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Abstract 

Let f be an arbitrary polynomial of n variables defined over a field of characteristic zero. We 
present algorithms for computing the b-function (Bernstein-Sato polynomial) of f, the D-module 
(the system of linear partial differential equations) for s, and the algebraic local cohomology 
group associated with f by using Grijbner bases for differential operators. @ 1997 Elsevier 
Science B.V. 
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1. Introduction 

Let K be an algebraically closed field of characteristic zero and 0 = 0~. the sheaf 
of rings of regular functions on K”. We denote by D = & := O(&, . . . , a,) the sheaf 
of rings of (algebraic) differential operators on K” with a=(al,...,a,)=(a/axl,..., 
a/ax,), where x = (x1 , . . . ,xn) stands for the coordinate system of K” (cf. [4, 51). 

Let f = f(x) E K[x] be an arbitrary polynomial of IZ variables. Put L := O[f-‘,sJf”, 
which is by definition a free O[f -‘,s]-module of rank one generated by f” with a 
parameter s. Then L has a natural structure of left D[s]-module. We shall be concerned 
with the left D[s]-module N := D[s]fS, which is a subsheaf of L. 
Put .I- := {P(s) E D[s] 1 P(s)fS = 0). Th en we have N = D[s]/Jf. Let us denote by 
No the stalk of N at the origin 0 E K”. Our aim is to present algorithms for the 
following problems by using Griibner basis computation in the Weyl algebra (the 
ring of differential operators with polynomial coefficients) initiated by Galligo 
[l l] (cf. also [8, 281): 
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(i) to compute the b-function (the Bernstein-Sato polynomial) b,(s) of f ,  which 
is by definition the manic polynomial b(s) E K[s] of the least degree that satisfies 

P(s,x, d) f "+'  =b( s ) f " in No, 

with some P(s,x, 8) E D[s]s; 
(ii) to find a set of generators of the sheaf of left ideals 1’ of D[s]; 

(iii) to find an explicit representation of the algebraic local cohomology group 
H/ y l ( 0) =O[ f - l ] / O as a left D-module with Y:={xEP f(x)=O} (cf. [14] for 
the definition). 

We can also compute the characteristic varieties and the multiplicities of N and 
H/r,(O) by using the algorithms for (ii) and (iii) (cf. [21]). If the b-function bf(s) 
has no negative integral roots other than -1, then O[S-‘1 is isomorphic to N with s 
replaced by -1 (cf. [13]). Hence we can compute the structure of O[f-‘1 under this 
assumption. 

Our methods for these three problems utilize the homogenization technique 
[22,23,26] with respect to the filtration of Kashiwara-Malgrange [ 15, 191 and the view- 
point of Malgrange [ 181 for studying the structure of N. We present two algorithms 
for solving the problem (i): one is independent of the problem (ii) and has been pre- 
sented in [26] in a more general context but without any reference to implementation 
or examples; the other is newly obtained as a direct application of the algorithm for 
solving (ii). Details of our algorithm for the problem (iii) will appear elsewhere [24] 
as an application of computation of induced systems of D-modules. Hence the most 
essential points of the present paper lie in the solution to the problem (ii) as well as 
reports on actual implementation of algorithms for (i)-(iii) by using Kan [29] and 
partly Risa/Asir [20] with emphasis on the case with parameters. 

When K coincides with the field C of complex numbers, we can also work with 
the sheaf Da” of analytic differential operators on C”. Our algorithms are also valid 
in this case without any modification since Da” is faithfully flat over D. In the actual 
computation, however, instead of assuming K to be algebraically closed, we assume 
that K is generated by a finite number of (algebraic or transcendental) elements over 
the field Q of rational numbers and that the algebraic relations among these elements 
are specified. Thus we can treat the case where f has parameters and/or f is defined 
over an algebraic number field. 

In the classical case K = C, problems (i)-(iii) have deep connections with the sin- 
gularity structure of the hypersurface f = 0 and have been extensively studied the- 
oretically (see e.g. [3, 13, 14, 18, 191). Moreover, several algorithms for (i) and (ii) 
have been known under some conditions on f: An algorithm of computing b,-(s) was 
first given by Sato et al. [27] when f(x) is a relative invariant of a prehomogeneous 
vector space. Briancon, Maisonobe et al. [6, 171 have given an algorithm of computing 
bf(s) for f(x) with isolated singularity (see also [12] for the case with parameters). 
Besides, Yano [32, 311 worked out many interesting examples of b-functions system- 
atically; Aleksandrov-Kistlerov [I] have computed the b-functions for some discrimi- 
nants of versa1 deformations, which have non-isolated singularities, by using computers 
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following an observation of Yano-Sekiguchi [33]. These authors have also solved the 
problem (ii) in the course of solving (i) under respective conditions. However, as far 
as the present author knows, no general algorithms for (i)-(iii) are known that can be 
applied to an arbitrary polynomial f. 

2. D-modules for f” d’aprb Malgrange 

We use the same notation as in the introduction. We define a sheaf of rings AID 
on K” as follows: For a Zariski open set U of K”, the set of sections of A1 D over U 
consists of the differential operators represented by a finite sum 

where c( = (al,. . . ,a,)~w, ~,vEN with N:={0,1,2,3 ,..., }, a,=ajat, aa=apl... 
a;, and a,,,(x) is a regular function on (i.e. a rational function whose denominator 
never vanishes on) U. 

As was observed by Malgrange [18], L = 0[f-‘,s]f” has also a structure of left 
Al D-module defined by 

t(g(x,s)fS)=g(x,s+ l)f”“, at ( g( x , s ) f s ) = +gc s  -  ip 

for a section g(x,s) of O[f-‘,s]. Put M := (AlD)fS and N := D[s]fs. Then we have 
inclusions N C A4 c L. 

Lemma 1. The sheaf of left ideals 

I := (AlD)(t - f(x)) + 2 (A, D)(ai 
i=l 

of AID with fi := af /axi is maximal, i.e., 
for any p E K”. 

+ fiw 
its stalk Ip is a maximal left ideal of (AID)~ 

Proof. The coordinate transformation t’ = t - f(x), x’ =x induces a ring automorphism 
of AID. Hence we may assume f(x) = 0 and p = 0. Thus, we can apply the same 
argument as [ 18, Lemma 4.11. 0 

Proposition 2 (Ma&range [IS]). A4 is isomorphic to (AlD)/Z. 

Let Jr be the sheaf of left ideals of D consisting of sections P(s) of D[s] which 
satisfy P(s)fS = 0. The following fact is the key to our solution of problem (ii). 

Proposition 3. For a Zariski open set U of K”, the set of sections of Jr over U is 
given by 

~(u,J~)={P(-~ - 1) p(ta,)~r(u,r f-7 Dpa,])). 
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Proof. This follows immediately from Proposition 2, the relation -&tf” =sf”, and the 
fact that N is a subsheaf of M. q 

For each integer k, we define a subsheaf Fk(Al D) of AID consisting of sections of 
AID of the form 

with apvcl being a section of 0. Then {fi(AlD)} kEZ constitutes a special case of the 
filtration introduced by Kashiwara [ 151 and MaIgrange [ 191 for the study of vanishing 
cycle sheaves (the V-filtration). We make an essential use of the following fact for 
one of our algorithms of solving the problem (i). 

