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Abstract

Let f be an arbitrary polynomial of » variables defined over a field of characteristic zero. We
present algorithms for computing the b-function (Bernstein—Sato polynomial) of £, the D-module
(the system of linear partial differential equations) for f*, and the algebraic local cohomology
group associated with f by using Grébner bases for differential operators. © 1997 Elsevier
Science B.V.
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1. Introduction

Let K be an algebraically closed field of characteristic zero and O = O~ the sheaf
of rings of regular functions on K”. We denote by D = Dg := 0(d4,...,0,) the sheaf
of rings of (algebraic) differential operators on K" with d=(di,...,0,)=(8/éx1,..
0/0x,), where x=(xy,...,x,) stands for the coordinate system of K" (cf. [4, 5]).

Let /= f(x) € K[x] be an arbitrary polynomial of n variables. Put L:= O[f~!,s]f",
which is by definition a free O[f !, s]-module of rank one generated by f° with a
parameter s. Then L has a natural structure of left D[s]-module. We shall be concerned
with the left D[s]-module N :=D[s]f°, which is a subshcaf of L.
Put Jr:={P(s) € D[s]| P(s)f*=0}. Then we have N =D[s]/J;. Let us denote by
Ny the stalk of N at the origin 0 € K". Our aim is to present algorithms for the
following problems by using Grobner basis computation in the Weyl algebra (the
ring of differential operators with polynomial coefficients) initiated by Galligo
[11] (cf. also [8, 28]):
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(1) to compute the b-function (the Bernstein—Sato polynomial) b,(s) of f, which
is by definition the monic polynomial b(s) € K[s] of the least degree that satisfies

P(s,x,0) /" =b(s)f* in Ny,

with some P(s,x, @) € D[s]o;

(ii) to find a set of generators of the sheaf of left ideals J; of D[s];

(i) to find an explicit representation of the algebraic local cohomology group
H)((0)=0[f""1/0 as a left D-module with ¥:={xe€K"|f(x)=0} (cf. [14] for
the definition).

We can also compute the characteristic varieties and the multiplicities of ¥ and
H[ly](O) by using the algorithms for (ii) and (iii) (cf. [21]). If the b-function b/(s)
has no negative integral roots other than —1I, then O[f~!] is isomorphic to N with s
replaced by —1 (cf. [13]). Hence we can compute the structure of O[f '] under this
assumption.

Our methods for these three problems utilize the homogenization technique
[22,23,26] with respect to the filtration of Kashiwara-Malgrange [15, 19] and the view-
point of Malgrange [18] for studying the structure of N. We present two algorithms
for solving the problem (i): one is independent of the problem (ii) and has been pre-
sented in [26] in a more general context but without any reference to implementation
or examples; the other is newly obtained as a direct application of the algorithm for
solving (ii). Details of our algorithm for the problem (iii) will appear elsewhere [24]
as an application of computation of induced systems of D-modules. Hence the most
essential points of the present paper lie in the solution to the problem (ii) as well as
reports on actual implementation of algorithms for (i)—(iii) by using Kan [29] and
partly Risa/Asir [20] with emphasis on the case with parameters.

When K coincides with the field C of complex numbers, we can also work with
the sheaf D* of analytic differential operators on C”. Our algorithms are also valid
in this case without any modification since D*" is faithfully flat over D. In the actual
computation, however, instead of assuming K to be algebraically closed, we assume
that K is generated by a finite number of (algebraic or transcendental) elements over
the field @ of rational numbers and that the algebraic relations among these elements
are specified. Thus we can treat the case where f has parameters and/or f is defined
over an algebraic number field.

In the classical case K = C, problems (i)—(iii) have deep connections with the sin-
gularity structure of the hypersurface f =0 and have been extensively studied the-
oretically (see e.g. [3, 13, 14, 18, 19]). Moreover, several algorithms for (i) and (ii)
have been known under some conditions on f: An algorithm of computing b,(s) was
first given by Sato et al. [27] when f(x) is a relative invariant of a prehomogeneous
vector space. Briangon, Maisonobe et al. [6, 17] have given an algorithm of computing
br(s) for f(x) with isolated singularity (see also [12] for the case with parameters).
Besides, Yano [32, 31] worked out many interesting examples of b-functions system-
atically; Aleksandrov—Kistlerov [1] have computed the b-functions for some discrimi-
nants of versal deformations, which have non-isolated singularities, by using computers
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following an observation of Yano—Sekiguchi [33]. These authors have also solved the
problem (i1) in the course of solving (i) under respective conditions. However, as far
as the present author knows, no general algorithms for (i)—(iii) are known that can be
applied to an arbitrary polynomial £,

2. D-modules for f° d’aprés Malgrange

We use the same notation as in the introduction. We define a sheaf of rings 4,D
on K" as follows: For a Zariski open set U of K", the set of sections of 4D over U
consists of the differential operators represented by a finite sum

P= 3" ay,(x)"0,0%,

v, x

where o =(ay,...,0,) EN", p,veEN with N:={0,1,2,3,...,}, 6,=d/dt, "=} ...
d7, and a,,(x) is a regular function on (i.e. a rational function whose denominator
never vanishes on) U.

As was observed by Malgrange [18], L =0[f',5]f* has also a structure of left
A1 D-module defined by

g(x,s) ) =gls+ DY, a(gns)f )= —sgls — 1)

for a section g(x,s) of O[f~',s]. Put M :=(4;D)f° and N := D[s]f*. Then we have
inclusions N C M C L.

Lemma 1. The sheaf of left ideals
1= (D)~ F(0) + X (ADXG + fid)

of A\D with f;:=0f [0x; is maximal, i.e., its stalk I, is a maximal left ideal of (4,D),
for any peK”.

Proof. The coordinate transformation ¢’ =¢— f(x), x' =x induces a ring automorphism
of A\D. Hence we may assume f(x)=0 and p=0. Thus, we can apply the same
argument as [18, Lemma 4.1]. [l

Proposition 2 (Malgrange [18]). M is isomorphic to (4,D)/I.

Let Jr be the sheaf of left ideals of D consisting of sections P(s) of Dfs] which
satisfy P(s)f® ==0. The following fact is the key to our solution of problem (ii).

Proposition 3. For a Zariski open set U of K", the set of sections of Jy over U is
given by

I(U,Jy)={P(—s — 1)| P(td,) € T(U,1 N D[td,])}.
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Proof. This follows immediately from Proposition 2, the relation —0;¢f° = sf*, and the
fact that NV is a subsheaf of M. L]

For each integer &, we define a subsheaf F;(A4,D) of 4D consisting of sections of
A1 D of the form

S Y aua(x)he;o”

v-usk

with a,,, being a section of O. Then {Fi(4,D)}rez constitutes a special case of the
filtration introduced by Kashiwara [15] and Maligrange [19] for the study of vanishing
cycle sheaves (the V-filtration). We make an essential use of the following fact for
one of our algorithms of solving the problem (i).

