, I guess, both to analysts and algebraists.

I would like to write, only if needed, Pf = P(f ) to clarify the action
of P on f , and Pf = P · f to emphasize that it be the product in Dn,
following the traditional notation in D-module theory.

Toshinori Oaku (Tokyo Woman’s Christian University)Algorithms for D-modules, integration, and generalized functions
July 1–4, 2015, MSJ-SI in Osaka 21 /

47



. . . . . .

Example The field K (x) = K (x1, . . . , xn) of rational functions has a
natural structure of left Dn-module. For a point p = (p1, . . . , pn) of
the affine space K n, the set of regular functions at p, i.e. the
elements of K (x) whose denominators do not vanish at p also has a
natural structure of Dn-modules. More generally, for a multiplicative
subset S of K [x ], the localization K [x ][S−1] is also a left Dn-module.

Example Set K = C. Let C∞(U) be the set of the complex-valued
C∞ functions on an open set U of the n-dimensional real Euclidean
space Rn. Then each ∂i acts on C∞(U) as differentiation. This
makes C∞(U) a left Dn-module. Let C∞

0 (U) be the set of C∞

functions on U with compact support. More precisely, f ∈ C∞(U)
belongs to C∞

0 (U) if and only if there is a compact subset K of U
such that f (x) = 0 for any x ∈ U \ K . Then C∞

0 (U) is a left
Dn-submodule of C∞(U).
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Other examples of such F are the set Õ(U) of possibly multi-valued
analytic functions on an open subset U of Cn, the set D′(U) of the
Schwartz distributions on an open subset U of Rn, and the set
S ′(Rn) of tempered distributions, which shall be introduced later, as
well as the set B(U) of the hyperfunctions (of Mikio Sato) on an
open subset U of Rn.

Now for a left ideal I of Dn, consider the residue module M := Dn/I ,
which is a left Dn-module generated by the residue class 1 of
1 ∈ K [x ] ⊂ Dn. Fix a left Dn-module F as your favorite function
space. A map φ : M → F is Dn-linear, or a Dn-homomorphism, if

φ(u+v) = φ(u)+φ(v), φ(Pu) = Pφ(u) (∀u, v ∈ M , ∀P ∈ Dn).
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Let HomDn(M ,F) be the set of the Dn-homomorphisms of M to F ,
which is a K -vector space.

Since M is generated by 1 as left Dn-module, φ ∈ HomDn(M ,F) is
uniquely determined by φ(1).

On the other hand, for φ to be well-defined, it is necessary and
sufficient that φ(1) be annihilated by I , i.e., Pφ(1) = 0 for any P ∈ I .

In conclusion, we have an isomorphism as K -vector space

HomDn(M ,F) ∋ φ
∼7−→ φ(1) ∈ {f ∈ F | Pf = 0 (∀P ∈ I )}.

We started with a left ideal I of Dn generated by given
P1, . . . ,Pn ∈ Dn and considered a left Dn-module M = Dn/I . Note
that

I = AnnDn1 = {P ∈ Dn | P1 = 0 ∈ M}.
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We can argue in the reverse order:
Let M be a finitely generated left Dn-module and let u1, . . . , um ∈ M
be generators of M , i.e. assume that for any u ∈ M , there exist
P1, . . . ,Pm ∈ Dn such that u = P1u1 + · · ·+ Pmum. Set

N := {(P1, . . . ,Pm) ∈ (Dn)
m | P1u1 + · · ·+ Pmum = 0},

which is a left Dn-submodule of M .

Since Dn is left (and right) Noetherian ring (this can be proved by
using a Gröbner basis in Dn), N is also finitely generated over Dn.

Hence there exist

Qi = (Qi1, . . . ,Qim) ∈ (Dn)
m (i = 1, . . . , r)

which generate N as left Dn-module.
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Then we have an exact sequence of left Dn-modules

(Dn)
r ψ−→ (Dn)

m φ−→ M −→ 0, (4)

which is called a presentation of M . Here φ and ψ are
Dn-homomorphisms defined by, for Pi ∈ Dn,

φ((P1, . . . ,Pm)) = P1u1 + · · ·+ Pmum,

ψ((P1, . . . ,Pr )) =
(
P1 · · · Pr

)Q11 · · · Q1m
...

