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Local cohomology of the polynomial ring

Let K be a field of characteristic 0 and R = K[x] = K[xi, ..., x,] be
the polynomial ring in n variables over K.

For an ideal / of R and an integer j, the j-th local cohomology group
H{(R) of R with support in [ is defined as the j-th right derived
functor of the functor I'; taking support in /. (It depends only on the
radical v/ of l.)

For example, if | = (f) with f € R\ {0}, then H/(R) =0 for j #1
and HX(R) = R[f"']/R.

It is an R-module but is not finitely generated over R in general.
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D-module structure of the local cohomology

Let Dn = K<X1, <oy Xn, 81, . 78n> with 8,- = 8/8x,~ be the n-th Weyl
algebra, or the ring of differential operators with polynomial
coefficients in the variables xq, ..., x,.

Then each H/(R) has a natural structure of left D,-module.
Moreover, it is finitely generated over D, and is holonomic, i.e., its
D-module theoretic dimension equals n if it is not zero.

So what might be of interest is the multiplicity of H(lf)(R) as
D-module in the sense of Bernstein.

(The dimension and the mulitiplicity will be explained later.)
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An algorithm for the local cohomology

Let / be generated by fi,...,fy € R. Introducing new variables
ti,..., tq, set R = K[t1,...,ta,x1,...,x,] and let J be the ideal of
R generated by t; — f; (i=1,...,d). Then

Hj(k) = Dn+d/N
with the left ideal N of D, 4 generated by

9 0f,

tt—f (j=1,....d Oy, —
J J (./ ) ) )7 /+k:18Xi

8tk (I:].,,n)

H!(R) equals the j-th cohomology of the D-module theoretic
restriction of HY(R) to the subspace t; = --- =ty = 0 of K9t". This
yields an algorithm to compute H/(R), combined with the restriction
algorithm. (There is another algorithm due to U. Walther.)
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Generators of the d-th local cohomology

Let b(s) be the b-function, or the indicial polynomial, of HY(R) with
respect to the subspace t; = --- =ty = 0 and let —m be the
smallest integer root of b(s).

Then, in terms of the Cech cohomology, Hf(R) is generated by the
residue classes of fl_l_’"1 e fd_l_md € Ry, with my4---4+mg < m
as a left D,-module. Here Ry..;, = R[(f; - - - f4) '] denotes the
localization of R by the multiplicative set {(f;---fy)" | i > 0}.

b(—s — d) coincides with the Bernstein-Sato polynomial b, . ,(s)
of the variety defined by / in the sense of Budur-Mustata-Saito,
which coincides with the classical Bernstein-Sato polynomial if d = 1.

They proved that b, ,)(s) is inedependent of the choice of the
generators fi, ..., fy of /I as long as d is fixed.
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Dimension and multiplicity of a D-module

For each integer k, set

Fi(Dn)=1{ > aapx*0” | aup € K}.
|| +]B<k

In particular, Fx(D,) =0 for k < 0 and Fo(D,) = K. The filtration
{F«(D,)}kez is called the Bernstein filtration on D,,.

Let M be a finitely generated left D,-module. A family {Fx(M)}xez
of K-subspaces of M is called a Bernstein filtration of M if it satisfies

@ Fi(M) C Fipi(M) (VkeZ),  Uper F(M)=M
0 FJ(Dn)Fk(M) C /:J+k(/\/l) (v_j, k € Z)
@ F(M)=0for k<0
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Moreover, {F,(M)} is called a good Bernstein filtration if
@ Fi (M) is finite dimensional over K for any k € Z.
@ F(D,)Fi(M) = Fi (M) (Vj > 0) holds for k > 0.

Then there exists a (Hilbert) polynomial
h(T)=hgT+ hy_1 T+ -+ hy € Q[T] such that

dimg Fx(M) = h(k) (k> 0)

and d'hy is a positive integer.
The leading term of h(T) does not depend on the choice of a good
Bernstein filtration {F,(M)}. So J. Bernstein defined

o dmM :=d =degh(T) (the dimension of M).
o mult M := dlhy (the multiplicity of M).
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Basic examples
@ D,: Since

5 = ———k*"+(lower order terms in k)
n

. 11 2n+ k 1

we have dim D,, = 2n and mult D,, = 1.
o R=K|x]: Set

Fi(R)={f € R|degf < k} (k €Z).
Then {Fx(R)} is a good Bernstein filtration of K[x]. Since

k 1
dimk Fe(R) = <n + ) = — k" + (lower order terms in k),

n n:

we have dim R = n and mult R = 1. In particular, R is a
holonomic D, -module.
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Basic facts on dimension and multiplicity

Let M be a finitely generated left D,-module.

o If M #0, then n < dim M < 2n (Bernstein's inequality, 1970).
M is said to be holonomic if M =0 ordimM =n. Ris a
holonomic D,-module.

e If M is holonomic, then length M < mult M, where length M is
the length of M as a left D,-module.

