Some *D*-module theoretic aspects of the local cohomology of a polynomial ring

Toshinori Oaku

Tokyo Woman's Christian University

July 6, 2015, MSJ-SI in Osaka

Local cohomology of the polynomial ring

Let K be a field of characteristic 0 and $R = K[x] = K[x_1, \dots, x_n]$ be the polynomial ring in n variables over K.

For an ideal I of R and an integer j, the j-th local cohomology group $H_I^j(R)$ of R with support in I is defined as the j-th right derived functor of the functor Γ_I taking support in I. (It depends only on the radical \sqrt{I} of I.)

For example, if I = (f) with $f \in R \setminus \{0\}$, then $H_I^j(R) = 0$ for $j \neq 1$ and $H_I^1(R) = R[f^{-1}]/R$.

It is an R-module but is not finitely generated over R in general.

D-module structure of the local cohomology

Let $D_n = K\langle x_1, \dots, x_n, \partial_1, \dots, \partial_n \rangle$ with $\partial_i = \partial/\partial x_i$ be the *n*-th Weyl algebra, or the ring of differential operators with polynomial coefficients in the variables x_1, \dots, x_n .

Then each $H_I^j(R)$ has a natural structure of left D_n -module. Moreover, it is finitely generated over D_n and is holonomic, i.e., its D-module theoretic dimension equals n if it is not zero.

So what might be of interest is the multiplicity of $H^1_{(f)}(R)$ as D-module in the sense of Bernstein.

(The dimension and the mulitiplicity will be explained later.)

An algorithm for the local cohomology

Let I be generated by $f_1, \ldots, f_d \in R$. Introducing new variables t_1, \ldots, t_d , set $\tilde{R} = K[t_1, \ldots, t_d, x_1, \ldots, x_n]$ and let J be the ideal of \tilde{R} generated by $t_i - f_i$ $(i = 1, \ldots, d)$. Then

$$H_J^d(\tilde{R}) = D_{n+d}/N$$

with the left ideal N of D_{n+d} generated by

$$t_j - f_j$$
 $(j = 1, ..., d),$ $\partial_{x_i} + \sum_{k=1}^d \frac{\partial f_k}{\partial x_i} \partial_{t_k}$ $(i = 1, ..., n).$

 $H_I^j(R)$ equals the *j*-th cohomology of the *D*-module theoretic restriction of $H_J^d(\tilde{R})$ to the subspace $t_1 = \cdots = t_d = 0$ of K^{d+n} . This yields an algorithm to compute $H_I^j(R)$, combined with the restriction algorithm. (There is another algorithm due to U. Walther.)

Generators of the *d*-th local cohomology

Let b(s) be the b-function, or the indicial polynomial, of $H_J^d(\tilde{R})$ with respect to the subspace $t_1 = \cdots = t_d = 0$ and let -m be the smallest integer root of b(s).

Then, in terms of the Cech cohomology, $H_I^d(R)$ is generated by the residue classes of $f_1^{-1-m_1}\cdots f_d^{-1-m_d}\in R_{f_1\cdots f_d}$ with $m_1+\cdots+m_d\leq m$ as a left D_n -module. Here $R_{f_1\cdots f_d}=R[(f_1\cdots f_d)^{-1}]$ denotes the localization of R by the multiplicative set $\{(f_1\cdots f_d)^i\mid i\geq 0\}$.

b(-s-d) coincides with the Bernstein-Sato polynomial $b_{(f_1,\dots,f_d)}(s)$ of the variety defined by I in the sense of Budur-Mustata-Saito, which coincides with the classical Bernstein-Sato polynomial if d=1.

They proved that $b_{(f_1,...,f_d)}(s)$ is inedependent of the choice of the generators f_1, \ldots, f_d of \sqrt{I} as long as d is fixed.

