An algorithm to compute the differential equations for the logarithm of a polynomial

Toshinori Oaku

Tokyo Woman's Christian University

ISSAC 2012, Grenoble, July 2012

Weyl algebra

Let $D_n = \mathbb{C}\langle x, \partial_x \rangle$ be the Weyl algebra, or the ring of differential operators with polynomial coefficients. An element P of D_n is expressed as a finite sum

$$P = \sum_{\alpha,\beta \in \mathbb{N}^n} a_{\alpha,\beta} x^{\alpha} \partial^{\beta}$$

with $x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$, $\partial^{\beta} = \partial_1^{\beta_1} \cdots \partial_n^{\beta_n}$ and $a_{\alpha,\beta} \in \mathbb{C}$, where $\alpha = (\alpha_1, \dots, \alpha_n)$, $\beta = (\beta_1, \dots, \beta_n) \in \mathbb{N}^n$ are multi-indices with $\mathbb{N} = \{0, 1, 2, \dots\}$ and $\partial_i = \partial/\partial x_i$ $(i = 1, \dots, n)$ denote derivations.

Holonomic functions

A function u = u(x) in the variables $x = (x_1, ..., x_n)$ is called a *holonomic function* if its *annihilator*

$$\operatorname{Ann}_{D_n} u := \{ P \in D_n \mid Pu = 0 \}$$

is a holonomic (left) ideal of D_n .

Holonomic functions

A function u = u(x) in the variables $x = (x_1, ..., x_n)$ is called a *holonomic function* if its *annihilator*

$$\operatorname{Ann}_{D_n} u := \{ P \in D_n \mid Pu = 0 \}$$

is a holonomic (left) ideal of D_n .

Then what is a holonomic ideal?

Holonomic functions

A function u = u(x) in the variables $x = (x_1, ..., x_n)$ is called a *holonomic function* if its *annihilator*

$$\operatorname{Ann}_{D_n} u := \{ P \in D_n \mid Pu = 0 \}$$

is a holonomic (left) ideal of D_n .

Then what is a holonomic ideal?

For a left ideal I of D_n , one can define the dimension of the left D_n -module D_n/I . One way is to define it as the (usual) dimension of the *characteristic variety*, which is an algebraic subset of \mathbb{C}^{2n} . It is known that $n \leq \dim D_n/I \leq 2n$ if $I \neq D_n$. I is holonomic by definition if $\dim D_n/I = n$ or else $I = D_n$.

Integrals of holonomic functions

If $u(x_1, \ldots, x_n)$ is holonomic, then the integral

$$v(x_1,\ldots,x_{n-d}):=\int_C u(x_1,\ldots,x_n)\,dx_{n-d+1}\cdots dx_n,$$

where C is a d-cycle in \mathbb{C}^d , or $C = \mathbb{R}^d$, or C is a domain of \mathbb{R}^d defined by polynomial inequalities, is also holonomic if the integral is 'well-defined'. Moreover, a holonomic ideal $I \subset \mathrm{Ann}_{D_{n-d}} v$ is computable by using the D-module theoretic integration algorithm (O-Takayama (1999) for C without boundary, and O (to appear in JSC) for C with boundary defined by polynomials).

 $Ann_{D_n}u$ is precisely computable for the following u:

(1) $f_1^{\lambda_1} \cdots f_m^{\lambda_m}$ with $f_1, \ldots, f_m \in \mathbb{C}[x] = \mathbb{C}[x_1, \ldots, x_n]$ and $\lambda_1, \ldots, \lambda_m$; especially a rational function (O 1997 for m=1, O-Takayama 1999, Briançon-Maisonobe 2002 for m>1).

 $\operatorname{Ann}_{D_n} u$ is precisely computable for the following u:

- (1) $f_1^{\lambda_1} \cdots f_m^{\lambda_m}$ with $f_1, \ldots, f_m \in \mathbb{C}[x] = \mathbb{C}[x_1, \ldots, x_n]$ and $\lambda_1, \ldots, \lambda_m$; especially a rational function (O 1997 for m=1, O-Takayama 1999, Briançon-Maisonobe 2002 for $m \geq 1$).
- (2) $\exp(g)$ with $g \in \mathbb{C}(x)$ (by 'localization algorithm' of O-Takayama-Walther 2000, or, more generally, 'Weyl closure algorithm' by Tsai 2002).