@ dim M and length M are invariants of M as left D,-module.

e mult M is invariant under affine (i.e., linear transformations +
shifting) coordinate transformations of K".

o If M is holonomic, then H}(M) is a holonomic D,-module for
any ideal / of R and for any integer ;.
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The D-module for f° and the b-function

Let f € R be a nonzero polynomial and s be an indeterminate. Set
N := D,[s]f* = D,[s]/Annp,gf° C R[f ', s]f*,

where f° is regarded as a free geneartor of R[f~!,s]f5. Then N has a
natural structure of left D,[s]-module induced by the differentiation
of
0i(f°) = Sa_x,-f_lfs (i=1,...,n).
(However, N is not holonomic as left D,-module.)
The b-function, or the Bernstein-Sato polynomial bf(s) of f is the
monic polynomial in s of the least degree such that

P(s)ft = be(s)f°  (3P(s) € D,[s]).

There are algorithms for computing Annp,° and b¢(s) by using
Grobner bases in the ring of differential operators.
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The D-module for f* with \ € K

For A € K, set
Ny:=N/(s = AN =D,f* (f:=f mod (s — \)N).
N, is a holonomic D,-module.

Proposition (Kashiwara)

If a nongenative integer m satisfies bs(—m — v) # 0 for any
v=1,23 ..., then N_,, = R[f!] as left D,-module.

By using this isomorphism, we can compute the structure of R[f}]
as a left D,-module, starting from that of N = D,[s]/Annp,5f°.
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Generators of H(lf)(R)

In terms of the the Cech cohomology, we have
H(lf)(R) = R[f']/R.
Both H(;)(R) and R[f '] are holonomic D,-modules and
mult Hs)(R) = mult R[f*]—1, length H;(R) = length R[f]—1.
If be(—m —v) # 0, then H(;(R) is generated by [f~"].

Proposition (essentially by Kashiwara)

His(R) is generated by the residue class [f~*] over D,.
& R[f!] is generated by f~! over D,.
< br(v) # 0 for any integer v < —2.
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Length and multiplicity of N,
Theorem (Kashiwara)

If be(X + ) # 0 for any v € Z, then length N, =1, i.e.,, N, is an

irreducible D,-module. On the other hand, length N; > 2 for any
JjE€Z.

Proposition
For any A € K and for any j € Z,

length N)\_H' = length N)\, mult N)\+j = mult N)\.

As the simplest example, set f = x = x; with n = 1. Then

Ny = Dy/Dy(x0x — A), mult Ny =2 for any A € K,
length Ny =1 for any A € Z, length N; = 2 for any j € Z.

Infact, - =N ,L=ZN;ZN=N=---
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Sketch of the proof

Let
t:N>a(x,s)f*— a(x,s+1)ff°e N

be the shift operator with respect to s. Bernstein and Kashiwara
proved that N/tN is a holonomic D,-module and b¢(s) is the
minimal polynomial of s acting on N/tN.

Kashiwara’s argument on the irreducibility of N, is based on the
following commuting diagram with exact rows and columns:
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0 0 Ko
0 N—t—=N N/tN —0
s—A—1 s—A s—A
0 N— >N N/tN —=0
00— Nyy1 —— N, K1 0
0 0 0
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b-function-free algorithm for mult H(lf)(R)

Since mult H;)(R) = mult R[f~!] — 1, we have only to compute
mult R[f 1]

Step 1: Compute a finite set G of generators of the left ideal
Annp,[f° by using the aglorithm by O, or by Briangon-Maisonobe,
which are based on Grobner basis computation in the ring of
differential operators, or in the ring of difference-differential operators.

Step 2: Choose an arbitrary integer k, e.g., k = 0, and specialze s
to k:
Gls=x :={P(k) | P(s) € G}.

July 6, 2015, MSJ-Sl in_Osaka %2 /

Toshinori Oaku (Tokyo Woman'’s Christian USeme D-module theoretic aspects of the loca



Step 3: Compute a Grobner basis Gy of the left ideal of D,
generated by G|s—, with respect to a term order < compatible with
the total degree, e.g., total degree (reverse) lexicographic order.