Proposition 4. For b(s) EK[s], we have P(s)f”+’ = b(s)fs in No with some 
P(s)ED[s]o ifandonly ifb(-&t)-QEZo with some &EF_I(AID)o. 

Proof. First assume P(s)f”+’ = b(s)f” with P(s) E D[s]o. Then we have (b(-d,t) - 
P(-d,t)t)f” = 0 and I’(-i3,t)t belongs to F_l(A,D)o. 

Conversely, suppose b(-&t)- Q E 10 with Q E F_,(Al D)o. Expanding Q in the form 
Q = cJ”=, Qi(t&)tJ with Qj(td,) E D[td,]o, which is, in fact, a finite sum, put 

P(Q) := cQj(-s - l)j-‘-’ E D[slo. 
j=l 

Then we get (b(-s - 1) - p(Q)f)f” = 0. 0 

3. Griibner bases with parameters and homogenization with respect 
to the V-filtration 

Let K be a field of characteristic zero. The Buchberger algorithm for computing 
Grobner basis does not require field extension. Hence, we can work in a field K over 
which the inputs are defined instead of working in the algebraic closure of K. We 
denote by A,(K) the Weyl algebra in variables n with coefficients in K [4]. 

Put a=(al,..., al). We assume that a set G(a) of generators of an ideal J(a) of the 
polynomial ring Q[a] = Q[al, . . . , a/] is given so that K is isomorphic to the quotient 
field of Q[a]/J(a). (Thus, J(a) must be a prime ideal.) 

Adding new commutative variables y = (~1,. . . ) y,,, ) as well as a = (al, . . , at), we 
work in the rings A,+l(Q)[y,a] and A,+l(K)[y] of differential 
meters. Hence their centers are Q[y,a] and K[yJ, respectively. 
element P of A,+,(Q)[y,a] is written in a finite sum 

operators with para- 
More concretely, an 

(1) 
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with ,u, v E N, cc, jI E N”, n EN*, y E Ne, and c~,,B,,~ E Q, while an element P of 
A,+i(K)[y] is written in the form 

(2) 

with p, v E N, a, /3 E N”, r EN”, and cyvap4 E K. 
Let us put Lo := N2i2n+m whose element (p, v, ~1, /I, q) corresponds to the monomial 

y~tflPa;afi of A,+l(K)[y]; also put L :=LO x Ne whose element (p, v, CX, 8, q, y) corre- 
sponds to the monomial aJ’y~t?Pa~@ of A,+i(Q)[y,a]. 

In general, a total order < on L is called a monomial order if it satisfies 
(Al) CC < /I implies ~+y + p+y for any cc,/3,y~L; 
(A2) 0 4 c( for any CI E L \ (0). 

Moreover, we call a monomial order 3 on 15 parametric (with respect to parameters 
a) if it satisfies 

(A3) (0,~) 3 (a,~‘) for any CCE&\{O} and y,y’~N”. 
In the sequel, we denote by + a monomial order on L satisfying (Al)-(A3), and 
by 30 the restriction of + to LO Y LO x (0) c L. 

For an element P of A,+l(Q)[y,a] of the form (1) and P of A,+l(K)[y] of the 
form (2), we define their leading exponents lexp(P) and lexp,(P) with respect to the 
orders < and -CO to be the maximum elements of the sets 

{(P> v, K P> % Y 1 E L I CjlVEB17 # 013 
I(PL, v> 4 A t?> E Lo I CpaBq # 01 

in the orders % and -XO respectively. Moreover, for a subset S of A,+l(Q)[y,a] and 

SO of4,+1W[yl, we put 

E(S) := {lexp(P) 1 P E S \ {0}}, 

Eo(SO) := {lexpo(P) I P E SO \ {O}}. 

Definition 5. A finite subset G of a left ideal Z of A,+l(Q)[y,a] (or of A,+,(K)[y]) 
is called a Griibner basis of Z with respect to the order -C (or *o) if 

E(Z) = lJ (lexp(P) + L), . 

PEG ( 
or Z&(Z) = lJ (lexpo(P> + LO) (3) 

PEG ) 

Moreover, G is called a minimal Griibner basis if (3) never holds with G being 
replaced by a proper subset of G. 

If a finite set of generators of a left ideal Z of A,+i(Q)[y,a] (or of A,+l(K)[y]) is 
given, the Buchberger algorithm [7] computes a Griibner basis off as in the polynomial 
case (cf. [ 11, 8, 281). 

Our first aim is to make clear the meaning of the Griibner basis computation with 
parameters a. This will be needed, e.g., for the computation of the b-function of a 
polynomial with parameters. 
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Let rc : Q[a]  --+ Q[u] /J (a) C K be the natural ring homomorphism and let w : L -+ LO 
be the projection. Then rc extends to a ring homomorphism 

For P E &+I (Q>[y, al of the form (11, put lexp(P) = (PO, vo, ~0, PO, ro, YO) and 

For a left ideal I of A,+l(Q)[y,u], let rc(1) be the left ideal of A,+I(K)[.YI which 
is generated by {z(P) /P E I}. 

Proposition 6. Let I be a leji ideal of A,+l(Q)[y,u] containing J(u). Let G be a 
Griibner basis of I with respect to 4. Then n(G) := {z(P) 1 P E G, n(P) # 0) is a 
Griibner basis of z(I) with respect to -10. 

Proof. It suffices to prove 

Eo(Tc(~)> = IJ @w,(Q) + LO). 
Q@(G) 

(4) 

Since z(P) E n(l) for each P E G, the inclusion > in (4) is obvious. Put G(u):= 
G II Q[u] and let J(u) be the ideal of Q[u] generated by G(u). Then G(u) is a 
Grobner basis of I n Q[u] with respect to the restriction of 4 to (0) x Ne since 
the order 4 is an order for eliminating the variables other than a. It follows j(u) con- 
tains J(u). First, let us assume .?(a) #J(u). Then G(u) contains an element g(u) E Q[u] 
such that rc(g(u)) # 0. Hence we have n(1) =A,+,(K)[y] in this case and the assertion 
of the theorem is valid. 

Now let us assume J(u) =J(u). We may assume that G is a minimal GrSbner 
basis. Our aim is to prove the inclusion c in (4). Suppose Q E n(Z) \ (0). Then there 
exist g(u) E Q[u] and P E I so that z(g(u)) # 0 and Q = n(g(u))-‘z(P). Then we have 
lexpo(Q) = lexp,($P)). Let P above be in the form (1) and put 

Let P’ be the sum of the terms c~vaB,Ju)y”t~x”C$‘@ such that ~,,,~,(a) 9 J(u). Then 
we have z(P) = z(P’) and P’ E I since J(u) c I. Note that lexpo(n(P’)) = a(lexp(P’)) 
holds since n(lcoef0(P’))#O in view of the definition of P’ and the condition (A3). 