 $\operatorname{Ann}_{D_n} u$ is precisely computable for the following u:

- (1) $f_1^{\lambda_1} \cdots f_m^{\lambda_m}$ with $f_1, \ldots, f_m \in \mathbb{C}[x] = \mathbb{C}[x_1, \ldots, x_n]$ and $\lambda_1, \ldots, \lambda_m$; especially a rational function (O 1997 for m=1, O-Takayama 1999, Briançon-Maisonobe 2002 for $m \geq 1$).
- (2) $\exp(g)$ with $g \in \mathbb{C}(x)$ (by 'localization algorithm' of O-Takayama-Walther 2000, or, more generally, 'Weyl closure algorithm' by Tsai 2002).
- (3) $f^{\lambda}(g_0 + g_1 \log f + \dots + g_m(\log f)^m)$ with $f, g_0, \dots, g_m \in \mathbb{C}[x], \lambda \in \mathbb{C}, m \in \mathbb{N}$. (this talk).

I will show how to compute $\operatorname{Ann}_{D_n} f^{\lambda} (\log f)^m$.

 $\operatorname{Ann}_{D_n} u$ is precisely computable for the following u:

- (1) $f_1^{\lambda_1} \cdots f_m^{\lambda_m}$ with $f_1, \ldots, f_m \in \mathbb{C}[x] = \mathbb{C}[x_1, \ldots, x_n]$ and $\lambda_1, \ldots, \lambda_m$; especially a rational function (O 1997 for m=1, O-Takayama 1999, Briançon-Maisonobe 2002 for $m \geq 1$).
- (2) $\exp(g)$ with $g \in \mathbb{C}(x)$ (by 'localization algorithm' of O-Takayama-Walther 2000, or, more generally, 'Weyl closure algorithm' by Tsai 2002).
- (3) $f^{\lambda}(g_0 + g_1 \log f + \dots + g_m(\log f)^m)$ with $f, g_0, \dots, g_m \in \mathbb{C}[x], \lambda \in \mathbb{C}, m \in \mathbb{N}$. (this talk).

I will show how to compute $\operatorname{Ann}_{D_n} f^{\lambda} (\log f)^m$.

Computing $\operatorname{Ann}_{D_n} f^{\lambda}(\log f)^m$

Let $f \in K[x] = K[x_1, ..., x_n]$ be a non-constant polynomial with a computable subfield K of \mathbb{C} . Then the annihilator of $f^s(\log f)^m$ with a parameter s can be computed as follows:

Step 1: Compute $Ann_{D_n[s]}f^s$.

For $f \in K[x]$, consider the function $f^s = f(x)^s$ with a parameter s. Then $\operatorname{Ann}_{D_n[s]}f^s$ can be computed by an algorithm of O (1997) or of Brianon-Masionobe (2002).

Computing $Ann_{D_n} f^{\lambda} (\log f)^m$

Let $f \in K[x] = K[x_1, ..., x_n]$ be a non-constant polynomial with a computable subfield K of \mathbb{C} . Then the annihilator of $f^s(\log f)^m$ with a parameter s can be computed as follows:

Step 1: Compute $Ann_{D_n[s]}f^s$.

For $f \in K[x]$, consider the function $f^s = f(x)^s$ with a parameter s. Then $\operatorname{Ann}_{D_n[s]} f^s$ can be computed by an algorithm of O (1997) or of Brianon-Masionobe (2002).

Example: Set $f = x^3 - y^2$. Then $Ann_{D_n[s]}f^s$ is generated by

$$2y\partial_x + 3x^2\partial_y$$
, $2x\partial_x + 3y\partial_y - 6s$.