Proposition 4. For b(s)€K[s], we have P(s)f"'=b(s)f* in Ny with some
P(s)€ D[sly if and only if b(—0,t) — Q € Iy with some Q € F_;(A41D),.

Proof. First assume P(s)f*T! =b(s)f* with P(s) € D[s]p. Then we have (b(—0:t) —
P(=0,)t) ¢ =0 and P(—0,¢)t belongs to F_ (4, D).

Conversely, suppose b(—0,t)— Q € Iy with @ € F_(4,D),. Expanding Q in the form
Q=327 Qi(#6,)¢ with Q;(29;) € D[t ]o, Which is, in fact, a finite sum, put

()= ig,-(—s ~ 1)/~ € D[s.
2

Then we get (b(—s—1) — p(Q)f)f*=0. O

3. Gribner bases with parameters and homogenization with respect
to the V-filtration

Let K be a field of characteristic zero. The Buchberger algorithm for computing
Grobner basis does not require field extension. Hence, we can work in a field K over
which the inputs are defined instead of working in the algebraic closure of K. We
denote by 4,(K) the Weyl algebra in variables x with coefficients in K [4].

Put a=(ay,...,a,). We assume that a set G(a) of generators of an ideal J(a) of the
polynomial ring Q[a]= Qla,...,a,] is given so that K is isomorphic to the quotient
field of Q[a)//(a). (Thus, J(a) must be a prime ideal.)

Adding new commutative variables y=(y,..., vm) as well as a=(ay,...,a;), we
work in the rings 4,1 (Q)[y,a] and A4, ,(K)[y] of differential operators with para-
meters. Hence their centers are Q[y,a] and K[y], respectively. More concretely, an
element P of A4, ,(Q)[y,a] is written in a finite sum

P= 3 Cpapny@ y't'x"3,0F (1
v pony
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with 1, vEN, ao,BEN", e N™, yEN’, and cyuupyy € 0, while an element P of
Ay 1(K)[y] 1s written in the form

N L T 2)
v, oy
with u,,veEN, o, FEN", nE€N™, and ¢,y5py €K.

Let us put Lo := N2t whose element (y,v,x, B,#) corresponds to the monomial
Y1x207 08 of Ay (K)[y]; also put L:=Ly x N¢ whose element (g, v,a, B,1,7) corre-
sponds to the monomial ay"t#x*8'6% of A, (Q)[y,a].

In general, a total order < on L is called a monomial order if it satisfies

(Al) « < f implies « +y < f+y for any o, f,7€ L;

(A2) 0 < o for any a €L\ {0}.

Moreover, we call a monomial order < on L parametric (with respect to parameters
a) if it satisfies

(A3) (0,v) < (%,7") for any a €Ly \ {0} and y,y’ € N”.

In the sequel, we denote by < a monomial order on L satisfying (Al)-(A3), and
by < the restriction of < to Lo ~ Ly x {0} C L.

For an element P of A, 1(@)[y,a] of the form (1) and P of A4, ;(K)[y] of the
form (2), we define their leading exponents lexp(P) and lexpy,(P) with respect to the
orders < and =< to be the maximum elements of the sets

{(Ha v, &, IBa Y, }’) eL | Cuvafny ?é 0},
{(#7 v, &, ﬁ’ 7?) ELO l CMV%B?E 7é 0}

in the orders < and < respectively. Moreover, for a subset S of 4,.,(Q)[y,a] and
So of Ai(K)[y], we put

E(S) = {lexp(P)|P€ S\ {0}},
En(So) := {lexpy(P)| P €8\ {0}}.

Definition 5. A finite subset G of a left ideal I of 4,+1(Q)[y,a] (or of 4,.1(K)[¥])
is called a Grébner basis of I with respect to the order < (or <) if

E(I)y= U (lexp(P) + L), (or Eo(Iy= | (lexpy(P) +L0)) ) 3)
PeG PEG

Moreover, G is called a minimal Grobner basis if (3) never holds with G being
replaced by a proper subset of G.

If a finite set of generators of a left ideal 7 of A4,.1(Q)[y,a] (or of A,.1(K)[y]) is
given, the Buchberger algorithm [7] computes a Grobner basis of 7 as in the polynomial
case (cf. [11, 8, 28]).

Our first aim is to make clear the meaning of the Grobner basis computation with
parameters a. This will be needed, e.g., for the computation of the b-function of a
polynomial with parameters.
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Let n: Qfa] — Q[al//(a) C K be the natural ring homomorphism and let w: L — Ly
be the projection. Then = extends to a ring homomorphism

7 Ap 1 (@), a]l — 4p 1 (K)[ ]

For P EAn-i—l (Q)[ys a] of the form (1 )s put lexp(P) = (#0, Vo, &g, ﬁﬂa 1o, '})0) and

ICOGf()(P) = Zcﬂovofxoﬁoﬂo"/ay € Q[Cl]
Y

For a left ideal 7 of A, 1(Q)[y,a], let n(I) be the left ideal of A,.1(K)[y] which
is generated by {n(P)|(Pel}.

Proposition 6. Let I be a left ideal of A,1(Q)[y,a] containing J(a). Let G be a
Grébner basis of I with respect to <. Then n(G):={n(P)|Pe G, n(P)#0} is a
Grobner basis of n(l) with respect to <.

Proof. 1t suffices to prove

Eo(n(1))= ) (lexpo(Q)+ Lo). (4)
gen(G)

Since n(P) € n(I) for each P € G, the inclusion D in (4) is obvious. Put G(a):=
G N Qla] and let J(a) be the ideal of Q[a] generated by G(a). Then G(a) is a
Grobner basis of / N @[a] with respect to the restriction of < to {0} x N’ since
the order < is an order for eliminating the variables other than a. It follows J(a) con-
tains J(a). First, let us assume J(a)#J(a). Then G(a) contains an element g(a) € Q[a]
such that n(g(a))# 0. Hence we have n(/)=A,+1(K)[y] in this case and the assertion
of the theorem is valid.

Now let us assume J(a)=J(a). We may assume that G is a minimal Grobner
basis. Our aim is to prove the inclusion C in (4). Suppose Q € n(/)\ {0}. Then there
exist g(a) € Q[a] and P €1 so that n(g(a))#0 and Q = n(g(a))~'n(P). Then we have
lexpy(Q) = lexpy(n(P)). Let P above be in the form (1) and put

Cuvapn(@) =2 Cuvapnya’ € Qlal.
y

Let P’ be the sum of the terms ¢ yqp4(@)y"t#x*03" such that c,,,p,(a) & J(a). Then
we have n(P)=n(P’) and P’ €1 since J(a) CI. Note that lexpy(n(P'}) = w(lexp(P'))
holds since n(lcoefo(P’))#0 in view of the definition of P’ and the condition (A3).