Dimension and multiplicity of a *D*-module

For each integer k, set

$$F_k(D_n) = \{ \sum_{|\alpha|+|\beta| \le k} a_{\alpha\beta} x^{\alpha} \partial^{\beta} \mid a_{\alpha\beta} \in K \}.$$

In particular, $F_k(D_n)=0$ for k<0 and $F_0(D_n)=K$. The filtration $\{F_k(D_n)\}_{k\in\mathbb{Z}}$ is called the Bernstein filtration on D_n . Let M be a finitely generated left D_n -module. A family $\{F_k(M)\}_{k\in\mathbb{Z}}$ of K-subspaces of M is called a Bernstein filtration of M if it satisfies

- **3** $F_k(M) = 0$ for $k \ll 0$

Moreover, $\{F_k(M)\}$ is called a good Bernstein filtration if

- **①** $F_k(M)$ is finite dimensional over K for any $k \in \mathbb{Z}$.
- ② $F_j(D_n)F_k(M) = F_{j+k}(M) \ (\forall j \ge 0)$ holds for $k \gg 0$.

Then there exists a (Hilbert) polynomial $h(T) = h_d T^d + h_{d-1} T^{d-1} + \cdots + h_0 \in \mathbb{Q}[T]$ such that

$$\dim_K F_k(M) = h(k) \quad (k \gg 0)$$

and $d!h_d$ is a positive integer.

The leading term of h(T) does not depend on the choice of a good Bernstein filtration $\{F_k(M)\}$. So J. Bernstein defined

- dim $M := d = \deg h(T)$ (the dimension of M).
- $\operatorname{mult} M := d!h_d$ (the multiplicity of M).

Basic examples

• D_n : Since

$$\dim_{\mathcal{K}} F_k^{(1,1)}(D_n) = {2n+k \choose 2n} = \frac{1}{(2n)!} k^{2n} + (\text{lower order terms in } k)$$

we have dim $D_n = 2n$ and $\operatorname{mult} D_n = 1$.

• R = K[x]: Set

$$F_k(R) = \{ f \in R \mid \deg f \le k \} \quad (k \in \mathbb{Z}).$$

Then $\{F_k(R)\}\$ is a good Bernstein filtration of K[x]. Since

$$\dim_K F_k(R) = \binom{n+k}{n} = \frac{1}{n!}k^n + (\text{lower order terms in } k),$$

we have dim R = n and $\operatorname{mult} R = 1$. In particular, R is a holonomic D_n -module.

Basic facts on dimension and multiplicity

Let M be a finitely generated left D_n -module.

- If $M \neq 0$, then $n \leq \dim M \leq 2n$ (Bernstein's inequality, 1970). M is said to be holonomic if M = 0 or dim M = n. R is a holonomic D_n -module.
- If M is holonomic, then length $M \leq \text{mult } M$, where length M is the length of M as a left D_n -module.
- dim M and length M are invariants of M as left D_n -module.
- $\operatorname{mult} M$ is invariant under affine (i.e., linear transformations + shifting) coordinate transformations of K^n .
- If M is holonomic, then $H_I^j(M)$ is a holonomic D_n -module for any ideal I of R and for any integer j.

The D-module for f^s and the b-function

Let $f \in R$ be a nonzero polynomial and s be an indeterminate. Set

$$N := D_n[s]f^s = D_n[s]/\mathrm{Ann}_{D_n[s]}f^s \subset R[f^{-1}, s]f^s,$$

where f^s is regarded as a free geneartor of $R[f^{-1}, s]f^s$. Then N has a natural structure of left $D_n[s]$ -module induced by the differentiation

$$\partial_i(f^s) = s \frac{\partial f}{\partial x_i} f^{-1} f^s \quad (i = 1, \dots, n).$$

(However, N is not holonomic as left D_n -module.)

The b-function, or the Bernstein-Sato polynomial $b_f(s)$ of f is the monic polynomial in s of the least degree such that

$$P(s)f^{s+1} = b_f(s)f^s \quad (\exists P(s) \in D_n[s]).$$

There are algorithms for computing $Ann_{D_n}f^s$ and $b_f(s)$ by using Gröbner bases in the ring of differential operators.