Computing $Ann_{D_n} f^{\lambda} (\log f)^m$

Let $f \in K[x] = K[x_1, ..., x_n]$ be a non-constant polynomial with a computable subfield K of \mathbb{C} . Then the annihilator of $f^s(\log f)^m$ with a parameter s can be computed as follows:

Step 1: Compute $Ann_{D_n[s]}f^s$.

For $f \in K[x]$, consider the function $f^s = f(x)^s$ with a parameter s. Then $\operatorname{Ann}_{D_n[s]} f^s$ can be computed by an algorithm of O (1997) or of Brianon-Masionobe (2002).

Example: Set $f = x^3 - y^2$. Then $Ann_{D_n[s]}f^s$ is generated by

$$2y\partial_x + 3x^2\partial_y$$
, $2x\partial_x + 3y\partial_y - 6s$.

Remark: $f(x)^s$ is not a holonomic function in (x, s); for a fixed λ , $f(x)^{\lambda}$ is holonomic in x.

Computing $\operatorname{Ann}_{D_n[s]}(f^s, f^s \log f, \dots, f^s(\log f)^m)$

Step 2: Differentiation with respect to s

Let G_1 be a set of generators of $Ann_{D_n[s]}f^s$ and

$$e_0 = (1, 0, \ldots, 0), \ldots, e_m = (0, \ldots, 0, 1)$$

be the canonical basis of \mathbb{C}^{m+1} . For $P(s) \in G_1$ and $j \geq n$ set

$$P(s)^{(j)} := \sum_{\nu=0}^J {j \choose \nu} rac{\partial^{j-\nu} P(s)}{\partial s^{j-\nu}} \mathrm{e}_{
u}.$$

Then $G_2 := \{P(s)^{(j)} \mid P(s) \in G, \ 0 \le j \le m\}$ generates the 'annihilating module'

$$\operatorname{Ann}_{D_n[s]}(f^s, f^s \log f, \dots, f^s(\log f)^m)
:= \{ (P_0, P_1, \dots, P_m) \in (D_n)^{m+1} \mid \sum_{i=0}^m P_j(f^s(\log f)^j)) = 0 \}.$$

Computing $\operatorname{Ann}_{D_n[s]}(f^s, f^s \log f, \dots, f^s(\log f)^m)$

In fact, differentiating the equation $P(s)f^s = 0$ j times w.r.t. s, we get

$$\sum_{\nu=0}^{j} \binom{j}{\nu} \frac{\partial^{j-\nu} P(s)}{\partial s^{j-\nu}} (f^{s} (\log f)^{\nu}) = 0.$$

Step 2: Differentiation with respect to s (an example)

Example: Set $f = x^3 - y^2$. Then $\operatorname{Ann}_{D_n[s]}(f^s, f^s \log f)$ is generated by

$$(2y\partial_x + 3x^2\partial_y, 0),$$
 $(0, 2y\partial_x + 3x^2\partial_y),$ $(2x\partial_x + 3y\partial_y - 6s, 0),$ $(-6, 2x\partial_x + 3y\partial_y - 6s)$

in $(D_2[s])^2$, which follows from differentiating the generators

$$2y\partial_x + 3x^2\partial_y$$
, $2x\partial_x + 3y\partial_y - 6s$

of $\operatorname{Ann}_{D_n[s]}f^s$.

The annihilator of $f^{\lambda}(\log f)^m$ for a fixed $\lambda \in \mathbb{C}$ can be computed as follows:

Step 3: roots of the *b*-function

Let $b_f(s)$ be the *b*-function, i.e, the Bernstein-Sato polynomial of f. There exists $Q(s) \in D_n[s]$ such that

$$Q(s)f^{s+1}=b_f(s)f^s.$$

The annihilator of $f^{\lambda}(\log f)^m$ for a fixed $\lambda \in \mathbb{C}$ can be computed as follows:

Step 3: roots of the b-function

Let $b_f(s)$ be the *b*-function, i.e, the Bernstein-Sato polynomial of f. There exists $Q(s) \in D_n[s]$ such that

$$Q(s)f^{s+1}=b_f(s)f^s.$$

Example: For $f = x^3 - y^2$, we have

$$\underbrace{\left(\frac{1}{27}\partial_{x}^{3} + \frac{1}{8}y\partial_{y}^{3} + \left(-\frac{1}{2}s - \frac{3}{8}\right)\partial_{y}^{2}\right)}_{Q(s)}f^{s+1} = \underbrace{\left(s+1\right)\left(s + \frac{5}{6}\right)\left(s + \frac{7}{6}\right)}_{b(s)}f^{s}.$$

Theorem: Let G_2 be a set of generators of $\operatorname{Ann}_{D_n[s]}(f^s,\ldots,f^s(\log f)^m)$ and $\lambda\in\mathbb{C}$. If $b_f(\lambda-\nu)\neq 0$ for $\nu=1,2,3,\ldots$, then

$$G_3:=\{P(\lambda)\mid P(s)\in G_2\}$$

generates the annihilator of $(f^{\lambda}, \dots, f^{\lambda}(\log f)^m)$, which is a left submodule of the free module $(D_n)^{m+1}$.

Theorem: Let G_2 be a set of generators of $\operatorname{Ann}_{D_n[s]}(f^s,\ldots,f^s(\log f)^m)$ and $\lambda\in\mathbb{C}$. If $b_f(\lambda-\nu)\neq 0$ for $\nu = 1, 2, 3, \dots$, then

$$G_3 := \{P(\lambda) \mid P(s) \in G_2\}$$

generates the annihilator of $(f^{\lambda}, \dots, f^{\lambda}(\log f)^{m})$, which is a left submodule of the free module $(D_n)^{m+1}$.

Remark: In order to verify the condition

$$b_f(\lambda - \nu) \neq 0 \quad (\nu = 1, 2, 3, ...),$$

one does not need the entire $b_f(s)$; one can employ the check root algorithm of Levandovskyy-Morales (2008), which is much faster, together with a bound of the roots of $b_f(s)$.

Algorithm Input: $f \in K[x]$, $\lambda \in \mathbb{C}$, $m \in \mathbb{N}$.

(1) Compute a set G_1 of generators of $\operatorname{Ann}_{D_n[s]}(f^s,\ldots,f^s(\log f)^k)$.

- (1) Compute a set G_1 of generators of $\operatorname{Ann}_{D_n[s]}(f^s,\ldots,f^s(\log f)^k)$.
- (2) Let ν_0 be the largest positive integer ν such that $b_f(\lambda \nu) = 0$ if there is any such ν . Set $\nu_0 = 0$ if none.

- (1) Compute a set G_1 of generators of $\operatorname{Ann}_{D_n[s]}(f^s,\ldots,f^s(\log f)^k)$.
- (2) Let ν_0 be the largest positive integer ν such that $b_f(\lambda \nu) = 0$ if there is any such ν . Set $\nu_0 = 0$ if none.
- (3) Set $\lambda_0 := \lambda \nu_0$ and $G_2 := G_1|_{s=\lambda_0}$ (substitute λ_0 for s in each element of G_1).

- (1) Compute a set G_1 of generators of $\operatorname{Ann}_{D_n[s]}(f^s,\ldots,f^s(\log f)^k)$.
- (2) Let ν_0 be the largest positive integer ν such that $b_f(\lambda \nu) = 0$ if there is any such ν . Set $\nu_0 = 0$ if none.
- (3) Set $\lambda_0 := \lambda \nu_0$ and $G_2 := G_1|_{s=\lambda_0}$ (substitute λ_0 for s in each element of G_1).
- (4) If $\nu_0 > 0$, then let G_3 be a set of generators of the module quotient $\langle G_2 \rangle$: $f^{\nu_0} = \langle G_2 \rangle$: $(f^{\nu_0}, \dots, f^{\nu_0})$, where $\langle G_2 \rangle$ denotes the left module generated by G_2 .

