An algorithm to compute
the differential equations

for the logarithm of a polynomial

Toshinori Oaku

Tokyo Woman's Christian University

ISSAC 2012, Grenoble, July 2012



Holonomic functions

WEIEIELE

Let D, = C(x, 0y) be the Weyl algebra, or the ring of
differential operators with polynomial coefficients. An element
P of D, is expressed as a finite sum

P = Z 30,px0"

a,BeN"

with x* = x® ... x% 9% = 9P ... 5% and anp € C, where
a=(ag,...,an), B=(01,...,0,) € N" are multi-indices
with N=1{0,1,2,...} and 0; = 90/0x; (i =1,...,n) denote
derivations.
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Holonomic functions

A function u = u(x) in the variables x = (x, ..., x,) is called
a holonomic function if its annihilator

Annp,u:={P €D, | Pu=0}

is a holonomic (left) ideal of D,.
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Holonomic functions

A function u = u(x) in the variables x = (x, ..., x,) is called
a holonomic function if its annihilator

Annp,u:={P €D, | Pu=0}

is a holonomic (left) ideal of D,.

Then what is a holonomic ideal?

For a left ideal / of D,, one can define the dimension of the
left D,-module D,/I. One way is to define it as the (usual)
dimension of the characteristic variety, which is an algebraic
subset of C2". It is known that n < dim D,/I < 2nif | # D,,.
| is holonomic by definition if dim D,/l = n or else | = D,.



Holonomic functions

Integrals of holonomic functions

If u(xi,...,x,) is holonomic, then the integral
V(X1 ooy Xneg) = / u(X1y ooy Xn) AXp_gy1 -+ dXp,
c

where C is a d-cycle in C?, or C = RY, or C is a domain of
RY defined by polynomial inequalities, is also holonomic if the
integral is ‘well-defined’. Moreover, a holonomic ideal

| C Annp,_,v is computable by using the D-module theoretic
integration algorithm (O-Takayama (1999) for C without
boundary, and O (to appear in JSC) for C with boundary
defined by polynomials).
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Examples of holonomic functions

Annp, u is precisely computable for the following u:

(1) ;- f with fi,...,f, € C[x] = C[xy, ..., x,] and
A1, .-+, Am; especially a rational function (O 1997 for
m = 1, O-Takayama 1999, Briancon-Maisonobe 2002 for
m > 1).
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Annihilator with a parameter

Computing Annp_f*(log £)™

Let f € K[x] = K[x1,...,xn] be a non-constant polynomial
with a computable subfield K of C. Then the annihilator of
f*(log f)™ with a parameter s can be computed as follows:

Step 1: Compute Annp f°.

For f € K[x], consider the function f* = f(x)* with a
parameter s. Then Annp,f° can be computed by an
algorithm of O (1997) or of Briangn-Masionobe (2002).
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Annihilator with a parameter

Computing Annp_f*(log £)™

Let f € K[x] = K[x1,...,xn] be a non-constant polynomial
with a computable subfield K of C. Then the annihilator of
f*(log f)™ with a parameter s can be computed as follows:

Step 1: Compute Annp f°.

For f € K[x], consider the function f* = f(x)* with a
parameter s. Then Annp,f° can be computed by an
algorithm of O (1997) or of Briangn-Masionobe (2002).

Example: Set f = x> — y?. Then Annp,[yf* is generated by
2y0, + 3X28y, 2x0x + 3y0, — 6s.

Remark: f(x)® is not a holonomic function in (x,s); for a
fixed A, f(x)* is holonomic in x.



Annihilator with a parameter

Computing Annp, (f°, F*log f, ..., F*(log £)™)

Step 2: Differentiation with respect to s
Let G; be a set of generators of Annp,[f* and
e =(1,0,...,0),...,en=(0,...,0,1)
be the canonical basis of C™*1. For P(s) € G; and j > n set

y(>aw “

Then G, := {P(s)Y) | P(s) € G, 0 <j < m} generates the
‘annihilating module’

Annp (f°,f°logf,..., f*(logf)")

={(Po, P1,...., Pm) € (D)™™ | Y Pi(f*(log f})) = 0}

Jj=0



Annihilator with a parameter

Computing Annp, (f°, F*log f, ..., F*(log £)™)

In fact, differentiating the equation P(s)f® =0 j times w.r.t.
S, we get

g (i) %(f“(log f)") = 0.