The *D*-module for f^{λ} with $\lambda \in K$

For $\lambda \in K$, set

$$N_{\lambda} := N/(s-\lambda)N = D_n f^{\lambda} \qquad (f^{\lambda} := f^s \mod (s-\lambda)N).$$

 N_{λ} is a holonomic D_n -module.

Proposition (Kashiwara)

If a nongenative integer m satisfies $b_f(-m-\nu) \neq 0$ for any $\nu=1,2,3,\ldots$, then $N_{-m}\cong R[f^{-1}]$ as left D_n -module.

By using this isomorphism, we can compute the structure of $R[f^{-1}]$ as a left D_n -module, starting from that of $N = D_n[s]/\mathrm{Ann}_{D_n[s]}f^s$.

Generators of $H_{(f)}^1(R)$

In terms of the the Cech cohomology, we have

$$H^1_{(f)}(R) = R[f^{-1}]/R.$$

Both $H_{(f)}^1(R)$ and $R[f^{-1}]$ are holonomic D_n -modules and

$$\operatorname{mult} H^1_{(f)}(R) = \operatorname{mult} R[f^{-1}] - 1, \quad \operatorname{length} H^1_{(f)}(R) = \operatorname{length} R[f^{-1}] - 1.$$

If $b_f(-m-\nu) \neq 0$, then $H^1_{(f)}(R)$ is generated by $[f^{-m}]$.

Proposition (essentially by Kashiwara)

 $H^1_{(f)}(R)$ is generated by the residue class $[f^{-1}]$ over D_n .

- \Leftrightarrow $R[f^{-1}]$ is generated by f^{-1} over D_n .
- $\Leftrightarrow b_f(\nu) \neq 0$ for any integer $\nu \leq -2$.

Length and multiplicity of N_{λ}

Theorem (Kashiwara)

If $b_f(\lambda + \nu) \neq 0$ for any $\nu \in \mathbb{Z}$, then length $N_{\lambda} = 1$, i.e., N_{λ} is an irreducible D_n -module. On the other hand, length $N_j \geq 2$ for any $j \in \mathbb{Z}$.

Proposition

For any $\lambda \in K$ and for any $j \in \mathbb{Z}$,

length
$$N_{\lambda+j} = \text{length } N_{\lambda}, \quad \text{mult } N_{\lambda+j} = \text{mult } N_{\lambda}.$$

As the simplest example, set $f = x = x_1$ with n = 1. Then

$$N_{\lambda} = D_1/D_1(x\partial_x - \lambda)$$
, mult $N_{\lambda} = 2$ for any $\lambda \in K$, length $N_{\lambda} = 1$ for any $\lambda \notin \mathbb{Z}$, length $N_j = 2$ for any $j \in \mathbb{Z}$.

In fact,
$$\cdots \cong N_{-2} \cong N_{-1} \ncong N_0 \cong N_1 \cong \cdots$$
.

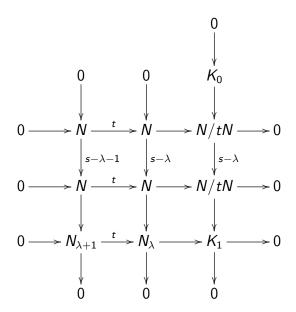
Sketch of the proof

Let

$$t: N \ni a(x,s)f^s \longmapsto a(x,s+1)ff^s \in N$$

be the shift operator with respect to s. Bernstein and Kashiwara proved that N/tN is a holonomic D_n -module and $b_f(s)$ is the minimal polynomial of s acting on N/tN.

Kashiwara's argument on the irreducibility of N_{λ} is based on the following commuting diagram with exact rows and columns:



b-function-free algorithm for $\operatorname{mult} H^1_{(f)}(R)$

Since $\operatorname{mult} H^1_{(f)}(R) = \operatorname{mult} R[f^{-1}] - 1$, we have only to compute $\operatorname{mult} R[f^{-1}]$.