- (1) Compute a set G_1 of generators of $\operatorname{Ann}_{D_n[s]}(f^s,\ldots,f^s(\log f)^k)$.
- (2) Let ν_0 be the largest positive integer ν such that $b_f(\lambda \nu) = 0$ if there is any such ν . Set $\nu_0 = 0$ if none.
- (3) Set $\lambda_0 := \lambda \nu_0$ and $G_2 := G_1|_{s=\lambda_0}$ (substitute λ_0 for s in each element of G_1).
- (4) If $\nu_0 > 0$, then let G_3 be a set of generators of the module quotient $\langle G_2 \rangle$: $f^{\nu_0} = \langle G_2 \rangle$: $(f^{\nu_0}, \dots, f^{\nu_0})$, where $\langle G_2 \rangle$ denotes the left module generated by G_2 .
- (5) If $\nu_0 = 0$, then set $G_3 := G_2$.

Algorithm (continued)

(6) Compute a Gröbner basis G_4 of the module generated by G_3 with respect to a term order \prec for $(D_n)^{m+1}$ such that $Me_j \prec M'e_k$ for any monomials M and M' if k < j. Let G_5 be the set of the last component of each element of G_4 .

Output: G_3 generates $\operatorname{Ann}_{D_n}(f^{\lambda}, \dots, f^{\lambda}(\log f)^m)$; G_5 generates $\operatorname{Ann}_{D_n}f^{\lambda}(\log f)^m$.

Examples of $\operatorname{Ann}_{D_n} f^{\lambda} (\log f)^m$

Example: Set $f = x^3 - y^2$. If $\lambda \neq k$, $\frac{1}{6} + k$, $-\frac{1}{6} + k$ for $k = 0, 1, 2, \ldots$, then $\operatorname{Ann}_{D_2} f^{\lambda} \log f$ is generated by

$$2y\partial_x + 3x^2\partial_y,$$

$$4x^2\partial_x^2 + 12yx\partial_y + (-24\lambda + 4)x\partial_x + 9y^2\partial_y^2$$

$$+ (-36\lambda + 9)y\partial_y + 36\lambda^2.$$

On the other hand, e.g., $\operatorname{Ann}_{D_2} \log f = (\operatorname{Ann}_{D_2} f^{-1} \log f) : f$ is generated by

$$2y\partial_x + 3x^2\partial_y$$
, $2x\partial_y\partial_x + 3y\partial_y^2 + 3\partial_y$.

Summary of the algorithm

Starting with the annhilator of f^s , we get the annihilator of $f^{\lambda}(\log f)^m$ for a fixed λ following the diagram

```
\operatorname{Ann}_{D_n[s]} f^s
\downarrow \operatorname{differentiation \ w.r.t \ } s
\operatorname{Ann}_{D_n[s]} (f^s, \dots, f^s (\log f)^m) \stackrel{\text{elimination}}{\longrightarrow} \operatorname{Ann}_{D_n[s]} f^s (\log f)^m
\downarrow \operatorname{specialization} \qquad \qquad \downarrow \operatorname{specialization} s
\operatorname{Ann}_{D_n} (f^{\lambda}, \dots, f^{\lambda} (\log f)^m) \stackrel{\text{elimination}}{\longrightarrow} \operatorname{Ann}_{D_n} f^{\lambda} (\log f)^m.
```

Summary of the algorithm

Starting with the annhilator of f^s , we get the annihilator of $f^{\lambda}(\log f)^m$ for a fixed λ following the diagram

```
\begin{array}{ccc} \operatorname{Ann}_{D_n[s]} f^s \\ \downarrow \text{ differentiation w.r.t } s \\ \operatorname{Ann}_{D_n[s]} (f^s, \ldots, f^s (\log f)^m) & \overset{\text{elimination}}{\longrightarrow} & \operatorname{Ann}_{D_n[s]} f^s (\log f)^m \\ \downarrow \operatorname{specialization} & \downarrow \operatorname{specialization} \\ \operatorname{Ann}_{D_n} (f^{\lambda}, \ldots, f^{\lambda} (\log f)^m) & \overset{\text{elimination}}{\longrightarrow} & \operatorname{Ann}_{D_n} f^{\lambda} (\log f)^m. \end{array}
```

 $\operatorname{Ann}_{D_n} f^{\lambda}(g_0 + g_1 \log f + \cdots + g_m (\log f)^m)$ with $g_i \in K[x]$ can also be computed. We have implemented the algorithms in a computer algebra system Risa/Asir (Noro et al.).