Annihilator with a parameter

Step 2: Differentiation with respect to s (an example)

Example: Set f = x* — y?. Then Annp,4(f°, f*logf) is
generated by

(2yd, +3x%9,, 0), (0, 2yd, +3x%9,),
(2x0x + 3y0, — 6s, 0), (—6, 2x0x + 3yd, — 6s)

in (D,[s])?, which follows from differentiating the generators
2y0x + 3x%0,, 2x0y + 3yd, — 6s

of AnnDn [s] fe.
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Specialization of the parameter s

The annihilator of f*(log f)™ for a fixed A € C can be
computed as follows:

Step 3: roots of the b-function

Let br(s) be the b-function, i.e, the Bernstein-Sato polynomial
of f. There exists Q(s) € D,[s] such that

Q(s)F** = b (s)F".
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Specialization of the parameter s

The annihilator of f*(log f)™ for a fixed A € C can be
computed as follows:

Step 3: roots of the b-function
Let br(s) be the b-function, i.e, the Bernstein-Sato polynomial
of f. There exists Q(s) € D,[s] such that
Q(s)f*™ = be(s)f".
Example: For f = x3 — y?, we have

(Gt bre b ) =0 Yo

Qs) b(s)
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Specialization of the parameter s

Theorem: Let G; be a set of generators of
Annp,g(f%,...,f*(log f)™) and A € C. If be(A —v) # 0 for
v=123 ..., then

Gs = {P(\) | P(s) € G}

generates the annihilator of (f*,..., f(log f)™), which is a
left submodule of the free module (D,)™ .
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Specialization of the parameter s

Theorem: Let G; be a set of generators of
Annp,g(f%,...,f*(log f)™) and A € C. If be(A —v) # 0 for
v=123 ..., then

Gs = {P(\) | P(s) € G}

generates the annihilator of (f*,..., f(log f)™), which is a
left submodule of the free module (D,)™ .

Remark: In order to verify the condition
brf(A—v)#0 (r=1,2,3,...),

one does not need the entire bs(s); one can employ the check
root algorithm of Levandovskyy-Morales (2008), which is
much faster, together with a bound of the roots of bs(s).
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Algorithm Input: f € K[x], A € C, me N.
(1) Compute a set G; of generators of
AnnDn[s](fs, ceey fs(|0g f)k)
(2) Let v be the largest positive integer v such that
br(A — v) = 0 if there is any such v. Set 1y = 0 if none.
(3) Set A\g := A — g and G, := Gils—), (substitute \g for s in
each element of Gj).
(4) If vy > 0, then let Gz be a set of generators of the
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(Gy) denotes the left module generated by G;.
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Specialization of the parameter s

Algorithm Input: f € K[x], A € C, me N.

(1)

Compute a set G; of generators of

AnnDn[s](fs, ceey fs(|0g f)k)
Let 19 be the largest positive integer v such that
br(A — v) = 0 if there is any such v. Set 1y = 0 if none.
Set Ao := A — 1 and G, := Gi|s—), (substitute \g for s in
each element of Gj).
If 5 > 0, then let G3 be a set of generators of the
module quotient (Gp) : 0 = (Gy) : (™, ..., f"), where
(Gy) denotes the left module generated by G;.
If v =0, then set G3 := Go.
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Specialization of the parameter s

Algorithm (continued)

(6) Compute a Grobner basis G4 of the module generated by
Gz with respect to a term order < for (D,)™ " such that
Me; < M'e for any monomials M and M’ if k < j. Let

Gs be the set of the last component of each element of
Gy.

Output: Gs generates Annp, (f*, ..., f*(logf)™); Gs
generates Annp, f*(log f)™.