...
Qr1 · · · Qrm


and N = kerφ = imψ holds.
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From (4) we get an exact sequence

0 −→ HomDn(M ,F)
φ∗
−→ HomDn((Dn)

m,F)
ψ∗
−→ HomDn((Dn)

r ,F).

Since HomDn((Dn)
m,F) is isomorphic to Fm, this yields

0 −→ HomDn(M ,F)
φ∗
−→ Fm ψ∗

−→ F r .

Regarding the elements of Fm as column vectors, we have, for
h ∈ HomDn(M ,F) and f1, . . . , fm ∈ F ,

φ∗(h) =

h(u1)
...

h(um)

 , ψ∗


 f1

...
fm


 =

Q11 · · · Q1m
...

...
Qr1 · · · Qrm


 f1

...
fm


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Hence HomDn(M ,F) is isomorphic to the solution space of the
system of linear differential equations

m∑
j=1

Qij fj = 0 (i = 1, . . . , r)

for unknown functions f1, . . . , fm ∈ F . Note that the generators
u1, . . . , um of M also satisfy the same equations in M .
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Example Let us consider K [x ] as a left Dn-module. Since Dn

contains K [x ] as a subring, K [x ] is generated by 1 as a left
Dn-module. For P ∈ Dn, there exist Q1, . . . ,Qn ∈ Dn and
r(x) ∈ K [x ] such that

P = Q1∂1 + · · ·Qn∂n + r(x).

Then P(1) = r(x) vanishes if and only if r(x) = 0. This implies
K [x ] ∼= Dn/(Dn∂1 + · · ·+ Dn∂n) and a presentation of K [x ] is given
by

(Dn)
n ·t(∂1,...,∂n)−→ Dn

φ−→ K [x ] −→ 0

with φ(P) = P(1). We have

HomDn(K [x ],F) ∼= {f ∈ F | ∂1f = · · · ∂nf = 0} = K

for F = K [x ],K (x),K [x ]p, or for F = C∞(U) if K ⊂ C.
Exercise 1.3 Confirm the formulae above for φ∗ and ψ∗.
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1.3. Weight vector and filtration

A weight vector w for Dn is an integer vector

w = (w1, . . . ,wn;wn+1, · · · ,w2n) ∈ Z2n

with the conditions wi + wn+i ≥ 0 for i = 1, . . . , n, which are
necessary in view of the commutation relation ∂ixi = xi∂i + 1 in Dn.
For a nonzero differential operator P of the form (2), we define its
w-order to be

ordw (P) :=

max{⟨w , (α, β)⟩ = w1α1+· · ·+wnαn+wn+1β1+· · ·+w2nβn | aα,β ̸= 0}.

We set ordw (0) := −∞.
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A weight vector w induces the w-filtration

Fw
k (Dn) := {P ∈ Dn | ordw (P) ≤ k} (k ∈ Z)

on the ring Dn. This filtration satisfies the properties:

Fw
k (Dn) ⊂ Fw

k+1(Dn),
∪
k∈Z

Fw
k (Dn) = Dn,

1 ∈ Dw
0 (Dn), Fw

k (Dn)F
w
l (Dn) ⊂ Fw

k+l(Dn),
∩
k∈Z

Fw
k (Dn) = {0}.
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The w-graded ring associated with this filtration is defined to be

grw (Dn) :=
⊕
k∈Z

grwk (Dn), grwk (Dn) := Fw
k (Dn)/F

w
k−1(Dn).

If wi + wn+i > 0 holds for all i = 1, . . . , n, then grw (Dn) is
isomorphic to the polynomial ring K [x , ξ] as a K -algebra since in the
right-hand side of the Leibniz formula, the terms with ν ≥ 1 are of
lower w -order than the term with ν = 0.
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The Rees algebra Rw (Dn) associated with the w -filtration is defined
by

Rw (Dn) :=
⊕
k∈Z

Fw
k (Dn)T

k ⊂ Dn[T ]

with an indeterminate T . We have isomorphisms

Rw (Dn)/(T − 1)Rw (Dn) ∼= Dn, Rw (Dn)/TR
w (Dn) ∼= gr(Dn)

(5)
as K -algebra. Note that Dn, gr

w (Dn), and Rw (Dn) are left (and
right) Noetherian rings. (This can be proved by using Gröbner bases.)
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Let M be a left Dn-module. A family {Fk(M)}k∈Z of K -subspaces
Fk(M) of M is called a w-filtration if it satisfies

...1 Fk(M) ⊂ Fk+1(M) for all k ∈ Z;

...2
∪
k∈Z

Fk(M) = M ;

...3 Fw
j (Dn)Fk(M) ⊂ Fj+k(M) for all j , k ∈ Z;

...4 Each Fk(M) is finitely generated as a left Fw
0 (Dn)-module.