Timing data

Computation time for $Ann_{D_n}(\log f)^m$ (1.7 GHz Intel Core i5 processor with 4 GB memory)

f	m=2	m=4	m = 8	m=16
$xy^2 + z^2$	0.02s	0.04s	0.14s	2.1s
$xy^2 + z^2 + 1$	0.04s	0.31s	20.8s	_
$x^3 + xy^2 + z^2$	0.04s	0.12s	1.6s	586s

The most time-consuming part is the elimination in the free module $(D_n)^{m+1}$.

Application to integration: Example 1

Let us give an example which shows an advantage of exact computation of the annilator:

Set $f = x^2 + 1$ with a single variable x.

Then $\overline{\left(\operatorname{Ann}_{D_1}(\log f)^2\right)}$ is generated by

$$P_{1} := x^{2}(x^{2} + 1)^{2}\partial_{x}^{3} + (3x^{5} - 3x)\partial_{x}^{2} + (x^{4} + 3)\partial_{x},$$

$$P_{2} := x(x^{2} + 1)^{2}\partial_{x}^{4} + (9x^{4} + 8x^{2} - 1)\partial_{x}^{3} + 16x^{3}\partial_{x}^{2} + 4x^{2}\partial_{x},$$

$$P_{3} := (x^{2} + 1)^{2}\partial_{x}^{5} + 14x(x^{2} + 1)\partial_{x}^{4} + (52x^{2} + 16)\partial_{x}^{3} + 52x\partial_{x}^{2} + 8\partial_{x}.$$

Application to integration: Example 1

Let us give an example which shows an advantage of exact computation of the annilator:

Set $f = x^2 + 1$ with a single variable x.

Then $\left[\operatorname{Ann}_{D_1}(\log f)^2\right]$ is generated by

$$P_{1} := x^{2}(x^{2} + 1)^{2}\partial_{x}^{3} + (3x^{5} - 3x)\partial_{x}^{2} + (x^{4} + 3)\partial_{x},$$

$$P_{2} := x(x^{2} + 1)^{2}\partial_{x}^{4} + (9x^{4} + 8x^{2} - 1)\partial_{x}^{3} + 16x^{3}\partial_{x}^{2} + 4x^{2}\partial_{x},$$

$$P_{3} := (x^{2} + 1)^{2}\partial_{x}^{5} + 14x(x^{2} + 1)\partial_{x}^{4} + (52x^{2} + 16)\partial_{x}^{3} + 52x\partial_{x}^{2} + 8\partial_{x}.$$

On the other hand, the annihilator of $(\log f)^2$ in the ring of differential operators with rational function coefficients is generated by P_1 since we have

$$xP_2 = \partial_x P_1, \qquad x^3 P_3 = (x \partial_x^2 - \partial_x) P_1.$$

Application to integration: Example 1 (continued)

Consider the integral

$$u(t) := \int_{-\infty}^{\infty} \exp(-tx^2 + x)(\log(x^2 + 1))^2 dx$$

for t>0. It is easy to compute the annihilator of the integrand from that of $(\log(x^2+1))^2$, which is generated by P_1,P_2,P_3 . Then by the D-module theoretic integration algorithm (cf. Appendix B of the paper) we get a differential equation Pu(t)=0 with a differential operator P of order 7 as follows (it takes about 2.5s by using the library file 'nk_restriction.rr' of Risa/Asir):