Moreover, dividing lcoefo(P’) by G(u), we may assume 

lexp(lcoefo(P’)) 6 lJ (lexp(g) + L). 
g@(a) 

There exists PO E G such that lexp(P’) E lexp(PO) + L since G is a Grobner basis 
of I. In view of the observation above, PO does not belong to G(u). Then we have 
lexpo(z(PO)) = m(lexp(P0)) since lcoefo(P0) @J(u) by virtue of the minimality of G. 
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Thus, we get 

lexps(Q) = a(lexp(P’)) E lJ (lexps(R) + LO). 
REn(G) 

0 

Next, let us consider the specialization of the parameters a. Let J(a) be an- 
other prime ideal of Q[a] which contains J(a). Then the natural ring homomorphism 
Q[a]/J(a)-+Q[a]/_?(u) can be regarded as a specialization of the parameters a. 
Let us denote by ii: : Q[u] -+ Q[u]/J”(u) CL the canonical ring homomorphism with 

Z? being the quotient field of Q[u]/j(u). Then 72 extends to a ring homomorphism 
f :An+~(Q)[y>al -&+d~)[yl. 

Proposition 7. Let I be a left ideal of A,+l(Q)[y,u] containing J(u). Let G be u 
Grdbner basis of I with respect to +. Assume lcoefo(P) @j(u) for any P E G such 
that n(P) #O. Then E(G) := {E(P) 1 P E G, Z(P) #O} is a Griibner basis (with re- 
spect to 40) of the left ideal E(l) of A,+l(Z?)[y] generated by {it(P) ) P E I}. 

Proof. It is easy to see that it(G) generates 5(l). Set G = {PI,. . ,Pd}. We may assume 
that G is a minimal Griibner basis. Applying Proposition 6 to the case J(u) = {0}, we 
know that G also constitutes a Griibner basis in A n+l(Q(a))[~l, where Q<a> denotes 
the field of rational functions of a. For 1 5 i <i < d, let lcoefs(c),$P-lcoefo(P),$jPj 
be the S-polynomial of P and pj in A,,+, (Q(u))[y], where $ and Sij are minimum 
monomials in A,+1 (Q)[y] such that lexp,($P) = lexps(SijPj) holds (here lexp, denotes 
the leading exponent of an element of A,+l(Q(u))[y] with respect to 40). Then there 
exist Qijk E &+~(Q(u))[Y] SO that 

lCOefo(~)$& - lCOefo(fl)S;j~ = 5 QijkPk 
k=l 

and that leXpo(QijkPk) 4 kXpo($fi) or else Qijk = 0. In view of the division algorithm 
to obtain (5), we can take Qijk so that its denominator is a power of lcoefo(Pk). 

Now assume n(Pk)#O for k= l,..., d’, and rt(Pk)=O for k=d’+ l,..., d. There 
exists g E Q[u] \ j(u) such that gQijk E A,+i(Q)[y, U] for k = 1,. . . , d’ since 
lcoefo(Pk) @J(u) and J”(u) is prime. Then by (5) we have 

E(lcoefs(~))it($)E(P) - E(lcoefo(P))E(Sij)Z(Pj) 

and leXpo(ff(@ijkpk)) 3 kXpo(7?(~i~)) or else E(Qijk) = 0 for 1 2 i <j 5 d’. This 
implies that E(G) is a Grijbner basis with respect to +o. 0 

Next, let us introduce the notion of homogeneity and homogenization with respect 
to the V-filtration. Now that the relation between Griibner bases of A,+1 (Q)[y, a] and 
of A,+,(K)[y] is established, we have only to work with A,+i(K)[y]. 
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Definition 8. Let P be an element of &+1(K) of the form 

P= c c,,,,&“a;a~ 
rc,V,B 

with cptvlp E K. Then the F-order ord,(P) of P is defined by 

ordF(P) := max{v - p ) c~,,,P # 0 for some CI, /I E N”}. 

If k = ordF(P), the formal symbol c?(P) of P is defined by 

(f-3) 

f?(P) = r&(P) := c ~c,,,~tYXad;@ E&+1(K). 
v-p=koc,p 

Definition 9. Let s be a new commutative variable and let P be a non-zero element 
of ,4,+1(K) of F-order m. Then we define e(P) = $(P)(s) E A,(K)[s] by 

In order to define the homogeneity for elements of A,+i(K)[y], we fix a weight vector 
6=(61,...,6,)~2” and write (6,q)=6iqt + ... + 6,r], for q=(q,...,qm) E N”’ 
We shall assume 6, = - 1 throughout the present paper. 

Definition 10 (F-homogeneity). We call an element P of A,+i(K)[y] F-homogeneous 
(of order k) if it is written in the form (2) and there exists an integer k so that 
cp,,,pq #O if v - p + (6,~) fk. Moreover, a left ideal of A,+1(K)[y] is called 
F-homogeneous if it is generated by F-homogeneous elements. 

Lemma 11. If two elements P, Q ofA,+,(K)[y] are both F-homogeneous, then so is 
PQ. In particular, the Buchberger algorithm for computing Griibner bases preserves 
the F-homogeneity. 

Definition 12 (F-homogenization). For an element P of A,+i(K) of the form (6), put 
k:= min{v - p / cfivctp # 0 for some CX, p E N”}. Then the F-homogenization 
Ph E A,+1(K)[yl] of P is defined by 

Ph = Ph(y1) := c C~“,/jy;-~-kt~x”d;C3~ EA,+1(K)[y1]. 
Lv,%B 

Ph is F-homogeneous of order k. 

Lemma 13. For P, Q E &+1(K), we have (PQ)h = PhQh. 

Lemma 14. For PI,. . ,Pd E &+1(K), there exist n, ~1,. . . , nd E N so that 

yY(P* +. . . + Pd)h = $‘(p# + ’ + yy(fi)h. 
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Lemma 15. Let I be an F-homogeneous left ideal of A,+l(K)[yl] and put 
1(l):={P(l)]P(yi)~Z}. Then, for an element P of A,+l(K), we have PEI(I) if 
and only if there exists n EN so that y:Ph E I. 

Proof. Assume P E I( 1). Then there exist F-homogeneous Qi (yl ), . . . , Qd( yl ) E I such 
that P = Q, ( 1) +. . + Qd( 1). Then by the preceding lemma, there exist q, 41,. . . , &j E N 
so that 

It is easy to see by the definition that there exist $ EN so that Qj(yi ) = y:‘Qj( 1 )h. 

This implies yyfg’Ph EI with q’ := max{qJ 1 j = 1,. . . , d}. The converse implication is 
obvious. q 

Now, we consider two special orders -XI and + which behave nicely with respect to 
the V-filtration and the F-homogenization. We will make essential use of these orders 
in the algorithms for the problems (i)-(iii) stated in the introduction. A prototype of 
our argument has been presented in [22, 23, 261. 

First, putting y = yi, q = ~1 E N with m = 1, let us consider an order -XI on 
L := N2+2nf’ 3 (p, v, a, /I, q) which satisfies (Al), (A2) and 

(A4) 9 < q’ implies (EL, v, m, B, r) +i (p’, v’, u’, P’, $) for any pL, v, p’, v’, g, ~1’ E N, ~1, B, 
CC’,/YEN”. 