A w -filtation {Fk(M)} is called good if it also satisfies
...5 there exists k1 ∈ Z such that Fw

j (Dn)Fk1(M) = Fj+k1(M) for any
j ≤ 0.

...6 there exists k2 ∈ Z such that Fw
j (Dn)Fk2(M) = Fj+k2(M) for any

j ≥ 0.
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A w -filtration {Fk(M)} is good if and only if the associated Rees
module R(M) :=

⊕
k∈Z Fk(M)T k is finitely generated as a left

Rw (Dn)-module.

For a w -filtration {Fk(M)}, let

gr(M) :=
⊕
k∈Z

grk(M), grk(M) := Fk(M)/Fk−1(M)

be the associated graded module, which is a left grw (Dn)-module. If
{Fk(M)} is good, then gr(M) is finitely generated over grw (Dn).

Exercise 1.4 Prove the K -algebra isomorphisms (5).

Exercise 1.5 Show that a w -filtration {Fk(M)} of M is good if and
only if the associated Rees module is finitely generated over Rw (Dn).
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1.4. Holonomic D-module and characteristic

variety

Following J. Bernstein, let us define the notion of holonomic system
by using the weight vector (1, 1) = (1, . . . , ; 1, . . . , 1) ∈ Z2n. Note
that

⟨(1, 1), (α, β)⟩ = |α|+ |β| = α1 + · · ·+ αn + β1 + · · ·+ βn.

Let M be a finitely generated left Dn-module and {Fk(M)} be a good
(1, 1)-filtration. Then each Fk(M) is a finite dimensional K -vector

space since F
(1,1)
0 (Dn) = K , and Fk(M) = {0} for sufficiently small k .
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By considering gr(M) as a graded K [x , ξ]-algebra, we see that there
exists a (Hilbert) polynomial p(k) in k such that

p(k) = dimK Fk(M) =
∑
j≤k

dimK Fj(M)/Fj−1(M) (k >> 0).

The degree of p(k) does not depend on the choice of a good
(1, 1)-filtration {Fk(M)} and is called the dimension of the module
M , which we denote by dimM .

Let d = dimM . Then the leading coefficent cd of p(k) is a positive
rational number such that d !cd is an integer. We call
multM := d !cd the multiplicity of M .
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.
Theorem (Bernstein’s inequality (around 1970))
..
......dimM ≥ n holds if M ̸= 0.

.
Definition
..

......
A finitely generated left Dn-module M is called a holonomic system if
dimM = n or M = 0.

Example Since

dimK F
(1,1)
k (Dn) =

(
2n + k

2n

)
=

1

(2n)!
k2n + (lower order terms in k),

dimDn = 2n.
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Example K [x ] is holonomic as a left Dn-module. In fact, set

Fk(K [x ]) = {f ∈ K [x ] | deg f ≤ k} (k ∈ Z).

It is easy to see that

F
(1,1)
k (Dn)Fl(K [x ]) = Fl+k(K [x ])

holds for any integers j , k ≥ 0. Hence {Fk(K [x ])} is a good
(1, 1)-filtration. It follows that dimK [x ] = n from

dimK Fk(K [x ]) =

(
n + k

n

)
=

1

n!
kn + (lower order terms in k).
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Let us recall another characterization of a holonomic system by using
the weight vector w = (0, 1) = (0, . . . , 0; 1, . . . , 1). Let M be a
finitely generated left Dn-module and {Fk(M)} be a good
(0, 1)-filtation of M . Then gr(M) is a finitely generated
K [x , ξ]-module. Its support is an algebraic set of K 2n defined by

Supp gr(M) :=

{(p, q) ∈ K n × K n | gr(M)(p,q) := K [x , ξ](p,q) ⊗K [x ,ξ] gr(M) = 0},

where K [x , ξ](p,q) denotes the localization of K [x , ξ] at (p, q), i.e., at
the maximal ideal corresponding to (p, q). It can be proved that
Supp gr(M) is independent of a good (0, 1)-filtration {Fk(M)} of M .
Supp gr(M) is called the characteristic variety of M and denoted by
Char(M).
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.
Theorem (Sato-Kashiwara-Kawai (1973), Gabber (1981))
..