Moreover, dividing lcoefo(P’') by G(a), we may assume

lexp(lcoefo(P )¢ U (lexp(g) + L).
geG(a)
There exists By € G such that lexp(P') € lexp(H) + L since G is a Grobner basis
of 1. In view of the observation above, Py does not belong to G(a). Then we have
lexpy(n(Po)) = w(lexp(Py)) since Icoefo(Py) € J(a) by virtue of the minimality of G.
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Thus, we get

lexpg(Q)=w(lexp(P')) € | (lexpy(R) + Lo). O
Ren(G)

Next, let us consider the specialization of the parameters a. Let J(a) be an-
other prime ideal of Q[a] which contains J(a). Then the natural ring homomorphism
Qlal/J(a)— Qlal/J(a) can be regarded as a specialization of the parameters a.
Let us denote by 7:Q[a]— Q[a]/J(a)C K the canonical ring homomorphism with

K being the quotient field of Q[a]/J(a). Then 7 extends to a ring homomorphism
T Ap1 (@)Y, a] = A (K]

Proposition 7. Let I be a left ideal of A,.1(Q)[y,a] containing J(a). Let G be a
Grébner basis of 1 with respect to <. Assume lcoefo(P)&J(a) for any Pe G such
that n(P)#0. Then #(G):={7(P)|P € G, #(P)#0} is a Grobner basis (with re-
spect to <o) of the left ideal #(1) of An+1(K)|y] generated by {#(P)|P € I}.

Proof. It is easy to see that 7(G') generates (/). Set G ={P,,...,P;}. We may assume
that G is a minimal Grobner basis. Applying Proposition 6 to the case J(a)={0}, we
know that G also constitutes a Grobner basis in A4,,,(Q(a))[y], where Q(a) denotes
the field of rational functions of a. For 1 < i < j < d, let lcoef(P))S; P, —lcoefo(F;)S;; P
be the S-polynomial of F; and P; in 4,.;(Q(a))[y], where S; and S;; are minimum
monomials in A,1(Q)[y] such that lexp,(S;P,) = lexpy(S;;F;) holds (here lexp, denotes
the leading exponent of an element of 4,,(Q(a))[y] with respect to <g). Then there
exist Qi € Ap11(Q(a))y] so that

d
lcoefo(P)SiP, — lcoefo(P)SiiPr = Y OinFx (5)
=1

and that lexp,(QixFs) < lexpy(SiF) or else Qi =0. In view of the division algorithm
to obtain (3), we can take Q;; so that its denominator is a power of lcoefy(F).

Now assume n(P,)#0 for k=1,...,d’, and n(P,)=0 for k=d' +1,...,d. There
exists g € O[a] \ J(a) such that g0ix € Ap(Q)[y,a] for k=1,...,d" since
lcoefo(P, ) & J(a) and J(a) is prime. Then by (5) we have

T(lcoeto( £ )8 )F(F) — Ri(leoefo(F))R(S;)7(F)

L~ h00u0RA)
=~ 2 TGk )T F ),
g k=1 0y

and lexpo(7(gQinFi)) < lexpy(A(S;P)) or else #(Q;x)=0 for 1 <i<j < d’. This
implies that 7(G') is a Grobner basis with respect to <g. [

Next, let us introduce the notion of homogeneity and homogenization with respect
to the V-filtration. Now that the relation between Grobner bases of 4,41(Q)[y,a] and
of 4,.1(K)[y] is established, we have only to work with 4, ((K)[y].
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Definition 8. Let P be an element of 4,.(K) of the form

P=Y Cpapt’x*0V0" (6)

H,V.a»ﬁ
with ¢,,,p € K. Then the F-order ordr(P) of P is defined by
ords(P):= max{v — | cuvap #0 for some o, f € N"}.
If k =ordgr(P), the formal symbol 6(P) of P is defined by

G(P)=6r(P):= T S Cuaptx /0% € Ay (K).
v—u=ko,f

Definition 9. Let s be a new commutative variable and let P be a non-zero element
of A, 1(K) of F-order m. Then we define W(P)=y(P)s) € A,(K)[s] by

[ Got™P)y  ifm >0,
VP10 = { Go(8;"P) if m <O.

In order to define the homogeneity for elements of 4,4(X)[y], we fix a weight vector
5:(51,...,5,,,)6Zm and write (5,?1) :5]7]1 + -4 5m’7m for 17=(7’]1,...,17m) e N7
We shall assume ¢; = — 1 throughout the present paper.

Definition 10 (F-homogeneity). We call an element P of A4, 1(K)[y] F-homogeneous
(of order k) if it is written in the form (2) and there exists an integer £ so that
Cuvapn 70 if v — p + (d,n) #k. Moreover, a left ideal of A4, ,(K)[y] is called
F-homogeneous if it is generated by F-homogeneous elements.

Lemma 11. If two elements P, Q of A,.1(K)[y] are both F-homogeneous, then so is
PQ. In particular, the Buchberger algorithm for computing Grébner bases preserves
the F-homogeneity.

Definition 12 (F-homogenization). For an element P of A4, (K) of the form (6), put
k:=min{v — pulcu.p#0 for some o, f € N*}. Then the F-homogenization
P" € A, ((K)[ 1] of P is defined by

p* :Ph(yl):: Z Cuvaﬂylv_#_kt#xaa:aﬁ €4p1(K)[ 0]
H,V‘d,ﬂ

P" is F-homogeneous of order k.
Lemma 13. For P,Q € A, 1(K), we have (PQ)'=P*Q".

Lemma 14. For P,,...,P; € A, 1(K), there exist n,n1,...,Ma € N so that

WP+ + By =y (B A e
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Lemma 15. Let I be an F-homogeneous left ideal of A, 1(K)[»n] and put
I(V):={P(1)|P(y)€l}. Then, for an element P of A,+\(K), we have PcI(1) if
and only if there exists n€ N so that y/P" €l

Proof. Assume P € I(1). Then there exist F-homogeneous QOi(31),...,Qa(3) € such
that P = Q(1)+---+Qy(1). Then by the preceding lemma, there exist n,71,...,7s € N
so that

Pi=y" 01 + - + 3 0s(1).

It is easy to see by the definition that there exist n; €N so that Q;(y;) = yln "1

This implies y'l’”’P" €l with 5’ := max{y;|j=1,...,d}. The converse implication is
obvious. [

Now, we consider two special orders <, and <, which behave nicely with respect to
the V-filtration and the F-homogenization. We will make essential use of these orders
in the algorithms for the problems (i)—(iii) stated in the introduction. A prototype of
our argument has been presented in [22, 23, 26].