Let us denote by lexp(P(yi))EL the leading exponent of P(~~)EA~+~(K)[YI] with 
respect to 41. The weight vector for y = yl is 6 = 61 = - 1 in this case. 

Lemma 16. Let P(yl), Q(yl) be nonzero elements of A,+l(K)[yl] which 
are F-homogeneous of the same order. Then lexp(P( yi )) 5 1 lexp(Q( yi )) implies 
o&(P(l)) 5 orWQ(l)). 

Proof. Put 

lexp(p(yl >> = 04 v, 4 A v), lexp(Q(yl )) = (P’, v’, a’, B’, d). 

We have v - p - q=v’ - p’ - q’ by the assumption. Hence q 5~’ implies 
ordF(P(1)) 5 oWQ(l)). •I 

We denote by A,(K)[ta,] the subring of A,+l(K) generated by x, 8 and ta,, which 
is isomorphic to A,(K)[s]. 

Theorem 17 (Oaku [26]). Let I be an F-homogeneous left ideal ofA,+,(K)[yl]. Sup- 
pose that G is a Griibner basis of I with respect to 41 consisting of F-homogeneous 
operators. Put Z(1) := {P(l) 1 P(yl) E I}. Let $(1(l)) be the left ideal of A,(K)[s] 
generated by the set {II/(P)(s) 1 PEI( l)\ {0}, ordF(P) = 0). Then 1,9(1(l)) is generated 
by the set r(/(G(l)):= {$(P(l)) IP(Y~) 
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Proof. Put G= {Pt(yt),. , ,Pd(y~)}. Suppose P E 1(l) and ordF(P) = 0. Then by 
Lemma 15 there exist n E N and F-homogeneous Qt(Yt ), . ,. , Qd(yt) E A,+~(K)[ytl 
so that 

y:Ph(yr ) = QI(YI )P,(YI > + . . . + Q&I E(YI > (7) 

and that lexp(Qj(yt)Pj(yt)j 51 lexp(yyPh(yI)) or Qj(yr)=O for each j. Since the 
both sides of (7) are F-homogeneous of the same order, we have ordF(Qj( 1 )pj( 1)) 5 
ord,(P) by Lemma 16, and 

Let Pi< 1) be of F-order mj. Then the F-order of Qi( 1) is not greater than -mj. Hence 
we can take QJ EA,JK)[z&] so that &-,,+(QJ 1)) = Q$$, where sj := t? if mj 2 0 and 

S, := ~3,“’ if mj < 0. Then we have 

Next, putting y = (y,, y2) and q = (~1, ~2) with m = 2, let us consider an order 42 

on L : = N2+2n+2 3 (p, v, a, p, q) which satisfies (Al ), (A2) and 
(A5) If n # 0, we have (p, V, ~1, B,O) 42 ($, v’, a’, p’, V) for any & v, $, Y’cN, ~1, p, a’, 

P’EN”. 
We put 6 = (- 1,1) in order to define the F-homogeneity of an element of 

&l(Kj[Yl. 

Theorem 18. Let I be an F-homogeneous left ideal of A,+t(K)[yl]. Denote by r’ 
the left ideal of A,+,(K)[y] generated by I and 1 - ylyz. Let G be a Griibner 
basis of i with respect to the order +2 consisting of F-homogeneous operators. Put 
Go := Gc~A,+,(K). Then the left ideal IO :=I( l)f&(K)[t~,] ofA,(K)[t&] is generated 
by ~(Go):={J/(P)(~~,)IPEGo). 

Proof. Suppose PE GO. Let {U,(yl), . . . , U&q)} b e a set of generators of I. Since P 
belongs to ?, there exist h(y), I/;(y), . . . , &(y)~ A,+] (K)[y] so that 

Putting y = (I, I ), we get P EI( I). Since P is F-homogeneous and free of Y, there 
exists some monomial S in ,4,+1(K) so that II/ = SPE&. Hence we have Go c ZO. 

To prove that GO generates 10, suppose P E Zo. Then by Lemma 15 there exists y1 EN 
so that y:‘P E I since Ph = P. Hence, we have 

P=(l -y;‘y;‘)P+y;‘y;‘P& 

Set Go = {PI,. . . , Pd ). Since P is free of y and since -+ eliminates y, there exist 
Qt,...,Qd E&+](K) so that P=QlP, + .‘. + Q&d. Since P and Pt,...,Pd are F- 
homogeneous and free of y, we may assume so are Qt,. . . , Qd. Put mj := ordF(q) and 
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let 4 be as in the proof of the preceding theorem. Then there exist Qi ~&,(K)[t&l SO 
that Qj = Qi.S,. Thus, we obtain 

4. The D-module for f 

Let f(x) E K[x] be an arbitrary polynomial and retain the same notation as in the 
preceding sections. In particular, we assume K to be algebraically closed theoretically 
while, in the computation of Griibner bases, we may assume that K is generated by a 
finite set of elements over Q. 

In the sequel, we work in the ring A,+t(K)[y] with y= (yl,y~) with the weight 
vector 6 = (- 1,l) for y. The following theorem gives an algorithm to compute the 
D[s]-module N = D[s]fs = D[s]/Jf. 

Theorem 19. Let I” be the left ideal of&+l(K)[y] generated by 

1 - YlY2, t - ylf(x), 4 + yl.tXxP, (i= l,...,n) 

with f i ( x)  : = af/ilq. Let G be a Gr6bner basis of i with respect to 42 consisting qf’ 
F-homogeneous operators. Put 

G,,:=GnA,+,(K), $(Go) := {+(P)(-s - 1) I P E Got. 

Then the sheaf Jf of left ideals of D[s] on K” is generated by $(Go) whose elements 
are regarded as sections of D[s] over K”. 

Proof. It suffices to prove that the stalk (J~)o of Jr at 0 is generated by II/( Let I 
be a left ideal of A,+, (K)[yl] generated by t - yl f (x) and di + yih(x)dt (i = 1,. . . , n) 
and put 

~(l):={P(1)IP(Yl)E~}, z. :=1(l) n An(K)[t&]. 

We denote by i&lo) the left ideal of A,[s] generated by { II/(P)(-s - 1) 1 P E lo}. 
First, let us show (Jr)o = D[s]&(Zo). Assume P(s)~$(lo). Then we have P(-a,t)EZo. 
Hence there exist Qo, Qi,. . . , Qn &4,+,(K) so that 

P(-ad> = Qo . (t - f(x)) + Ql . (6 + f&)8,) +. . . + en . (8, + fn(X)dr). (8) 

This implies P(s) E (Jr)0 in view of Proposition 3. 
Conversely, suppose P(s) E (Jf)o. Then there exist Qs, Qi,. . . , Qn E (Al D)o which 

satisfy (8). By the definition of (At D)o, there exists c(x) E K[x] so that c(0) # 0 and 
that @N--d&, @)Qo, @)Ql,. . . , c(x)Q, all belong to A,+,(K). Hence, we have 
c(x)P(s) E $(ZO) by definition. This implies P(s) E D[s]&(Zo). Since $(lo) is generated 
by $(Go) by virtue of Theorem 18, we are done. 0 
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Next, let us consider the specialization of the parameter s. Let SO be an element of 
K and put 

NI,=,, := N/(s - so)N = mll(Jf + ml@ - so)) = Dl(Jf Is=,), 

where Jr ISESO := {P(so) 1 P(s) E Jr}. It is known that NI,=,, is a holonomic system and 
also known is an estimate of its characteristic variety [ 131. 