......

Let K be an algebraically closed field of characteristic 0 and M be a
finitely generated left Dn-module. If M ̸= 0, then the dimension of
each irreducible component of Char(M) is ≥ n. More precisely,
Char(M) is an involutive subset of the symplectic manifold (the
cotangent bundle) T ∗Cn = C2n.

.
Theorem (Björk(1979))
..

......

Under the same assumption as the theorem above, dimM coincides
with the maximum dimension of the irreducible components of
Char(M).

Especially, M is holonomic if and only if the dimension of the
characteristic variety is n or else M = 0.
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Let P be a nonzero differential operator written in the form

P = P(x , ∂) =
∑
α,β∈Nn

aα,βx
α∂β (aα,β ∈ K )

and set m := ord(0,1)(P). Then the principal symbol of P is the
polynomial defined by

σ(P)(x , ξ) =
∑
|β|=m

∑
α

aα,βx
αξβ.

This can be identified with the residue class of P in
gr(0,1)(Dn) ∼= K [x , ξ]. Note that σ(P)(x , ξ) is homogeneous with
respect to ξ.
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If M := Dn/I with a left ideal I of Dn, then we have, by the definition,

Char(M) = {(x , ξ) ∈ K 2n | σ(P)(x , ξ) = 0 for any P ∈ I \ {0}}.

In particular, if I is generated by P1, . . . ,Pr , then we have

Char(M) ⊂ {(x , ξ) ∈ K 2n | σ(Pi)(x , ξ) = 0 (∀i = 1, . . . , r)}.
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Let π : K 2n ∋ (x , ξ) 7→ x ∈ K n be the projection. Then the singular
locus of M

Sing(M) := π(Char(M) \ K n × {0})

is an algebraic set of K n since gr(M) is homogeneous with respect to
ξ. In particular, if M is holonomic, then Sing(M) is an algebraic set
of codimension ≥ 1, or an empty set, since Char(M) is homogeneous
with respect to ξ.
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Example Let P ∈ D1 with P ̸= 0; i.e., let P be a linear ordinary
differential operator with coefficients in K [x ] = K [x1]. Then P is
written in the form

P = am(x)∂
m + · · ·+ a0(x) (ai(x) ∈ K [x ], am(x) ̸= 0).

Set M = D1/DP1. Then the dimension of the algebraic set

Char(M) = {(x , ξ) ∈ K 2 | σ(P)(x , ξ) = am(x)ξ
m = 0}

= {(x , ξ) ∈ K 2 | am(x) = 0} ∪ {(x , 0) | x ∈ K}

is one. Hence M is holonomic. Sing(M) = {x ∈ K | am(x) = 0}.
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Example As a left Dn-module, K [x ] ∼= Dn/(Dn∂1 + · · ·+ Dn∂n).
Since σ(∂i) = ξi , we have

Char(K [x ]) ⊂ {(x , ξ) ∈ K 2n | ξ = 0},

and it follows that Sing(K [x ]) = ∅.
Since the dimension of Char(K [x ]) is ≥ n , we have

Char(K [x ]) = {(x , ξ) ∈ K 2n | ξ = 0}.

This can be also proved as follows:
If P ∈ Dn∂1 + · · ·+ Dn∂n, then σ(P)(x , ξ) belongs to the ideal of
K [x , ξ] generated by ξ1, . . . , ξn.
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Exercise 1.5. Let K = C and let f (x) ∈ C[x ] = C[x1, . . . , xn].
Consider a C∞ function e f (x) on Rn. Set fi = ∂i(f ) and

I := Dn(∂1 − f1) + · · ·+ Dn(∂n − fn).

...1 Show that I = AnnDne
f (x) := {P ∈ Dn | Pe f (x) = 0}.

...2 Show that HomDn(M ,C∞(Rn)) ∼= Ke f (x).

...3 Show that M := Dn/I is holonomic by using the two definitions
respectively.
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