First, putting y=y,, n=nm € N with m=1, let us consider an order <, on
L:=N¥2+ 5 (4 v, a, B,n) which satisfies (A1), (A2) and

(A4) n<n' implies (y,v, o, B, )< (W',v, o', ', 9') for any w,v, ', v/, 0,9’ €N, o, f,
o ,f e N".

Let us denote by lexp(P(y1))€L the leading exponent of P(y,)€A4,.1(K)[y;] with
respect to <;. The weight vector for y=y; is d=49; = — 1 in this case.

Lemma 16. Let P(y1), O(y1) be nonzero elements of A, (K)y] which
are F-homogeneous of the same order. Then lexp(P(y,)) =i lexp(Q(y1)) implies
ordr(P(1)) < ordr(Q(1)).

Proof. Put

lexp(P(y1)) = (v, B,1),  lexp(Q(m ) =",V o, B',%").

We have v — y — y=v — p/ — ' by the assumption. Hence #n<#' implies
ordr(P(1)) < ordp(Q(1)). U

We denote by A4,(K)[td,] the subring of 4,,,(K) generated by x, ¢ and ¢J,, which
18 isomorphic to A4,(K)[s].

Theorem 17 (Oaku [26]). Let I be an F-homogeneous left ideal of A, ((K)[y1]. Sup-
pose that G is a Grobner basis of 1 with respect to <, consisting of F-homogeneous
operators. Put I(1):={P(1)|P(3n) € I}. Let y(I(1)) be the left ideal of An(K)[s]
generated by the set {y(P)(s}|Pel(1)\{0},ordp(P)=0}. Then y(I(1)) is generated
by the set Y(G(1)):={Yy(P(1))|P(»1)€G}.
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Proof. Put G={P(y;),...,Pi(»1)}. Suppose P € I(1) and ordz(P)=0. Then by
Lemma 15 there exist # € N and F-homogeneous Qi(y1),...,Q4(y1) € Aps1(K)[ 1]
so that

VP (y1)=01(»)P(y1) + - + Qu(y1)Pay1) (7)

and that lexp(Q;(¥1)P(¥1)) =i lexp(3P"(¥1)) or Q)(»1)=0 for each j. Since the
both sides of (7) are F-homogeneous of the same order, we have ords(Q;(1)F(1)) <
ordr(£) by Lemma 16, and

P=01(DAM) + -+ Qa(1)F(1).

Let P,(1) be of F-order m;. Then the F-order of Q;(1) is not greater than —m;. Hence
we can take Q) €4,(K)[t5,] so that 6_,(Q(1))=Q]S;, where §;:=¢™ if m; > 0 and
Sj:=8, ™ if m; < 0. Then we have

d d
Y(P)td,) = Z] Q,8;6m (F(1)) = Zi QWP ())8,). O
= J=

Next, putting y=(y1,y2) and n=(n1,12) with m=2, let us consider an order <;
on L: =N*2t2 5 (y,v,a, f,n) which satisfies (A1), (A2) and

(AS) If 70, we have (u,v,a, B,0) <o (¢, V', o, B, ) for any p,v, 0/ ,VEN, a, B,
B eN".

We put d=(-1,1) in order to define the F-homogeneity of an element of
An 1 (K]

Theorem 18. Le: [ be an F-homogeneous left ideal of A,.1(K)[y] Denote by I
the left ideal of A,11(K)[y) generated by I and 1 — v, y;. Let G be a Grobner
basis of I with respect to the order <, consisting of F-homogeneous operators. Put
Go =GN A, (K). Then the left ideal Iy := I{1)NA,(K)[10;] of A,(K)[t5,] is generated
by Y(Go):= {W(PX12,)| PE Go).

Proof. Suppose Pe Gy. Let {Lh(31),...,Ur()1)} be a set of generators of 1. Since P
belengs to 7, there exist #5(y), Fi(3)s- .., Va(») €A1 (K)[y] so that

P =W)Xl — yiy)+ Uy )+ -+ Va(y)Ua(r).

Putting y=(1,1), we get P f(1). Since P is F-homogeneous and free of y, there
exists some monomial S in 4,1(K) so that y(P)(t0,) = SP €ly. Hence we have Gy C Ip.

To prove that Gp generates I, suppose P € Iy. Then by Lemma 15 there exists 1, € N
so that 7' Pl since P"= P. Hence, we have

P=(—=3]"»IP + y"y'Pel.

Set Gy={A,...,F;}. Since P is free of y and since <, eliminates y, there exist
Oy, 04 € 4,11{K) so that P=CyP, + --- + QaFy. Since P and B,...,P; are F-
homogeneous and free of y, we may assume so are Q,...,Jy. Put m; := ordr(P;) and
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let S; be as in the proof of the preceding theorem. Then there exist Q) € A,(K)[t0;] so
that Q; = Q:S;. Thus, we obtain

P=Q\SiP + -+ QySiPi = Q\W(P Y1d,) + - - + Qup(Pa)(#6,). O

4. The D-module for f*

Let f(x)€ K[x] be an arbitrary polynomial and retain the same notation as in the
preceding sections. In particular, we assume K to be algebraically closed theoretically
while, in the computation of Grobner bases, we may assume that K is generated by a
finite set of elements over Q.

In the sequel, we work in the ring A,+1(K){y] with y=(y,,y,) with the weight
vector 6 =(—1,1) for y. The following theorem gives an algorithm to compute the
D[s]-module N = D[s]f* = D[s]/J;.

Theorem 19. Let [ be the left ideal of A,.\(K)[y] generated by

L —yiya, t—wnfx), G+wnfix)o, (=1,...,n)

with fi(x):=0f/0x,. Let G be a Grobner basis of I with respect to <, consisting of
F-homogeneous operators. Put

Gy:=GNA 1 (K),  W(Go):={Y(P)—s—1)|PeGy}.

Then the sheaf Jr of left ideals of D[s] on K" is generated by W(Gy) whose elements
are regarded as sections of D[s] over K".

Proof. It suffices to prove that the stalk (Jr)o of J; at 0 is generated by ¥(Gp). Let /
be a left ideal of A,+,(K)[y,] generated by t — y; f(x) and 6; + y1 fi(x)d, (i=1,...,n)
and put

I(1):={P(1}|P(y)el},  lo:=I(1)NA(K)[10:].

We denote by y(ly) the left ideal of A,[s] generated by {Y(P)(—s — 1)|P € Lh}.
First, let us show (J;)o = D[s]oy({y). Assume P(s)€ y(Jy). Then we have P(—0,t) € ly.
Hence there exist Qp, Q),-.., 0y €Ap1(K) so that

P(=0)=Qo-{t — f(x))+ Q1 (01 + fi(x)0) + -+ -+ On - (O + fulx)dr).  (8)

This implies P(s)€(Jr) in view of Proposition 3.