Put Of”” := D/Jf(so) with Jf(sg) := {P E D 1 Pfso = 0). Then there is a natural sur- 
jective D-homomorphism p : NI,=,, -+ Of”“. Let &(s) be the global b-function of f(x) 
(see Section 5 for the definition). Assume &(Q - j) #O for any j = 1,2,3,. . . . Then p 
is an isomorphism on K” [13, Proposition 6.21. 

Our aim is to give an algorithm to compute N],=,, for a given SO. We assume here 
that f(x) is defined over a subfield Ka of K and let g(s) E Ko[s] be the minimal 
polynomial of SO over Ko. (If SO is transcendental over Ko, then we put g(s) := 0.) Let 
rt : &[s] -+ K~[s]/g(s)Ko[s] C K be the canonical ring homomorphism. Then rr extends 
to a ring homomorphism rc : A,(Ko)[s] + A,(K). 

Let $( Go) be as in Theorem 19 with K replaced by Ko. Let + be a monomial order 
on NZnf’ 3 (cr,&p) which is parametric with respect to s; i.e., + satisfies (Al)-(A3) 
with LO := N2” and L := N2” x N. Moreover, we assume that + eliminates 8; i.e., it 
satisfies 

(A6) If /?,p’ EN” satisfy ]B] > ]B’], then we have (01, fi,~) + (~‘,p’,#) for any 
CC,CYEN” and ,u,$EN. 

Let +e be the restriction of + to N2” x (0). For an element 

of A,(Ko)[s], let (MO,/&,~O) be the leading exponent of P with respect to 4. Then we 
set 

lcoefo(P> := C Cam,& l Ko[sl. 
PLO 

Moreover, we define the order of P by 

ord(P):= max{]/?l]cas~#O for some @EN” and PEN}, 

and if ord(P) = k, we define the principal symbol of P by 

g(P) = Q(P) := ,& F c,B/,s’x~? EK[x, Lsl 
9 

with a commutative variable t = (ri, . . . , 4,). 

Proposition 20. Let II/( Go) be as in Theorem 19 with K replaced by Ko. Let G’ 
be a Griibner basis (with respect to the order -X above) of the left ideal of 
A,(Ko)[s] generated by @(GO) and g(s). Assume that z(lcoefa(P)) # 0 for any 
P E G’ such that n(P) # 0. Then n(G’) := {n(P(s)) 1 P(s) E G’} constitutes a set of 
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involutory generators of JfjSzSO; i.e., z(G’) generates JflSzS, over D, and 
(T(TC( G’)) := { o(z(Q)) 1 Q E G’} generates the sheaf of ideals o(Jf IS=,) of OK>” 
which is generated by {o(P) 1 P E J&,}. In particular, the characteristic variety 
of N[,=,,, is given by 

Char(NJ,=,,)={(x,~)EK2”/a($P))(x,~)=0 for any PEG’}. 

Proof. By applying Proposition 7 with a replaced by s and J(a) by (g(s)), we know 
that n(G’) is a Grobner basis (with respect to -Q) of JflSzS,,. The involutivity follows 
from the condition (A6) (cf. [21,25]). 0 

5. The Bernstein-Sat0 polynomial 

In this section, we present two algorithms for computing the b-function of an ar- 
bitrary polynomial. Let us begin with some definitions and remarks. Let K be an 
algebraically closed field of characteristic zero and let f(x) E K[x] be an arbitrary 
polynomial of n variables. Let N := D[s]fS = D/Jf be as in introduction. Then the 
local b-function (at the origin) bf(s) of f ( ) x is the manic polynomial b(s) E K[s] of 
the least degree that satisfies 

P(s)fS+’ = b(s)f” in No (9) 

with some P(s) E D[s]o; the global b-function i,-(s) of f(x) is the manic polynomial 
b(s) E K[s] of the least degree that satisfies 

P(s)f”+’ = b(s)f” in T(K”, N) 

with some P(s) EA,(K)[~]. 

(10) 

The existence of &(s) was proved by Bernstein [3]. Note that bf(s) is a divisor 
of &J(S). If, e.g., f(x) is quasi-homogeneous, or f(x) has 0 as its only singularity, 
then the local and the global b-functions coincide. It is also to be noted that if f(x) is 
defined over a subfield Ko of K, then the above definitions with K replaced by Ko yield 
the same b-function. Hence, in the actual computation, we do not have to assume that 
K is algebraically closed. Kashiwara [13] proved that the roots of bf(s) are negative 
rational numbers. In particular, we have by(s) E Q[s] in fact. 

For the first algorithm, we use the order +i introduced in Section 3. 

Theorem 21 (Oaku [26]). (i) Let I be a left ideal of A,+1(K)[yl] generated by 

t - Ylf (x)9 di + ylfi(x)& (i= l,...,n) 

with J(x) := af/&,. Let G be a Griibner basis of I with respect to the order +I 
consisting of F-homogeneous operators. Put $(G) := {$(P( 1)) 1 P(yl) E G}. 

(ii) Let + be an order on N2n+1 satisfying (Al), (A2), (A6), and let Cl be a 
Griibner basis of the left ideal of A,(K)[s] generated by $(G) with respect to 4. Let 
J be the ideal of K[x,s] generated by Cl n K[x,s]. 
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Under the assumptions (i) and (ii), &-s - 1) is the manic generator of the ideal 
J n K[s] of K[s], while bf(-s - 1) is the manic generator of the ideal OoJ n K[s] 

of  01. 

Proof. Let I( 1) be the left ideal of A,(K)[s] g enerated by t - f(x) and 8, + fi(x)a, 
(i= 1 , . . , n). Applying Theorem 17, we know that $(G) generates the left ideal 
$(1(l)) of A,[s] generated by {$(P) 1 P E Z(1) \ {0}, ord&P)=O}. Since the 
order + eliminates a, Gt tlK[x,s] generates the ideal $(I( 1)) n K[x,s]. We also 
know that Cl nK[x,s] generates the ideal of Oa[s] which is generated by {$(P) 1 P E 
(A, D)oZ( 1 )} n OO[S] by a localization argument similar to the one used in the proof 
of Theorem 19. Combining the above arguments with Proposition 4, we know that 
bf(-s - 1) is the manic generator of OO[S] J n K[s]. On the other hand, &(-s - 1) 
is the manic generator of J n K[s] since Z(K”, O[s]) =K[x,s] and T(K”,D[s]) = 

A4wl. q 

Now that we have a set of generators of J, we can compute &(-s - 1) immediately 
by a Griibner basis computation in K[x,s] with respect to an order eliminating x. The 
manic generator of Os[s] n J can be computed by the following algorithm where we 
regard K as being generated by a finite set of generators over Q instead of assuming 
that K is algebraically closed. The following algorithm is a slight modification of 
[26, Algorithm 4.51. 