Step 1: Compute a finite set G of generators of the left ideal $\operatorname{Ann}_{D_n[s]}f^s$ by using the aglorithm by O, or by Briançon-Maisonobe, which are based on Gröbner basis computation in the ring of differential operators, or in the ring of difference-differential operators.

Step 2: Choose an arbitrary integer k, e.g., k = 0, and specialze s to k:

$$G|_{s=k} := \{ P(k) \mid P(s) \in G \}.$$

Step 3: Compute a Gröbner basis G_0 of the left ideal of D_n generated by $G|_{s=k}$ with respect to a term order \prec compatible with the total degree, e.g., total degree (reverse) lexicographic order.

Step 4: Let $\langle \operatorname{in}_{\prec}(G_0) \rangle$ be the monomial ideal in the polynomial ring $K[x,\xi]$ generated by the initial monomials of the elements of G_0 . Compute the (Hilbert) polynomial h(T) such that

$$h(k) = \sum_{j=0}^{k} \dim_{\mathcal{K}}(K[x,\xi]/\langle \operatorname{in}(G_0) \rangle)_{j} \quad (k \gg 0),$$

where the rightmost subscript denotes the *j*-th homogeneous part.

Output: The leading coefficient of h(T) multiplied by n! gives $\operatorname{mult} R[f^{-1}] = \operatorname{mult} H^1_{(f)}(R) + 1.$

Proof of the correctness

Let -m be the minimum integer root of $b_f(s)$. Then $R[f^{-2}] \cong N_{-m}$. Hence, for any $k \in \mathbb{Z}$, we have

$$\operatorname{mult} R[f^{-1}] = \operatorname{mult} N_{-m} = \operatorname{mult} N_k.$$

An upper bound of $\operatorname{mult} H^1_{(f)}(R)$

Proposition

The multiplicity of $M := H^1_{(f)}(R)$ is at most $(\deg f + 1)^n - 1$.

Proof: Set $d := \deg f$. Then

$$F_k(M) := \left\{ \left[rac{a}{f^{k+1}}
ight] \mid a \in K[x_1, \dots, x_n], \ \deg a \leq (d+1)k
ight\} \quad (k \in \mathbb{Z})$$

is a (not necessarily good) Bernstein filtration of M with

$$\dim_{K} F_{k}(M) = \binom{n + (d+1)k}{n} - \binom{n + (d+1)k - d(k+1)}{n}$$
$$= \frac{\{(d+1)k\}^{n}}{n!} - \frac{k^{n}}{n!} + (\text{lower order terms w.r.t. } k)$$

This implies $m(M) < (d+1)^n - 1$.

One variable case (n = 1)

Proposition

If $f \in R = K[x]$ (the ring of polynomials in one indeterminate x) is nonzero and square-free, then $\operatorname{mult} H^1_{(f)}(R) = \deg f$.

Proof:
$$M := H^1_{(f)}(R) = R[f^{-1}]/R \cong D/Df$$
.
Set $F_k(M) := F_k(D_n)[f^{-1}] \cong F_k(D_n)/F_{k-d}(D_n)f$ with $d := \deg f$.

Then

$$\dim F_k(M) = \dim F_k(D_n) - \dim F_{k-d}(D_n)$$

$$= {k+2 \choose 2} - {k-d+2 \choose 2} = dk + \text{const.}$$

Example in two variables, 1

Proposition

Set $f = x^m + y^n \in R = K[x, y]$ with $1 \le m \le n$. Then the multiplicity of $M := H^1_{(f)}(R)$ is 2n - 1.