Conversely, suppose P(s) € (Jr)o. Then there exist Qo, Q1,...,Qx € (4, D)y which
satisfy (8). By the definition of (4;D)o, there exists ¢(x) € K[x] so that ¢(0)#0 and
that c(x)P(—06,1), c(x)Qp,c(x)01,....c(x)Q, all belong to 4,,:(K). Hence, we have
c(x)P(s)EY(ly) by definition. This implies P(s) < D[s]oy(Lp). Since y(lp) is generated
by ¥(Gy) by virtue of Theorem 18, we are done. U
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Next, let us consider the specialization of the parameter s. Let sy be an element of
K and put

Nls=sy 1= N/(s — 50)N = D[s]/(Jy + D[sl(s = 50)) = D/(Jys=s, )

where Jy [s=s, :={P(s0) | P(s)E€Jr}. It is known that N|s=,, is a holonomic system and
also known is an estimate of its characteristic variety [13].

Put Df* := D/J¢(sp) with Jy(s0):={P € D|Pf*=0}. Then there is a natural sur-
jective D-homomorphism p: N|s=s, — Df*™. Let Bf(s) be the global b-function of f(x)
(see Section 5 for the definition). Assume l;f(SO —j)}#0 for any j=1,2,3,.... Then p
is an isomorphism on K" [13, Proposition 6.2].

Our aim is to give an algorithm to compute N |s—,, for a given so. We assume here
that f(x) is defined over a subfield Ky of K and let g(s) € Ko[s] be the minimal
polynomial of sy over K. (If so is transcendental over Ky, then we put g(s):=0.) Let
7 : Ko[s] — Ko[s)/9(5)Ko[s] C K be the canonical ring homomorphism. Then 7 extends
to a ring homomorphism 7 : 4,(Kp)[s] — A.(K).

Let y/(Gy) be as in Theorem 19 with K replaced by K. Let < be a monomial order
on N>+ 35 (a, B, it) which is parametric with respect to s; i.e., < satisfies (A1)—(A3)
with Ly:=N?" and L:=N?" x N. Moreover, we assume that < eliminates J; i.e., it
satisfies

(A6) If B, € N™ satisfy |B) > |B'|, then we have (o, f,pu) > (¢, f, ") for any
a, o' €EN" and p,p' €N,

Let <, be the restriction of < to N?" x {0}. For an element

P=3 cypustx"d?
o1

of 4,(Ky)[s], let (a0, Po, o) be the leading exponent of P with respect to <. Then we
set

lcoefp(P):== Y Cyopops” € Ko[s].
$=0

Moreover, we define the order of P by
ord(P):= max{|f||c.p. #0 for some a€N" and peN},

and if ord(P) =k, we define the principal symbol of P by

o(P)=or(P):= > 3 caﬂ,‘s"x"‘éﬂ €K|[x, ¢, s]
|Bl=k 2

with a commutative variable &=(&,,...,&,).

Proposition 20. Le: y/(Gy) be as in Theorem 19 with K replaced by Ky. Let G’
be a Grébner basis (with respect to the order < above) of the left ideal of
AK)s] generated by ¥{Gy) and g(s). Assume that n(lcoefo(P)} # 0 for any
P c G’ such that n(P)#0. Then n(G'):={n(P(s)}| P(s) € G'} constitutes a set of
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involutory generators of Jrls=s,; ie, m(G') generates Jr|;—s, over D, and
o(n(G")):={a(n(Q)) | QO € G'} generates the sheaf of ideals o(Js|s=5,) of Oz
which is generated by {o(P)|P € Jy|s=s,}. In particular, the characteristic variety
of Nls=s, is given by

Char(N |s=5,) = {(x, £) €K | a(m(P))(x, £) =0 for any P(s)€ G'}.

Proof. By applying Proposition 7 with a replaced by s and J(a) by (g(s)), we know
that 7(G") is a Grobner basis (with respect to <o) of Jy|s—s,. The involutivity follows
from the condition (A6) (cf. [21,25]). [

5. The Bernstein—Sato polynomial

In this section, we present two algorithms for computing the »-function of an ar-
bitrary polynomial. Let us begin with some definitions and remarks. Let K be an
algebraically closed field of characteristic zero and let f(x) € K[x] be an arbitrary
polynomial of n variables. Let N :=Di[s]f*=D/J; be as in introduction. Then the
local b-function (at the origin) bs(s) of f(x) is the monic polynomial b(s)€ K[s] of
the least degree that satisfies

P(s)f**' =b(s)f* in No %)

with some P(s) € D[s]o; the global b-function l;f(s) of f(x) is the monic polynomial
b(s)€ K[s] of the least degree that satisfies

P =b(s)f* in I'(K",N) (10)

with some P(s)€A4,(K)[s].

The existence of Ef(s) was proved by Bernstein [3]. Note that b,(s) is a divisor
of E’f(S). If, e.g., f(x) 1s quasi-homogeneous, or f(x) has 0 as its only singularity,
then the local and the global b-functions coincide. It is also to be noted that if f(x) is
defined over a subfield K, of K, then the above definitions with K replaced by Ky yield
the same b-function. Hence, in the actual computation, we do not have to assume that
K 1s algebraically closed. Kashiwara [13] proved that the roots of by(s) are negative
rational numbers. In particular, we have bs(s)€ Q[s] in fact.

For the first algorithm, we use the order <, introduced in Section 3.

Theorem 21 (Oaku [26]). (i) Let I be a left ideal of A, 1(K)[y1] generated by

t =y fx), O + 1 filx)o, (i=1,...,n)

with fi(x):=0f/0x;. Let G be a Grobner basis of I with respect to the order <,
consisting of F-homogeneous operators. Put Yy(G):= {Yy(P(1))| P(»)€G}.

(ii) Let < be an order on N*t1 satisfying (A1), (A2), (A6), and let G, be a
Grobner basis of the left ideal of A,(K)[s] generated by y(G) with respect to <. Let
J be the ideal of K[x,s] generated by Gy NK|[x,s].
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Under the assumptions (1) and (i1), Bf(—s — 1) is the monic generator of the ideal
J NK{s] of K[s], while bs(—s — 1) is the monic generator of the ideal O¢J N K][s]
of K[s).