Algorithm 1. Input: generators ft (x,s), . . . , fj(x,s) of an ideal J of K[x,s]: 
(i) Compute the manic generator f$s) of the ideal J(0) of K[s] that is generated 

by ft(0, s), . . , fj(O, s) by Grobner basis or GCD computation; if fo(s) = 1, then put 
b(s) := 1 and quit; 

(ii) Compute the irreducible decomposition j$s) = gt(s)p’ . . gd(s)p“ in K[s]; 
(iii) For i:= 1 to d do { 

by computing the ideal quotient J : gi(s)l for & = pi, ,u~ + 1,. . . repeatedly, determine 
the least e 2 pi so that J : gi(s)” contains an element aj(x, s) E K[x, s] such that ai(O,s) 
is not a multiple of gi(s). (This process can be done by GrSbner basis computation in 
K[x,s] and division in K[s].) Denote this / by ei; 

1 
(iv) Put b(s):=gl(s)“l . ..gd(s) Td . , 

Output: b(s) is the manic generator of Oo[s] JnK[s]. 

Proposition 22. Assume Oo[s] J n K[s] # (0). Th en b(s) is the manic generator of 
OO[S] JnK[s] in the above algorithm. 

Proof. Let h(s) be the manic generator of OO[S] J n K[s]. First, fo(s) divides h(s) 
since J(0) n K[s] I OO[S] J n K[s]. Then it also follows that b(s) divides h(s) in view 
of the definition of 4 and the fact that there exists C(X) E K[x] so that c(0) # 0 and 
c(x)h(s) E J. This also assures the existence of b(s) i.e. that the algorithm does not 
fail to stop. 
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It remains to prove b(s) E Os[s]JrX[s]. Put Q :=J : b(s). Let E be the algebraic 
closure of K and set 

V(Q):={(X,~)E??‘+ ]g(x,s)=O for any gEQ}. 

Then we have 

w) n (PI x K) c v(J) n ({ol x Q 
= {(O,S)lSEK, f’(o,s)= ... =f/JO,s)=O} 

= i~,i(“~~)lSi(s~=o~~ 

Since Q contains ai(x,s) and ai(O,s) is not a multiple of gi(s) for each i = 1,. . . , d, we 
have V(Q) n ((0) x  K) = 8. Moreover there exists c(x) E K[x] so that c(x)h(s) E J C Q 
and c(0) # 0. Hence it follows that there exists q(x) E Q n K[x] so that q(0) # 0 (see 
e.g. [9, p. 1621). This implies q(x)b(s)EJ, and hence by Oo[s] JnK[s]. 0 

Combining Theorem 21 and this algorithm, we have obtained an algorithm of com- 
puting bf(s). Now let us describe another algorithm for b,(s) which is based on 
Theorem 19. 

Theorem 23. In the same notation as in Theorem 19, let us denote by 4 the left ideal 
of A,(K)[s] generated by t&Go) and f. Let Gz be a Griibner basis of Zf with respect 
to the order + satisfying (Al), (A2), (A6). Let J be the ideal of K[x,s] generated by 
G, n K[x,s]. Then &(s) is the manic generator of J n K[s], while bf(s) is the manic 
generator of Oo[s]J n K[s]. 

Proof. In view of (9) and (lo), bf(s) and &f(s) are the manic generators of the ideals 

(4 + mlf)o f-I K[ s and T(K”,Jf + D[s]f) n K[s], respectively (cf. [ll, 301). Hence 1 
for the proof of the theorem, we can use the same argument as in Theorem 21. 0 

In the actual computation corresponding to Theorems 2 1, 23 and Algorithm 1, we 
may assume that K is the quotient field of Q[a]/J(a) as in Section 2 and can apply 
Propositions 6 and 7 in the computation of Grobner bases. In particular, we can treat 
the case where f has parameters, and can obtain a sufficient condition on the special 
values of the parameters for the result to be valid after the specialization. 

6. The algebraic local cohomology group 

Let K be an algebraically closed field of characteristic zero and let f(x) E K[x] be an 
arbitrary polynomial. Put Y := {x E K” 1 f(x) = 0). Then the algebraic local cohomol- 
ogy group Hrkrl(O) has a structure of left D-module and vanishes if k # 1 (cf. [14]). 
Moreover, Hliy,(0) is isomorphic to O[f-‘l/O although its structure as left D-module 
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is not necessarily obvious. Our purpose is to give an algorithm of computing the left 
D-module H&,(O) as an application of the computation of the b-function. 

Let P be an element of A,+,(K) of F-order at most k. Then we can write P in the 
form 

P = k qt a , , x , a j a_l  + R 
j=O 

uniquely with Pj EA,(K)[~&] and R EA,+I(K) with ordF(R) 5 - 1. Then we put 

&P,k):=(Po(O,x,a) ,.._ (k - l)!P~_I(O,x,d),k!P~(O,x,d))EDk+‘. 

The proof of the following theorem is based on an algorithm to compute the induced 
system (or the restriction) of a D-module, details of which will appear elsewhere [24]. 

Theorem 24. Let I and G be as in (i) of Theorem 21 and let &(s) be the global 
b-function of f(x). Put k := max{j E Z ) bt(-j - 1) = 0). (Note that k 2 0 since 
&-l)=O.) Then H,$,(O)=O[f-‘l/O g 1s enerated by the residue classes [f - j - ' 1 
of f - j - l  with j = 0,l , . . ., k as left D-module. Moreover, H/YI(O) is isomorphic to 
Dk+‘/L, where L is the left D-module generated by 

{Ha:‘Ptl),k) IPEG, VEN, v + ordF(P(1)) 5 k}. 

The algebraic local cohomology group H:r,(O) is closely related to the D-module 
0[ f -‘I as is seen by the exact sequence 

0 --f 0 + O[f -‘I -+ H,&(O) --f 0. (11) 

In particular, we get an algorithm of computing the characteristic variety and mul- 
tiplicities of the D-module O[f-‘1 by virtue of the preceding theorem. 

Proposition 25. Under the same assumptions as in the preceding theorem, O[f-‘1 
is generated by f -‘, , . . , f -k-’ as a left D-module. If k = 0, then we have an iso- 
morphism O[f-‘1 N NfjS=_i as left D-modules. Hence we have an algorithm of 
computing the structure of the D-module O[ f -‘I if &t(v) # 0 for v = - 2, -3,. . , . 