Proof: Since the *b*-function $b_f(s)$ of f does not have any negative integer ≤ -2 as a root, we have $M:=H^1_{(f)}(R)=D[f^{-1}]$. The annihilator $\operatorname{Ann}_D[f^{-1}]$ is generated by

$$f$$
, $E := nx\partial_x + my\partial_y + mn$, $P := ny^{n-1}\partial_x - mx^{m-1}\partial_y$

with $\partial_x = \partial/\partial x$, $\partial_y = \partial/\partial y$. $G = \{f, E, P\}$ is a Gröbner basis of $\mathrm{Ann}_D[f^{-1}]$ w.r.t. the total-degree reverse lexicographic order \prec such that $x \succ y \succ \partial_x \succ \partial_y$.

In case m < n: We have

$$sp(f, E) = nx\partial_x f - y^n E = x^m E - my\partial_y f,$$

$$sp(f, P) = n\partial_x f - yP = x^{m-1}E,$$

$$sp(E, P) = y^{n-1}E - xP = m\partial_y f.$$

The initial monomials of the Gröbner basis G are

$$\operatorname{in}_{<}(f) = y^{n}, \quad \operatorname{in}_{<}(E) = x\xi, \quad \operatorname{in}_{<}(P) = y^{n-1}\xi,$$

where ξ and η are the commutative variables corresponding to ∂_x and ∂_y repectively.

Hence for $N \ge n$,

$$\dim_{K} F_{N}(D_{n})/(\operatorname{Ann}_{D}[f^{-1}] \cap F_{N}(D_{n}))$$

$$= \sharp (\{x^{i}y^{j}\xi^{k}\eta^{l} \mid i+j+k+l \leq N\} \setminus \langle y^{n}, x\xi, y^{n-1}\xi \rangle)$$

$$= \sharp \{x^{i}y^{j}\eta^{l} \mid i+j+l \leq N, \ 0 \leq j \leq n-1\}$$

$$+ \sharp \{y^{j}\xi^{k}\eta^{l} \mid j+k+l \leq N, \ 0 \leq j \leq n-2, \ k \geq 1\}$$

$$= \sum_{j=0}^{n-1} {2+N-j \choose 2} + \sum_{j=0}^{n-2} {2+N-j-1 \choose 2}$$

$$= \frac{2n-1}{2}N^{2} + \cdots$$

In case m = n: We have

$$sp(f, E) = nx\partial_x f - y^n E = yP,$$

$$sp(f, P) = n\partial_x f - yP = y^n P + nx^{n-1}\partial_y f$$

$$sp(E, P) = y^{n-1}E - xP = m\partial_y f.$$

$$in_{<}(f) = x^n, \quad in_{<}(E) = x\xi, \quad in_{<}(P) = y^{n-1}\xi.$$

Hence for $N \ge n$,

$$\dim_{K} F_{N}(D_{n})/(\operatorname{Ann}_{D}[f^{-1}] \cap F_{N}(D_{n}))$$

$$= \sharp (\{x^{i}y^{j}\xi^{k}\eta^{l} \mid i+j+k+l \leq N\} \setminus \langle x^{n}, x\xi, y^{n-1}\xi \rangle)$$

$$= \sharp \{x^{i}y^{j}\eta^{l} \mid i+j+l \leq N, \ 0 \leq i \leq n-1\}$$

$$+ \sharp \{y^{j}\xi^{k}\eta^{l} \mid j+k+l \leq N, \ 0 \leq j \leq n-2, \ k \geq 1\}$$

$$= \sum_{j=0}^{n-1} {2+N-j \choose 2} + \sum_{j=0}^{n-2} {2+N-j-1 \choose 2}$$

$$= \frac{2n-1}{2}N^{2} + \cdots$$

Example in two variables, 2

Proposition

Set $f = x^m + y^n + 1 \in R = K[x, y]$ with $1 \le m \le n$. Then the multiplicity of $M := H^1_{(f)}(R)$ is nm + n - m

Proof: Since the curve f=0 is non-singular, the b-function is $b_f(s)=s+1$. Hence $M:=H^1_{(f)}(R)=D[f^{-1}]$. The annihilator $\operatorname{Ann}_D[f^{-1}]$ is generated by

$$f, \qquad P := ny^{n-1}\partial_x - mx^{m-1}\partial_y$$

since f = 0 is non-singular.