Proof. Let I(1) be the left ideal of 4,(K)[s] generated by ¢ — f(x) and J; + fi(x)J,
(i=1,...,n). Applying Theorem 17, we know that Y(G) generates the left ideal
Ww(I(1)) of A,[s] generated by {y(P)|P € I(1) \ {0}, ordr(P)=0}. Since the
order < eliminates &, Gy NK[x,s] generates the ideal W(I(1)) N K[x,s]. We also
know that G| NK[x,s] generates the ideal of Op[s] which is generated by {Y(P)|P€
(4, D)I(1)} N Og[s] by a localization argument similar to the one used in the proof
of Theorem 19. Combining the above arguments with Proposition 4, we know that
br(—s — 1) is the monic generator of Og[s].JJ N K[s]. On the other hand, I;f(—s —-1)
is the monic generator of J N K[s] since I'(K",O[s])=K][x,s] and I'(K",D[s])=
A (K)ls]. O

Now that we have a set of generators of J, we can compute l;f(—s— 1) immediately
by a Grobner basis computation in K[x,s] with respect to an order eliminating x. The
monic generator of Og{s] NJ can be computed by the following algorithm where we
regard K as being generated by a finite set of generators over @ instead of assuming
that K is algebraically closed. The following algorithm is a slight modification of
[26, Algorithm 4.5].

Algorithm 1. Input: generators fi1(x,s),..., fy(x,s) of an ideal J of K[x,s]:

(i) Compute the monic generator fo(s) of the ideal J(0) of K[s] that is generated
by £1(0,s),..., fx(0,5) by Grébner basis or GCD computation; if fo(s)=1, then put
b(s):=1 and quit;

(ii) Compute the irreducible decomposition fo(s)=gi(s)" ---gs(s)* in K[s];

(iii) For i:=1to d do {
by computing the ideal quotient J: g;(s)’ for /=y, u; + 1,... repeatedly, determine
the least £ > y; so that J : g;(s)’ contains an element a;(x,5)€K[x, s] such that @;(0,s)
is not a multiple of g;(s). (This process can be done by Grobner basis computation in
K|[x,s] and division in K[s].) Denote this £ by £;
}

(iv) Put b(s):=gi(s)" - - ga(s)*;
QOutput. b(s) is the monic generator of Og[s]JNK[s].

Proposition 22. Assume Oy[s]J NK[s] # {0}. Then b(s) is the monic generator of
Oo[s]JNK][s] in the above algorithm.

Proof. Let A(s) be the monic generator of Og[s]J N K[s]. First, fo(s) divides A(s)
since J(0)N K[s] > Op[s]J NK[s]. Then it also follows that b(s) divides A(s) in view
of the definition of ¢4 and the fact that there exists c¢(x) € K[x] so that ¢(0)# 0 and
c(x)h(s) € J. This also assures the existence of b(s) i.e. that the algorithm does not
fail to stop.
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It remains to prove b(s) € Og[s]J NK[s]. Put O:=J: b(s). Let K be the algebraic
closure of K and set

V(Q):={(x,5)eK"™ | g(x,5)=0 for any g€ Q}.

Then we have

V(Q)n ({0} x K) € ¥(J)n ({0} x K)

= {(0,5)|s€K, f1(0,s)="--- = fi(0,5)=0}
d
= U{(0,5)|gi(s)=0}.
i=1
Since Q contains a;(x,s) and a;(0,s) is not a multiple of g,(s) foreach i=1,...,d, we
have V(Q)N ({0} x K)=10. Moreover there exists c(x)€K[x] so that c(x)a(s)€J CQ
and ¢(0)#0. Hence it follows that there exists g(x) € Q N K[x] so that g(0)#0 (see
e.g. [9, p. 162]). This implies g(x)b(s)€J, and hence b(s)€ Opls]JNK[s]. [

Combining Theorem 21 and this algorithm, we have obtained an algorithm of com-
puting bs(s). Now let us describe another algorithm for bs(s) which is based on
Theorem 19.

Theorem 23. In the same notation as in Theorem 19, let us denote by Iy the left ideal
of An(K)[s] generated by Y(Gy) and f. Let G, be a Grébner basis of Iy with respect
to the order < satisfying (Al), (A2), (A6). Let J be the ideal of K[x,s] generated by
G> N K[x,s]. Then 5f(s) is the monic generator of J N K[s)], while bs(s) is the monic
generator of Ogp[s]J N K[s].

Proof. In view of (9) and (10), bs(s) and I;f(s) are the monic generators of the ideals
(Jr + DIs]f)oNK[s] and I'(K",J; + D[s]f) N K[s], respectively (cf. [11, 30]). Hence
for the proof of the theorem, we can use the same argument as in Theorem 21. [

In the actual computation corresponding to Theorems 21, 23 and Algorithm 1, we
may assume that K is the quotient field of Q[al//(a) as in Section 2 and can apply
Propositions 6 and 7 in the computation of Grobner bases. In particular, we can treat
the case where f has parameters, and can obtain a sufficient condition on the special
values of the parameters for the result to be valid after the specialization.

6. The algebraic local cohomology group

Let K be an algebraically closed field of characteristic zero and let f(x)€ K[x] be an
arbitrary polynomial. Put ¥ :={x € K" | f(x}=0}. Then the algebraic local cohomol-
ogy group H["Y](O) has a structure of left D-module and vanishes if k%1 (cf. [14]).
Moreover, Hjy,(O) is isomorphic to O[f~']/O although its structure as left D-module
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is not necessarily obvious. Our purpose 1s to give an algorithm of computing the left
D-module H[ly](O) as an application of the computation of the b-function.

Let P be an element of A, (K) of F-order at most k. Then we can write P in the
form

k .
P=YP(td,x,0)¢! + R
j=0

uniquely with P, €4,(K)[t6,] and R€A,41(K) with ordr(R) < —1. Then we put
@(P,k):=(Po(0,x,0),....(k — 1)!1Pe1(0,x,0),k!P(0,x,3)) € D**".

The proof of the following theorem is based on an algorithm to compute the induced
system (or the restriction) of a D-module, details of which will appear elsewhere [24].

Theorem 24. Ler I and G be as in (i) of Theorem 21 and let Ef(s) be the global
b-function of f(x). Put k:= max{j € Z |b(—j — 1)=0}. (Note that k > 0 since
br(~1)=0.) Then H}\,(0)=0[f1)/O is generated by the residue classes [f~/']
of f~=1 with j=0,1,....k as left D-module. Moreover, Hy(O) is isomorphic to
DML where L is the left D-module generated by

{@(@'P(1),k)|PEG, vEN, v+ ordp(P(1)) < k}.

The algebraic local cohomology group H[IY](O) is closely related to the D-module
O[ f~!] as is seen by the exact sequence

0— 0 — O[f~'1— H}y(0) »0. (11)

In particular, we get an algorithm of computing the characteristic variety and mul-
tiplicities of the D-module O/ '] by virtue of the preceding theorem,

Proposition 25. Under the same assumptions as in the preceding theorem, O[]
is generated by f~',..., f~* as a left D-module. If k =0, then we have an iso-
morphism O[f~'1 =~ Nf|—_1 as left D-modules. Hence we have an algorithm of
computing the structure of the D-module O[f'] if.’;f(v)#o for v=—2-3,....