Proof. The first assertion follows from Theorem 24 and the exact sequence (11). If 
k = 0, then substituting -2, -3,. . for s in (lo), we know that O[f -‘I = Df -‘. We 
also have Of-’ =iVt],=_l by [13, Proposition 6.21. 0 

7. Remarks on the analytic case 

In this section, let us assume that K is the field C of complex numbers and use 
the usual topology of C” instead of the Zariski topology. Then we can use the sheaf 
0”” of analytic functions on C”, and the sheaf Da” of analytic differeniial operators on 
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C” instead of 0 and D, respectively. Let us call such objects analytic as are obtained 
by replacing 0 and D by 0”” and Da”, respectively. Our aim is to show that our 
algorithms presented so far yield solutions also for analytic objects. 

Let AlDan be the sheaf on 
set of sections of A1 D”” over 
finite sum 

C” defined as follows: For an open set U of C”, the 
U consists of the differential operators represented by a 

with a&x) E r( U, 0’“). Put also 

Ia” I= (Al D”)(t - f(x)) + e(Al D”)(ai + f;a,), 
j=l 

Jr”” := {P(s) E D”[s] ) P(s)fS = 0) 

with A := af /ax,. Then the arguments in Section 2 
(cf. [lS]). Hence the following lemma assures 
generates Jf”“. 

also hold for these analytic objects 
that $(Gs) of Theorem 19 also 

Lemma 26. We haue I”” n D”[t&] = D”” @LJ (Z n D[t&]). 

Proof. This is an immediate consequence of the faithful flatness of Da” over D. 0 

For the validity of Theorem 23 and Algorithm 1 in the analytic case, we need the 
following two lemmas, which follow from the faithful flatness of 0” over 0. 

Lemma 27. We have 

(or” + D”[s]~) n O”[s] = @“[sl @o[~I ((Jr + Dbl.0 n Obl). 

Lemma 28. For an ideal J of C[x,s], we have (Oa”)o[s]J n C[s] = Oo[s] J n C[s]. 

Thus we have proved that the local b-function in the algebraic sense and the one in 
the analytic sense coincide. This also guarantees the correctness of Theorem 21 in the 
analytic case. Finally, Theorem 24 is also valid in the analytic case since we have 

Da” @D Z+,(O) = Oa” m. (C[f-‘l/O) = Oa”[f-l]/Oa” = H;Y1(O”). 

8. Implementation and examples of computation 

We have implemented our algorithms presented so far in a computer algebra sys- 
tem Kan of Takayama [29] and partly in Risa/Asir [20]. Kan is a system designed 
especially for Grijbner basis computation in rings of polynomials, differential operators, 
and (q-) difference operators. Hence we use Kan for Grobner basis computations in 
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Table 1 
b-functions for f with isolated singularity 

f bf Al A2 

x5 + y5 
(s+i) (s+$ (s+:) 

3.1s 3.25s 
(S+ I)* (s+ ;> (s+ 5) (Sf :> 

x5+y3x3+y5 
(s+ ;> (s+ ;> (s+ +> 

105s 518s 
(S+ly(S+$)(S+;) 

x3 + y3 + z3 (S + I)2 (S + $) (s + 5) (s + 2) 1.3s 1.7s 

x3 + ,*)A* + zyx 

+y3 + z3 
(s+1j2(s+$) (s+3(s+2) 238s 548s 

x6 + y4 + z3 (s+ ;> (s+ a> (s+ ;> (s+ 3 104s 116s 

(,.~)(~.~)(~.2)(~f%) 

(s+ S) 

x4 + zyx + y4 + z3 
(s+ 113 (s+ ;> (Sf ;> (s+ ;> 

219s 266s 
(s+ ;> (s+ ;) 

the Weyl algebra while we use a general-purpose computer algebra system Risa/Asir 
for factorization, Griibner basis computation, and prime (and primary) decomposition 
in the polynomial ring. 

Let us begin with examples of computation of &functions. In Tables 1 and 2, Al 
refers to the algorithm based on Theorem 21 and Algorithm 1 while A2 refers to the one 
based on Theorem 23 and Algorithm 1. The Grobner basis computations corresponding 
to Theorems 21 and 23 are executed by Kan; Algorithm 1 is performed by Risa/Asir. 
The computation time indicates the sum of the computation time of Kan and Risa/Asir 
on Sun 4/20 (256Mbyte memory). The time of handing on the output of Kan to 
Risa/Asir, which is done by writing to and reading from a file, is not included. 

Most of the examples in Table 1 are included in [32, 311 (see also [6]). See 
[32, pp. 198-2001 for some of the examples in Table 2. 

As an example with a parameter, put f :=x4 + y4 + z2 + axyz. Assuming a to be 
transcendental over Q, we obtain the 6-function of f over the field Q(u) as 
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Table 2 
b-functions for f with non-isolated singularities 

f bf Al A2 

(S+~)2(S+l~(s+~)2(~+~) 

x3 +z*y* 2.2s 3.1s 

(Sf Z) 

x 4+.3+.3y3+z* y*  the same as above 14s 99s 

(s+&);(S+f)(S++J(S+i) 
(x3 - z*y* )* (,+~)(S+~)2(s+l)(~+~) 268s 286s 

(s+ ;> (s+ ;) 

x 5 -.* y*  

(s+$JyS+$J(S+l)(S+s) 

(S+g)(S++$(S+g)(S+B)(S+9) 
12.7s 11.5s 

(s+$) (s+$) (Sfti) (s-t%) 
(,.&)(s+~)(s+l)(s+~) 

x5 - .3y* (s++) (.Y+$) (s+$) (s+kg 32s 32s 

@+g) (Sff) (s-t%) (s+$) (s+4) 

x3 - 3zyx + y3 (S+1j3(S+;)(S+;) 5.56 5.3s 

x3 + y3 + 23 - 3xyz (s + 1 I3 0.9s 0.8s 

Y@ - z*y*) 337s 376s 

(s+ &) (s+ 5) (Sf 2) (s+$ 

(s+ ;> (s+ +g (s+ &> (s+ i-3 
(s+ 1)2 (s+ 2) (s+ u> (s+ Z) 

(s+ 4) (s+ +g (Sf E) (s+Z) 

(s+E) 

(s+ $) (s+ ;> (s+ 2) (s+ a) 

y(x3 - 2 y* ) (s+l)*(S+~)(S+~)(~+~) 17s 19s 

(s+ 7) 

Y((Y + lb3 - Z2Y2) the same as above 356s 185s 
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(The computation time is 114s by Al.) By using Proposition 7, we know that this also 
gives the b-function of f with an arbitrary a which is not necessarily transcendental 
over Q under the condition 

a(a2 - S)(a2 + 8)(3a4 - 128)(a4 - 192) # 0. 

If a does not satisfy this condition, we can use Proposition 6 with J(a) being the ideal 
generated by each irreducible component of the left hand side of the above condition. 
When a = 0 or 3a4 - 128 = 0 or a4 - 192 = 0, we can verify that the b-function of 
f is the same as above (1 Is, 110s 76s respectively, by Al) while the b-function of 

.f is 

bf(s) = (s + 1)3 (s + ;) 

if a2 - 8 = 0 or u2 + 8 = 0 (18s each by Al). Note that f has non-isolated singularities 
if and only if (a2 - S)(a2 + 8)-O. 