In case n=m:

 $G = \{f, P\}$ is a Gröbner basis of $\operatorname{Ann}_D[f^{-1}]$ w.r.t. the total-degree reverse lexicographic order \prec such that $x \succ y \succ \partial_x \succ \partial_y$. In fact

$$sp(f,P) = ny^{n-1}\partial_x f - x^n P = ny^{n-1}\partial_x f + x^n P$$

Since $\operatorname{in}_{<}(f) = x^n$ and $\operatorname{in}_{<}(P) = y^{n-1}\xi$, we have

$$\dim_{K} F_{N}(D_{n})/(\operatorname{Ann}_{D_{n}}[f^{-1}] \cap F_{N}(D_{n}))$$

$$= \sharp (\{x^{i}y^{j}\xi^{k}\eta^{l} \mid i+j+k+l \leq N\} \setminus \langle x^{n}, y^{n-1}\xi \rangle)$$

$$= \sharp \{x^{i}y^{j}\eta^{l} \mid i+j+l \leq N, \ 0 \leq i \leq n-1\}$$

$$+ \sharp \{x^{i}y^{j}\xi^{k}\eta^{l} \mid i+j+k+l \leq N, \ 0 \leq i \leq n-1, \ 0 \leq j \leq n-2, \ k \geq 1$$

$$= \sum_{i=0}^{n-1} {2+N-i \choose 2} + \sum_{i=0}^{n-1} \sum_{j=0}^{n-2} {2+N-i-j-1 \choose 2}$$

$$= \frac{n^{2}}{2}N^{2} + \cdots$$

In case m < n:

The Gröbner basis of $Ann_D[f^{-1}]$ w.r.t. the same order is $G = \{f, P, Q\}$ with

$$Q:=n(x^m+1)\partial_x+mx^{m-1}y\partial_y+mnx^{m-1}.$$

In fact

$$sp(f, P) = mn^{2}\partial_{x}f - yP = Q,$$

$$sp(f, Q) = mnx^{m}\partial_{x}f - my^{n}Q$$

$$= -m^{2}x^{m-1}y\partial_{y}f + mx^{m}Q - mn\partial_{x}f + Q,$$

$$sp(P, Q) = x^{m}P - y^{n-1}Q = -mx^{m-1}\partial_{y}f + P$$

Since
$$\operatorname{in}_{<}(f) = y^{n}$$
, $\operatorname{in}_{<}(P) = ny^{n-1}\xi$, $\operatorname{in}_{<}(Q) = nx^{m}\xi$, we have
$$\dim_{K} F_{N}(D_{n})/(\operatorname{Ann}_{D}[f^{-1}] \cap F_{N}(D_{n}))$$

$$= \sharp (\{x^{i}y^{j}\xi^{k}\eta^{l} \mid i+j+k+l \leq N\} \setminus \langle y^{n}, y^{n-1}\xi, x^{m}\xi \rangle)$$

$$= \sharp \{x^{i}y^{j}\eta^{l} \mid i+j+l \leq N, \ 0 \leq i \leq n-1\}$$

$$+ \sharp \{x^{i}y^{j}\xi^{k}\eta^{l} \mid i+j+k+l \leq N, \ 0 \leq i \leq m-1,$$

$$0 \leq j \leq n-2, \ k \geq 1\}$$

$$= \sum_{i=0}^{n-1} \binom{2+N-i}{2} + \sum_{i=0}^{m-1} \sum_{j=0}^{n-2} \binom{2+N-i-j-1}{2}$$

$$= \frac{n+m(n-1)}{2}N^{2} + \cdots$$

Hyperplane arrangements

Let $f_1, \ldots, f_m \in K[x] = K[x_1, \ldots, x_n]$ be linear (i.e., of first degree) polynomials and set $F = f_1 \cdots f_m$. We assume that f_1, \ldots, f_m are pairwise distinct up to nonzero constant and set

$$H_i = \{x \in K^n \mid f_i(x) = 0\}.$$

Then $\mathcal{A} := \{H_i\}$ defines an arrangement of hyperplanes in K^n .