Proof. The first assertion follows from Theorem 24 and the exact sequence (11). If
k=0, then substituting —2,—3,... for s in (10), we know that O f~11=Df~!. We
also have Df ~! = Ny|,—_ by [13, Proposition 6.2].

7. Remarks on the analytic case
In this section, let us assume that K is the field C of complex numbers and use

the usual topology of C" instead of the Zariski topology. Then we can use the sheaf
O™ of analytic functions on C”", and the sheaf D*" of analytic differential operators on
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C” instead of O and D, respectively. Let us call such objects analytic as are obtained
by replacing O and D by O*" and D*, respectively. Our aim is to show that our
algorithms presented so far yield solutions also for analytic objects.

Let 4, D* be the sheaf on C" defined as follows: For an open set U of C", the
set of sections of 4D over U consists of the differential operators represented by a
finite sum

P= Y aulx)td'd"

iV, %

with a,,,(x)e (U, O*). Put also

I = (4 DY — f(0))+ il(AlDﬂ“)(a,- + fid),
2
J = [P(s)€ D™[s] | P(s)f* = 0}

with f;:=0f/0x;. Then the arguments in Section 2 also hold for these analytic objects
(cf. [18]). Hence the following lemma assures that Y{(Gp) of Theorem 19 also
generates .&a“.

Lemma 26. We have I*" N D*™[t0,] = D* ®p (I N D[t6,)).
Proof. This is an immediate consequence of the faithful flatness of D*" over D. [

For the validity of Theorem 23 and Algorithm 1 in the analytic case, we need the
following two lemmas, which follow from the faithful flatness of O*" over O.

Lemma 27. We have
(" + D¥[s] )0 O%[s] = O%[5] ®op) ((J + DIs1/) N Ols)).
Lemma 28. For an ideal J of Clx,s], we have (O*™)y[s]J N C[s]= Oy[s]J N CJs].

Thus we have proved that the local b-function in the algebraic sense and the one in
the analytic sense coincide. This also guarantees the correctness of Theorem 21 in the
analytic case. Finally, Theorem 24 is also valid in the analytic case since we have

D* @p Hy)(0) = 0™ ®0 (C[f7'1/0) = O™ [f 1)/ O™ = H}}y(0™).

8. Implementation and examples of computation

We have implemented our algorithms presented so far in a computer algebra sys-
tem Kan of Takayama [29] and partly in Risa/Asir [20]. Kan is a system designed
especially for Grobner basis computation in rings of polynomials, differential operators,
and (g-) difference operators. Hence we use Kan for Griobner basis computations in
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Table 1

b-functions for /° with isolated singularity

S by Al A2
(s+3) (5+3) (s+3)

X+ 3.1s 3.25s
6417 (= 8) (1) o+ )
(s+ %) (S+ %) (S-l— %)

x4y + ) 105s 518s
o ) D)

w4y 4 s+ s+ ) (s+3)6+2) 1.3s 1.7s

f;fzijz TE GH12(s+3) (s+3)s+2) 2385 5485
(s+ %) (5+ }—') (s+ 1) (s+ B)
(s+2)(s+3)(s+%) (s+ 1)

xb+ pt 423 (‘H'%) (5"":2) (S+§) (5"'41) 104s 116s
(s+8) s+ BYs+(s+B)
6+

4+ oyt 42 219s 266s

the Weyl algebra while we use a general-purpose computer algebra system Risa/Asir
for factorization, Grébner basis computation, and prime (and primary) decomposition
in the polynomial ring.

Let us begin with examples of computation of b-functions. In Tables 1 and 2, Al
refers to the algorithm based on Theorem 21 and Algorithm 1 while A2 refers to the one
based on Theorem 23 and Algorithm 1. The Grobner basis computations corresponding
to Theorems 21 and 23 are executed by Kan; Algorithm 1 is performed by Risa/Asir.
The computation time indicates the sum of the computation time of Kan and Risa/Asir
on Sun 4/20 (256 Mbyte memory). The time of handing on the output of Kan to
Risa/Asir, which is done by writing to and reading from a file, is not included.

Most of the examples in Table 1 are included in [32, 31] (see also [6]). See
[32, pp. 198-200] for some of the examples in Table 2.

As an example with a parameter, put f:=x*+ y* + z? + axyz. Assuming a to be
transcendental over @, we obtain the b-function of f over the field Q(a) as

br(s) = (s + 1(s+ 2)(s + 3)s + $)(s + 2).
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Table 2

b-functions for f with non-isolated singularities

f by Al A2
(el )

x3 4+ 22y2 2.2s 3.1s
(s+35)

x4 3 423 4 22y? the same as above 14s 99s
(+5) (+3) b+ %) (s+3)

(x3 —22)2)? (s+ %) (s+ T15)2 (s + 1)(S+ %3)2 268s 286s
(s+ %) (s+ 45)

e (s+7) G+ e+ nls+})

X —z°y 6 132 7 s 12.7s 11.5s
(s+8) (s+R) (6+3) (s+5) s+
(s+15) (+ ) (s+ 1) (s+ )
(s+ ) (+#)s+D(s+12)

x> — 2 y? (S+%_1) (s+:_§) (S+%) (s+12) 32s 32s
s+ 8) (1) 0 B) 1) o+

x} = 3zyx + y? (s+1)° (S+ %) (s+ %) 5.5s 53s

Xy 423~ 3k (s+1) 0.9s 0.8s
(4 %) (+3) s+ %) (5+143)
(s+3) (+ %) s+ %) (+ 1)

y(x* — 22y s+ 1 (s + 3§) (s+}_l) (s+1) 337s 376s
(s+3) s+ %) 6+ 8) (+3)
648
(s+3) (+3) G+2) (s+5)

Y — 229) s+ 1F s+ ) (s+2) (s+4) 175 19s
648

(¥ + 1 —z2237) the same as above 3565 185s
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(The computation time is 114s by Al.) By using Proposition 7, we know that this also
gives the b-function of f with an arbitrary @ which is not necessarily transcendental
over Q under the condition

a(a® — 8)(a® + 8)(3a* — 128)(a* — 192) £ 0.

If a does not satisfy this condition, we can use Proposition 6 with J(a) being the ideal
generated by each irreducible component of the left hand side of the above condition.
When a=0 or 3a* — 128=0 or a* — 192=0, we can verify that the b-function of
f is the same as above (11s, 110s, 76s, respectively, by Al) while the b-function of

f s
br(s) =(s+ 1) (s +3)

if @ —8=0 or a> +8=0 (18s each by Al). Note that f has non-isolated singularities
if and only if (> — 8)(a® + 8)=0.