Step 4: Let (in(Gp)) be the monomial ideal in the polynomial ring
K|x, £] generated by the initial monomials of the elements of Gp.
Compute the (Hilbert) polynomial h(T) such that

h(k) = _dimx(K[x, €]/ (in(Go))); (k> 0),

j=0
where the rightmost subscript denotes the j-th homogeneous part.

Output: The leading coefficient of h(T) multiplied by n! gives
mult R[f 7] = mult H(lf)(R) + 1
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Proof of the correctness

Let —m be the minimum integer root of b¢(s). Then R[f 2] = N_,,.
Hence, for any k € 7Z, we have

mult R[f ] = mult N_,,, = mult N.
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An upper bound of mult H(lf)(R)

Proposition
The multiplicity of M := H(lf)(R) is at most (deg f +1)" — 1. J

Proof: Set d := degf. Then

Fu(M) = {[fkaﬂ] lac Kx,...,x,), dega < (d+ 1)k} (k € Z)

is a (not necessarily good) Bernstein filtration of M with

dimi (M) = n+(d+1)k\ (n+(d+1)k—d(k+1)
g(dﬂ,),k}" >k_ ( ’ )

+ (lower order terms w.r.t. k)

n! n!
This implies m(M) < (d +1)" — 1.
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One variable case (n = 1)

Proposition
If f € R = K|x] (the ring of polynomials in one indeterminate x) is
nonzero and square-free, then mult H(lf)(R) =degf.

Proof: M := Hl\(R) = R[f~']/R = D/DF.
Set Fk(M) = Fk(Dn)[f_l] = Fk(Dn)/Fk_d(Dn)f with d := deg f.
Then

dim F(M) = dim Fi(D,) — dim Fe_q(D,)

k+2 k—d+2
:(;)—( 2+):dk+const.
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Example in two variables, 1

Proposition
Set f =x"+y" € R= K][x,y] with 1 < m < n. Then the
multiplicity of M := H,(R) is 2n — 1.

Proof: Since the b-function bf(s) of f does not have any negative
integer < —2 as a root, we have M := H{;(R) = D[f~']. The
annihilator Annp[f~!] is generated by

f, E:=nxdc+myd,+mn, P:=ny" 0, — mx" 9,

Y

with 0, = 0/0x, 0, = 0/0y. G = {f,E, P} is a Grobner basis of
Annp[f~!] w.r.t. the total-degree reverse lexicographic order < such
that x = y > Oy > 0,.
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In case m < n: We have

sp(f, E) = nxoxf — y"E = x™E — my0, f,
sp(f, P) = nd,f —yP = x™'E,
sp(E,P) = y" 'E — xP = mo,f.

The initial monomials of the Grobner basis G are
in (f)=y", in(E)=x§ in(P)= y”flg,

where ¢ and 7 are the commutative variables corresponding to 0, and
0, repectively.
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Hence for N > n,

dimy Fy(D,)/(Annp[f 1] N Fu(D,))

= 8(0YEY i)+ k1< NP\ (7 X6,y 1))

=#{x'y/n |i+j+1<N,0<j<n—1}
+8{yEn | j+k+1<N,0<j<n-2k>1}

n—1 . n—2 i
B 2+ N— 2+N—j—1
_Z( 2 )+Z( 2 )
Jj=0 j=0
_2n—1

N2+ ...
3 +
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In case m = n: We have

sp(f, E) = nx0,f — y"E = yP,

sp(f, P) = nd,f — yP = y"P + nx""10,f
sp(E,P) = y" 'E — xP = mo,f.

in<(f) = ) 11’1<( ) = X£7 11’l<('D) = ynflg.
Hence for N > n,
dimyk Fn(D,)/(Annp[f~1] N Fy(D,))
= t({xyEy [ i)+ k+1< NP\ (x", %€, y"E))
=#{x'yn' | i+j+1<N0<i<n—1}
+i{yekn | j+k+1<N,0<j<n—2 k>1}

n—1 . n—2 .
B 24+ N— 24+ N—-j—-1
_Z< 2 >+Z< 2 )
j=0 j=0
_2n—1
2
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Example in two variables, 2

Proposition
Set f =x"+y"+1€ R=K][x,y] with 1 < m < n. Then the
multiplicity of M := H(,(R) is nm +n —m