Now, let us show some examples of computation of N:=D[s]f” =D[s]/Jr and 
H&l(O) with Y :={(x, y,z) E K3 ( f(x, y,z) = O}. First, let us consider f := y(x5-y2z2). 
By Theorem 19, we get as an involutory basis of the ideal Jr the following 7 operators 
(21s): 
0 -2x& + 1oya, - 15z&, 
. yaY - zaZ - s, 
l -2y2zax - 5x4a,, 
. -4y2za; + 25x3za; + 5x3(-ios - 3)aZ, 
. -8y2za; - 125x2z2a,3 -t- 25x2z(20s - l)a; 

-5x2(10s + 3)(10s + qa,, 
. 16y2za,4 - 625~2~8; + 750xz2(5s - 2)# - 75xz( loos2 - 30s + 3)a; 

+5x(10s + l)(los + 3)(10s - ija,, 
l -32y2za; - 3125z4a; + 6250z3(4s - 3)a,” - 1875z2(40s2 - 40s + 1 l)i?; 

+625z(40s2 - 20s + 3)(4s - l)a,” 
-5(10s - l)(los + l)(los - 3)(10s + 3)a, 

with a, = a/ax, a, = a/&, a, = a/&. Since the principal symbols of these operators 
do not involve s, we know that @SO) is also generated by these operators with s 
replaced by a special value sa provided that bf(so - v) # 0 for v = 1,2, . . . . In particular, 
these operators with s replaced by -1 constitute a set of involutory generators of the 
annihilator ideal for f  - '  in O[f-‘I. (The global b-function coincides with b,-(s) in this 
case.) By applying Theorem 24, we have H&l(O) = D/J with the following operators 
as a set of involutory generators of the sheaf of left ideals J (14s): 
0 -ha, + ioyaY - i5za,, 
. y ay - z az +i ,  
0  -2y2zax - 5x4a,, 
l y( -x5 + z2y2), 
b -4y2za: + 25x3za,2 + 35x3az, 
0 8y2za; + i25x2z2a; + 525x2za,2 + 315x2aZ, 
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l 16y2z@ - 625~2~8; - 5250xz2a; - 9975xza; - 3465x&, 
l -32y*za; - 3i25z4a; - 43750z3a: - i70625z2a; - i96875za: 

-45045a,. 
Put the cotangent bundle of K3 as 

z’*K3 := {(x ,y ,z,4du+i ldy+5dz)l (x ,y ,z)EK 3, WL~)EK ~I. 

In general, let V be a non-singular variety in K3 defined by 

V = {(x,y,z)E~Igl(x,Y,z) = ..’ = &(X,Y,Z) =o> 

with a Zariski open set U of K3 and gi,. . . ,gl E K[x, y,z] so that dgi,. . . , dge 
are linearly independent on V. Then the conormal bundle of Y is a subset of T*K3 
defined by 

T,*K3 := {(x,y,z,qdg, +...+cddge)I(x,y,z)~~ c ,,..., c~EK}. 

For any SO E K, the characteristic variety of N(,=,, is given by 

Char(NI,,,,) = T;K3 U T;K3 U T;K3 U T;K3 U T$K3 U T;K3 

with 

I+, := {(x, y,z)eK3 Ix = y = z = 0}, 

fl := {(x,y,z)~K~ Ix = y = O}\&,, 

6 := {(x,y,z)eK3 Ix =z = O}\&, 

fi := {(x ,~,z)=~ I  Y  = O}\f ’i , 

V4 := {(x, y,z)cK3 /x5 - y2z2 = O}\(q u E), 

vs  := {(x ,y ,z)~K ~ I f (x ,v ,z)~# 0). 

For this irreducible decomposition of the characteristic variety, we use the prime 
decomposition program of Risa/Asir. The multiplicities of T$K3 are 3,2,1,1,1,1, re- 
spectively. We get the multiplicities by computing the (local) Hilbert polynomials 
of the ideal generated by the principal symbols of the generators of Jf listed above 
through the homogenization and Grobner basis computation in the polynomial ring 
(cf. [16]). The characteristic variety of H,$O) is given by 

Char(H,$,(O)) = T;K3 U T:K3 U T<K3 u T<K3 U T;K3 

and the multiplicity of each component is the same as above. 
Finally, put f :=x4 + y4 + z2 + uxyz and assume that the parameter a satisfies 

a2 + 8 = 0. Then we get as involutory generators of the ideal Jr the following 12 
operators (14s): 
0 xa, + yay + 2za, - 4s, 
l -yaa, + xuay + 4(x + Y)(X - y)a,, 
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0 (ayx + 2z)ay + (-azx - 4y3)&, 

0 2za, + x%a,” + y(-4yx - uz)a,, 

0 (-uzx - 4y3)d, + (4x3 + uzy)ay, 

l yuaf + 4y2a,a, + yua; + 2(2yn + uz)a,a, + 8xza; - 4usay - 16xsa,, 
0 (x4 + uzyx + y4 + z2>ay + s( -uzx - 4y3 ), 
. -y2ua,2 - 4zaxay - Aa; + 2z(-4yx - uz)a,2 

+4((4~ + 2)~~ + s az ) az ,  
l 2za; - yzua,aZ + 2za; - 3xzuaya, + 8y2za; + 2xu(2s + l)a, 

+8y2(-2s - l)&, 
. 2za; + y2ua,2ay - 3yzua;a, + 6zaxa; fx2ua,3 + yzua;aZ 

+4z2uaya; - i6xz*a; + 4yu(s + l)af 
+2zu(-4s + l)ayaz + 8xz(8s + 1)af - 8x(23 + 1)(4s + l)a,, 

l y2ua; + 6za_;ay - yzuaxaya, + 2z2uaxa,2 + (+2yx + az)a,’ 

-5xzua;a, - i6yz2a; + zu(-4s - i )a,a, + 2xu(4s + i )a; 

+8yz(8s + l>a; - gy(2.s + 1)(4s + l)&, 
l 2za,4 + 2y*ua;ay - 3yzua;a, + 12~a;a; + 6z2ua,aya; 

+2(-uyx +z)a; - 7xzua;aZ + 32z3a,4 + 2yu(2s + 3)a; 
- i2zusaxaya, + i2rasa; + 48z2(-4s + i )a; 
+384z.s2a,2 - 32(2s + 1)(4s + I)&. 

For any SO E K, the characteristic variety of A$,,, is given by 

Char(NI,=,,) = TGoK3 U T$,K3 U TGzK3 U T$K3 

with 

W, := {(x, y,z)~K~ Ix = y = z = 0}, 

WI := {(x, y,z)gK3 lx2 + y2 = 4xy - uz = O}\Wo, 

W2 := {(x,y,zKK3 If(x>r,z,a) = O)\~I, 

W3 := {(x,y,z)M3 If(x,r,z,a) # 0). 

Moreover, the multiplicity of each T$K3 is one. (Note that T$,K’ decomposes into 
two components each of which is of multiplicity one.) The characteristic variety of 
H/r,(O) is given by 

Char(HtrYl(0)) = TGoK3 U TG,K3 U TssK3 

and the multiplicity of each component is one also. 
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