Now, let us show some examples of computation of N :=D[s]f*=D[s]/J and
H}y\(0) with ¥ :={(x, ,z) €K* | f(x, y,z) =0}. First, let us consider / := y(x’—)*z?).
By Theorem 19, we get as an involutory basis of the ideal J; the following 7 operators
(21s):

o —2x0, + 10y0, — 1520,

® y0, —z0; — s,

o —2y%20, — 5x*0,,

o —4y?z0% + 25x3282 4 5x3(—10s — 3)d,,

o —8)%28 — 125x22%32 + 25x%2(20s — 1)é?

—5x2(10s 4 3)(10s + 1)4;,

o 163220 — 625x2%0% + 750xz%(55 — 2)83 — 75xz(100s? — 30s + 3)6?

+5x(10s + 1)(10s +- 3)(10s — 1)4;,

o 3237287 — 3125240° + 62502°(4s — 3)3% — 187522(40s% — 405 + 11)5°

+6252(40s% — 205 + 3)(4s — 1)&?

—5(10s — 1)(10s + 1)(10s — 3)(10s + 3)0,
with &, =0J/0x, ¢, =0/dy, 0. =0/0z. Since the principal symbols of these operators
do not involve s, we know that J(sy) is also generated by these operators with s
replaced by a special value so provided that bs(so—v) # 0 for v=1,2,.... In particular,
these operators with s replaced by —1 constitute a set of involutory generators of the
annihilator ideal for /! in O[f~']. (The global b-function coincides with bs(s) in this
case.) By applying Theorem 24, we have H[IY](O) = D/J with the following operators
as a set of involutory generators of the sheaf of left ideals J (14s):

—2x0, + 10yd, — 1524,

y0, — z0; + 1,

—2y%208, — 5x*4;,

W(=x* + 2%)%),

—4y220% + 25x%207 + 35x36,,

82203 + 125x2228} + 525x%28? + 315x%¢,,
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o 16)220" — 625x230% — 5250x220% — 9975x202 — 3465x7,,

o —32y%20% — 31252403 — 43750230% — 1706252207 — 196875202
—450450,.

Put the cotangent bundle of K> as

T*K* = {(x, y.z,8de +ndy + {d2) [ p2) €K, (Em D)K.
In general, let ' be a non-singular variety in K> defined by
V= {(x,y,z)e U | gi(x, y,z) = =gs(x, y,2) = 0}

with a Zariski open set U of K> and g¢i,...,9, € K[x,y,z] so that dgi,...,dg,
are linearly independent on V. Then the conormal bundle of V is a subset of T*K>

defined by
T,}"K3 ={(x,y,z,c1dgy + -+ +cadge) | (x, ¥,2)EV, c1,...,c, €K}
For any so €K, the characteristic variety of N|;—;, is given by
Char(N|—s,) = K UK UK UK U TFK UK
with
Vo:={(x,3.2)€EK’ |x =y =z =0},
Mi={(xy2)eK’ |x =y =01\,
= {(x )€K [x =z =0}k,
V= {(x2)€K |y = 0N\K,
Var={(x.y,2) €K’ | = y'z* = O\(H U B3,
Vs:={(x,».2)€K>| [(x p,2)# O}.

For this irreducible decomposition of the characteristic variety, we use the prime
decomposition program of Risa/Asir. The multiplicities of TU’,"K 3are 3,2,1,1,1,1, re-
spectively. We get the multiplicities by computing the (local) Hilbert polynomials
of the ideal generated by the principal symbols of the generators of J listed above
through the homogenization and Grobner basis computation in the polynomial ring
(cf. [16]). The characteristic variety of H[ly](O) is given by

Char(H}y,(0)) = K UT/K* UK UK UK

and the multiplicity of each component is the same as above.

Finally, put f:=x* 4+ y* 4+ z2 + axyz and assume that the parameter a satisfies
a* + 8=0. Then we get as involutory generators of the ideal J; the following 12
operators (14s):
® x0y + yo, + 220, — 4s,

o —yad, +xad, +4(x + y)¥x — y)0,,



516 T. Oaku/Journal of Pure and Applied Algebra 117 & 118 (1997) 495-518

e (ayx +2z)3, + (~azx — 4)°)d,,

e 220, + x*ad, + y(—4yx — az)d,,

o (—azx — 4y*)o, + (4x* + azy)é,,

o yad® +4y%0,0, + yaé‘f + 2(2yx + az)0,0, + 8xz0? — 4asd, ~ 16xs0,,

o (x' +azyx + y* +2%)3, + s(—azx — 4)°),

o —y*ad; — 420,08, — x*ad} + 22(—4yx — az)d;
+4((4s + 2)yx + saz)o,,

o 2:82 — y2ad,0; + 2202 — 3xzad,0; + 8y*2d? + 2xa(2s + 1)0,
+8y%(—25 — 1)4.,

o 2203 + y*adid, — 3yzadl0; + 620,02 + x*ad) + yzad; o,
+422ad,02 — 16x2202 + 4ya(s + 1)
+2za(—4s + 1)3,0. + 8xz(8s + 1)32 — 8x(2s + 1)(4s + 1)d,,

o y2add + 62010, — yzad, 0,0, + 22°ad, 02 + (—ayx + 22)6;
—5xzad}0. — 16yz° 0} + za(—4s — 1)8,0, + 2xa(4s + 1)&
+8yz(8s + 1)32 — 8y(2s + 1 )(4s + 1)Js,

o 220 +2)ad}d, — 3yzad}d, + 122020} + 6z2a0,0,0;
+2(—ayx + z)é‘;1 — 7xza(3)3,'52 + 32238% + 2ya(2s + 3)3}
—122a56,0,0, + 12xasd; + 48z%(—4s 4+ 1)8?
+384z5202 — 32(2s + 1)(4s + 1)s0,.

For any so €K, the characteristic variety of N|;=, is given by

Char(N|s=) = T K> UTy K U T, K° U Ty K
with

Wo:={(x,v,2)eK? |x = y =z = 0},

W= {(x,y,2)€K? |x? + y* = dxy — az = 0\ W,

Wy = {(x,v,2) €K | f(x, y,2,a) = O}\ W},

W= {(x02)eK’| f(x,y,2,a) # 0}.

Moreover, the multiplicity of each Tp,’;,‘K3 is one. (Note that T,,’fl K? decomposes into
two components each of which is of multiplicity one.) The characteristic variety of
H/y(0) is given by

Char(Hy(0)) = T K’ UTy K’ U Ty K?

and the multiplicity of each component is one also.
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