The operator P with Pu(t) = 0:

```
-64t^{6}(192t^{9}-288t^{8}+328t^{6}-8064t^{5}-1830t^{4}-483t^{3}+
3349t^2 + 768t + 29) |\partial_t^7|
+(49152t^{15}-31334\overline{4t^{14}}+368640t^{13}+97792t^{12}-
2536704t^{11} + 11644032t^{10} + 3132864t^9 + 1733440t^8 -
5460112t^7 - 1505008t^6 - 89760t^5 - 1392t^4)\partial_t^6
+(-73728t^{15}+921600t^{14}-2632704t^{13}+2234880t^{12}+
4754688t^{11} - 43612160t^{10} + 79860992t^9 + 22867200t^8 +
26400784t^{7} - 44105880t^{6} - 14456652t^{5} - 1133452t^{4} -
32880t^3 - 348t^2)\partial_t^5
+(49152t^{15}-1069056t^{14}+5357568t^{13}-9096704t^{12}+
2064384t^{11} + 58446592t^{10} - 246172736t^9 + 183521920t^8 +
34777024t^7 + 151880952t^6 - 128846576t^5 - 51768580t^4 -
4768431t^3 - 179833t^2 - 3378t - 29)\partial_t^4 to be continued...
```

The operator P with Pu(t) = 0 continued:

```
+(-12288t^{15}+534528t^{14}-4429824t^{13}+11753984t^{12}-
12734976t^{11} - 27311744t^{10} + 246524096t^{9} - 484399040t^{8} +
99537376t^7 - 103646640t^6 + 341872136t^5 - 100839440t^4 -
62318032t^3 - 6128000t^2 - 216952t - 2712)\partial_t^3
+(-92160t^{14}+1474560t^{13}-5936640t^{12}+10110720t^{11}-
2156928t^{10} - 90855104t^9 + 346183872t^8 - 261435344t^7 +
16030976t^6 - 241838336t^5 + 253619008t^4 + 32414466t^3 -
14223770t^2 - 1457516t - 30002)\partial_t^2
+(-138240t^{13}+990720t^{12}-2292480t^{11}+3181824t^{10}+
7660416t^9 - 71860224t^8 + 118294032t^7 - 11163768t^6 +
46032612t^5 - 109104420t^4 + 25631736t^3 + 18262788t^2 +
1518344t + 29760)\partial_t
-23040t^{12} + 69120t^{11} - 161280t^{10} + 125760t^{9} +
1468800t^8 - 6962016t^7 + 2546936t^6 - 449808t^5 +
5489268t^4 - 5472139t^3 - 2277397t^2 - 177522t - 3417.
```

Application to integration: Example 1 (continued)

Remark: If we use only

$$P_1 = x^2(x^2+1)^2\partial_x^3 + (3x^5-3x)\partial_x^2 + (x^4+3)\partial_x$$

which is the one with minimal order among the generators P_1, P_2, P_3 of $\operatorname{Ann}_{D_1}(\log(x^2+1))^2$, then we get Qu(t)=0 with a differential operator Q of order 9. The equation Qu(t)=0 is weaker than Pu(t)=0.

An alternative algorithm for the integral

An alternative way to compute this integral is to first compute differential equations for the integral

$$v(s,t) := \int_{-\infty}^{\infty} \exp(-tx^2 + x)(x^2 + 1)^s dx$$

with a parameter s and then differentiate with respect to s. This gives relations among v(s,t), $\partial_s v(s,t)$ and $\partial_s^2 v(s,t)$. Then by substitution s=0 and elimination, we get an equation for

$$\partial_s^2 v(0,t) = u(t) = \int_{-\infty}^{\infty} \exp(-tx^2 + x)(\log(x^2 + 1))^2 dx$$

of order 9, which is weaker than Pu = 0.

Example 2

Set

$$u(x) := \int_{\mathbb{R}^2} \exp(-y^2 - z^2) (\log(xy^2 + z^2 + 1))^2 dydz$$

for x > 0. Then by the integration algorithm, we get a differential equation Pu(x) = 0 with

$$P = 16x^{4}(x-1)^{2}\partial_{x}^{7} + 16x^{2}(x-1)(29x^{2} - 17x - 2)\partial_{x}^{6}$$

$$+ (4504x^{4} - 5336x^{3} + 896x^{2} + 240x + 16)\partial_{x}^{5}$$

$$+ (17712x^{3} - 14220x^{2} + 540x + 288)\partial_{x}^{4}$$

$$+ (27153x^{2} - 12348x - 441)\partial_{x}^{3}$$

$$+ (12915x - 2205)\partial_{x}^{2} + 945\partial_{x}.$$

The computation of the integral takes about 4.3 seconds.