Proof: Since the curve f = 0 is non-singular, the b-function is
be(s) = s+ 1. Hence M := H(;,(R) = D[f~*]. The annihilator
Annp[f~!] is generated by

f P :=ny" 19, — mx™ 19,

Y

since f = 0 is non-singular.
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In case n = m:

G = {f, P} is a Grobner basis of Annp[f~!] w.r.t. the total-degree
reverse lexicographic order < such that x > y > 0, > 0,. In fact

sp(f, P) = ny" '0,f — x"P = ny" !0, f + x"P

Since in.(f) = x" and in_(P) = y" ¢, we have
dimK FN(Dn)/(AHHDn[f_l] N FN(D,,))
= t({XVED i+ j+k+ 1< NP\ (X", y"16))
= t{xyn | i+j+ 1< N 0<i<n-1}
Xy i kI <N, 0<i<n-1,0<j<n—-2 k>1

n—1 . n—1 n-2 . .

24N —i 24+N—-i—j—-1

DGR ED 3 Gy

i=0 i=0 j=0

2
n
— N?2 ...
5 +
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In case m < n:

The Grobner basis of Annp[f~1] w.r.t. the same order is
G = {f,P,Q} with

Q = n(x" +1)0x + mx™ 1yd, + mnx™" 1.
In fact

sp(f, P) = mn?0,f — yP = Q,
sp(f, Q) = mnx"0,f — my"Q

= 2’"1y81"—|—mx’"Q mno, f + Q,
sp(P, Q) = x™"P — y"1Q = —mx™" 18yf+ P
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Since in_(f) = y", in(P) = ny" !¢, in.(Q) = nx™¢, we have

dimK FN(Dn)/(AnnD[ffl] N FN(D,,))

= 8({xX"yIrn | i+j+k+1<NY\ (" y" e, xmE))
=t{x'y'n |i+j+1<N 0<i<n-—1}

+ Xy it jrk+I<N,0<i<m—1,

n—1 . m—1 n-2 . .

B 24+ N— | 24N—-i—j—1

() E ()
i=0 i=0 j=0

-1
:n—l—mgn )N2+~~~
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Hyperplane arrangements

Let fi,...,fn € K[x] = K[x1, ..., x,] be linear (i.e., of first degree)
polynomials and set F = f; - - - f,,,. We assume that f,...,f, are
pairwise distinct up to nonzero constant and set

Hi = {x € K" | fi(x) = 0}.

Then A := {H;} defines an arrangement of hyperplanes in K".

@ The only integer root of be(s) is —1 (A. Leykin).
= H(r)(R) is generated by [1/F].

Proposition 1
mult H(l,_-)(R) = length H(lF)(R). J
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Explicit formulae in special cases

Set mult A := mult Hl)(R) and length A := length Hi(R).

Let L(.A) be the set of the distinct intersections, other than the
empty set, of some elements of A. For an element Z of L(.A), let us
define its multiplicity by

mult 4Z :=g{ie{l,...,m} | Z C H;} —codim Z + 1.

July 6, 2015, MSJ-Sl in_Osaka 30/
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Proposition 2
If n =2, then

mult A = length A = #A4 + Z mult 4Z.

Zel(A), codim Z=2

4+ (241414+1) =9
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Proposition 3
If n =3 and A is central, then

mult A = length A = 2 Z mult 4Z + 1.

Zel(A), codim Z=2

Proof of Propositions 1,2,3

By induction on m = #.A. Propositions 1,2,3 hold trivially for m = 1.
Assume they hold for m — 1 and set A, 1 = {H1,...,Hn1}. We
regard A :={H;NH, |1<i<m-—1} as a hyperplane arrangement
in Hy,. Set F,_1 =1f;---f,_1. We have a Mayer-Vietoris sequence

0 = Hie, ) (R) © Hiz,y (R) = Hir(R) = Hig, 15 (R) = 0.

July 6, 2015, MSJ-Sl in_Osaka :32,% /

Toshinori Oaku (Tokyo Woman's Christian USeme D-module theoretic aspects of the loca



0 = Hr, (R) @ Hir\(R) = Hirpy(R) = Hie, 1y (ry(R) = 0.

Since H!

(f,,,)(R) =0 for i # 1, we have

mult e,y 4y (R) = mult A,y (Hy(R)) = mult A"
This also holds for length instead of mult. Hence we get

mult A = mult A,,_; + mult A" + 1,
length A = length A, ; + length A" + 1.

Propositions 1,2,3 can be proved by using these recursive formulae.
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44 (2414141) =9 9+ (141) +1 = 12
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