• The only integer root of $b_F(s)$ is -1 (A. Leykin). $\Rightarrow H^1_{(F)}(R)$ is generated by [1/F].

Proposition 1

$$\operatorname{mult} H^1_{(F)}(R) = \operatorname{length} H^1_{(F)}(R).$$

Explicit formulae in special cases

Set $\operatorname{mult} \mathcal{A} := \operatorname{mult} H^1_{(F)}(R)$ and $\operatorname{length} \mathcal{A} := \operatorname{length} H^1_{(F)}(R)$.

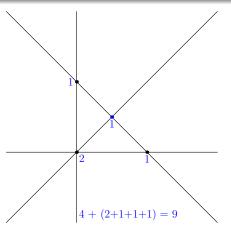
Let L(A) be the set of the distinct intersections, other than the empty set, of some elements of A. For an element Z of L(A), let us define its multiplicity by

$$\operatorname{mult}_{\mathcal{A}} Z := \sharp \{i \in \{1, \dots, m\} \mid Z \subset H_i\} - \operatorname{codim} Z + 1.$$

Proposition 2

If n = 2, then

$$\operatorname{mult} \mathcal{A} = \operatorname{length} \mathcal{A} \ = \ \# \mathcal{A} \ + \ \sum_{Z \in L(\mathcal{A}), \operatorname{codim} Z = 2} \operatorname{mult}_{\mathcal{A}} Z.$$



July 6, 2015, MSJ-SI in Osaka

Proposition 3

If n=3 and \mathcal{A} is central, then

$$\operatorname{mult} \mathcal{A} = \operatorname{length} \mathcal{A} \ = \ 2 \sum_{Z \in L(\mathcal{A}), \operatorname{codim} Z = 2} \operatorname{mult}_{\mathcal{A}} Z \ + 1.$$

Proof of Propositions 1,2,3

By induction on m = # A. Propositions 1,2,3 hold trivially for m = 1. Assume they hold for m-1 and set $A_{m-1} = \{H_1, \ldots, H_{m-1}\}$. We regard $\mathcal{A}' := \{H_i \cap H_m \mid 1 \leq i \leq m-1\}$ as a hyperplane arrangement in H_m . Set $F_{m-1} = f_1 \cdots f_{m-1}$. We have a Mayer-Vietoris sequence

$$0 \to H^1_{(F_{m-1})}(R) \oplus H^1_{(f_m)}(R) \to H^1_{(F)}(R) \to H^2_{(F_{m-1})+(f_m)}(R) \to 0.$$

$$0 \to H^1_{(F_{m-1})}(R) \oplus H^1_{(f_m)}(R) \to H^1_{(F)}(R) \to H^2_{(F_{m-1})+(f_m)}(R) \to 0.$$

Since $H^{i}_{(f_m)}(R) = 0$ for $i \neq 1$, we have

$$\operatorname{mult} H^2_{(F_{m-1})+(f_m)}(R) = \operatorname{mult} H^1_{(F_{m-1})}(H^1_{(f_m)}(R)) = \operatorname{mult} A'.$$

This also holds for length instead of mult. Hence we get

$$\operatorname{mult} \mathcal{A} = \operatorname{mult} \mathcal{A}_{m-1} + \operatorname{mult} \mathcal{A}' + 1,$$
$$\operatorname{length} \mathcal{A} = \operatorname{length} \mathcal{A}_{m-1} + \operatorname{length} \mathcal{A}' + 1.$$

Propositions 1,2,3 can be proved by using these recursive formulae.