Example 3: $(\log f)^m$ as a generalized function

Set

$$u(x) := \int_{\mathbb{R}^2} e^{-y^2 - z^2} (\log(xy^2 + z^2))^2 \, dy dz$$

for x > 0. Since $f := xy^2 + z^2$ vanishes if y = z = 0, we must regard $(\log f)^2$ as a distribution (generalized function) on \mathbb{R}^2 with respect to (y, z) with a parameter x. A holonomic system for $(\log f)^2$ regarded as such is obtained by the substitution s = 0 from the annihilator of $f^s(\log f)^2$ in $D_3[s]$, which is weaker than the annihilator of $(\log f)^2$ as analytic function. From this we get Pu(x) = 0 with

$$P = 8x^{3}(x - 1)^{3}\partial_{x}^{6} + 12x^{2}(x - 1)^{2}(13x - 7)\partial_{x}^{5}$$

$$+ (926x^{4} - 1926x^{3} + 1218x^{2} - 218x)\partial_{x}^{4}$$

$$+ (1911x^{3} - 3107x^{2} + 1369x - 125)\partial_{x}^{3}$$

$$+ (1155x^{2} - 1360x + 325)\partial_{x}^{2} + (105x - 75)\partial_{x}.$$

Appendix: Integration ideal

Let I be a holonomic ideal of D_{n+d} which annihilates a function u(x,t) in $(x,t)=(x_1,\ldots,x_n,t_1,\ldots,t_d)$, where D_{n+d} denotes the Weyl algebra in (x,t). Set

$$v(x) := \int_{\mathbb{R}^d} u(x,t) dt_1 \cdots dt_d.$$

The **integration ideal** of *I* is the left ideal

$$\int I dt := (\partial_{t_1} D_{n+d} + \cdots + \partial_{t_d} D_{n+d} + I) \cap D_n$$

of D_n . Then Pv(x)=0 holds for all $P\in\int I\,dt$. Moreover, $D_n/\int I\,dt$ is holonomic.

Appendix: Integration algorithm

Input: A set G_0 of generators of I.

- (1) Compute a Gröbner basis G_1 of I with respect to a monomial order which is compatible with the weight vector $w = (0, \dots, 0, 1, \dots, 1; 0, \dots, 0, -1, \dots, -1)$ for the variables $(x, t, \partial_x, \partial_t)$.
- (2) Compute the *b*-function of *I* with respect to *w*, which is a nonzero univariate polynomial b(s) of the minimum degree such that $b(-\partial_{t_1}t_1-\cdots-\partial_{t_d}t_d)+P$ belongs to *I* with some $P\in D_{n+d}$ of order ≤ -1 with respect to the weight vector *w*.
- (3) Let k_1 be the maximum integral root of b(s) = 0 if any; if there is none or else $k_1 < 0$, then set $G := \{1\}$ and quit.

Appendix: Integration algorithm (continued)

(4) For $P \in G_1$ and $\alpha \in \mathbb{N}^d$ such that $\operatorname{ord}_w(P) + |\alpha| \le k_1$, one has

$$t^{lpha}P=\sum_{j=1}^d\partial_{t_j}Q_j+\sum_{|eta|\leq k_1}R_eta t^eta$$

with $Q_j \in D_{n+d}$ and unique $R_\beta \in D_n$. Set $\chi(t^\alpha P) := \sum_{|\beta| \leq k_1} R_\beta t^\beta$. Let N be the left D_n -submodule of $\bigoplus_{|\beta| \leq k_1} D_n t^\beta$ generated by

$$\{\chi(t^{\alpha}P)\mid P\in G_1, |\alpha|+\operatorname{ord}_{w}(P)\leq k_1\}.$$

(5) Compute a set G of generators of the ideal $N \cap D_n$.

Output: G generates $\int I dt$ and $D_n / \int I dt$ is holonomic.

Thank you for your attention.

Merci beaucoup!