Specialization of the parameter s

Examples of Annp_f*(log f)™

1 1
Example: Set f = x3 — y?. If A # k, 6 + k, ~5 + k for
k=0,1,2,..., then Annp,f*log f is generated by
2y0, + 3x28y,
4x20% + 12yx0, + (—24X 4 4)x0y + 9y°0;)

+ (=36A +9)yd, + 362,

On the other hand, e.g., Annp, log f = (Annp,f tlogf) : f
is generated by

2y 0y +3x°0,, 2x0,0x + 3yd: + 30,.



Specialization of the parameter s

Summary of the algorithm

Starting with the annhilator of f°, we get the annihilator of
f*(log f)™ for a fixed \ following the diagram

Annp,qf®
| differentiation w.r.t s

Annp,q(F,..., Fo(log Fym) ENMInaton o f5(log )™
| specialization | specialization

Annp, (F,..., F(log F)m)  Smination  x 1 o F(log £)™.



Specialization of the parameter s

Summary of the algorithm

Starting with the annhilator of f°, we get the annihilator of
f*(log f)™ for a fixed \ following the diagram

Annp,qf®

| differentiation w.r.t s

Annp,q(F,..., Fo(log Fym) ENMInaton o f5(log )™

| specialization | specialization

Annp, (F,..., F(log F)m)  Smination  x 1 o F(log £)™.
Annp, fNgo + gilog f + -+ + gm(log £)™) with g; € K[x] can

also be computed. We have implemented the algorithms in a
computer algebra system Risa/Asir (Noro et al.).



Specialization of the parameter s

Timing data

Computation time for Annp, (logf)”
(1.7 GHz Intel Core i5 processor with 4 GB memory)

f m=2| m=4 m=8| m=16
xy? + z° 0.02s | 0.04s | 0.14s | 2.1s
xy? +z2+1 0.04s | 0.31s | 20.8s -
x>+ xy?+z° | 0.04s | 0.12s 1.6s 586s

The most time-consuming part is the elimination in the free
module (D,)™ .
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Application to integration: Example 1

Let us give an example which shows an advantage of exact
computation of the annilator:

Set with a single variable x.

Then | Annp, (log f)?| is generated by
Py := x*(x* + 1)202 + (3x° — 3x)9% + (x* + 3)0,,
Py := x(x* + 1)20% + (9x* + 8x% — 1)02 + 16x°0? + 4x30,,
Ps = (x* +1)20° + 14x(x® + 1)0* + (52x* + 16)0°
+ 52x02 + 80,
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Application to integration: Example 1

Let us give an example which shows an advantage of exact
computation of the annilator:

Set with a single variable x.

Then | Annp, (log f)?| is generated by
Py := x*(x* + 1)202 + (3x° — 3x)9% + (x* + 3)0,,
Py := x(x* + 1)20% + (9x* + 8x% — 1)02 + 16x°0? + 4x30,,
Ps = (x* +1)20° + 14x(x® + 1)0* + (52x* + 16)0°
+ 52x02 + 80,

On the other hand, the annihilator of (log f)? in the ring of
differential operators with rational function coefficients is
generated by P; since we have

xPy = 0Py,  x*P3 = (x0? — 0,)P;.
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Application to integration: Example 1 (continued)

Consider the integral
u(t) == / exp (—tx® + x)(log(x* + 1))? dx

for t > 0. It is easy to compute the annihilator of the
integrand from that of (log(x? + 1))?, which is generated by
Pi, P>, P3. Then by the D-module theoretic integration
algorithm (cf. Appendix B of the paper) we get a differential
equation | Pu(t) = 0| with a differential operator P of order 7
as follows (it takes about 2.5s by using the library file
‘nk_restriction.rr’ of Risa/Asir):




Application to integration

The operator P with Pu(t) = 0:

—64t%(192t° — 288t8 + 328t° — 80645 — 1830t* — 483¢t3 +
3349t + 768t + 29) 07
+(49152t15 — 313344t'* + 368640t'3 + 97792t1% —
2536704t + 1164403210 4 3132864t° + 1733440t —
5460112t7 — 1505008t° — 89760t> — 1392t*)9°
+(—73728t%5 + 921600t — 26327043 + 223488012 +
4754688t — 43612160t + 79860992t° 4 22867200t° +
26400784t" — 44105880t — 14456652t> — 1133452t* —
32880t3 — 348t2)0°

+(49152t% — 1069056t + 5357568t!3 — 9096704t +
2064384t + 58446592t — 246172736t° + 1835219208 +
34777024t7 + 151880952t% — 128846576t> — 51768580t* —
4768431t — 1798332 — 3378t — 29)d¢ to be continued...




Application to integration

The operator P with Pu(t) = 0 continued:

+(—122881t15 + 534528t — 442082413 + 1175398412 —
12734976t — 2731174410 + 246524096t° — 484399040t° +
99537376t — 103646640t + 341872136t> — 100839440t* —
62318032t% — 6128000t> — 216952t — 2712)93
+(—92160t** + 1474560t — 5936640t + 10110720t —
215692810 — 90855104t° + 3461838728 — 2614353447 +
16030976t° — 241838336t + 253619008t* + 32414466t> —
14223770t — 1457516t — 30002)0?

+(—138240t'3 + 990720t12 — 2292480t + 318182410 +
7660416t° — 718602248 + 118294032t" — 11163768t° +
46032612t% — 109104420t* 4 25631736t> + 18262788t> +
1518344t + 29760)0,

—23040t1 + 69120t — 161280t10 + 125760t° +
1468800t% — 6962016t" + 2546936t° — 449808t +
5489268t* — 5472139t3 — 2277397t — 177522t — 3417.
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Application to integration: Example 1 (continued)

Remark: If we use only
Py = x*(x® + 1)20° + (3x° — 3x)02 + (x* + 3)0,,

which is the one with minimal order among the generators
P, P,, P; of Annp, (log(x? + 1))?, then we get Qu(t) =0
with a differential operator  of order 9. The equation
Qu(t) = 0 is weaker than Pu(t) = 0.



Application to integration

An alternative algorithm for the integral

An alternative way to compute this integral is to first compute
differential equations for the integral

v(s, t) = / exp (—tx® + x)(x® + 1) dx

with a parameter s and then differentiate with respect to s.
This gives relations among v(s, t), dsv(s, t) and 92v(s, t).
Then by substitution s = 0 and elimination, we get an
equation for

[e.e]

(0, t) = u(t) = / exp (— 6 + x)(log(x + 1))? dx

—00

of order 9, which is weaker than Pu = 0.



Application to integration
Example 2

Set
u(x) == / exp (—y* — 2°)(log(xy® + 2> + 1)) dydz
R2

for x > 0. Then by the integration algorithm, we get a
differential equation Pu(x) = 0 with

P = 16x*(x — 1)207 4+ 16x*(x — 1)(29x* — 17x — 2)9°
+ (4504x* — 5336x> + 896x> + 240x + 16)0°
+ (17712x3 — 14220x2 + 540x + 288)0%
+ (27153x2 — 12348x — 441)0°
+ (12915x — 2205)0? + 9450,

The computation of the integral takes about 4.3 seconds.



Application to integration

Example 3: (log f)™ as a generalized function

u(x) = / e "% (log(xy? + 2))? dydz
R2

for x > 0. Since f := xy? + 22 vanishes if y = z = 0, we must
regard (log f)? as a distribution (generalized function) on R?
with respect to (y, z) with a parameter x. A holonomic
system for (log f)? regarded as such is obtained by the
substitution s = 0 from the annihilator of f5(log f)? in Ds][s],
which is weaker than the annihilator of (log f)? as analytic
function. From this we get Pu(x) = 0 with

P = 8x*(x — 1) + 12x*(x — 1)*(13x — 7)92
+ (926x* — 1926x> + 1218x* — 218x)0?
+ (1911x° — 3107x% + 1369x — 125)0>
+ (1155x2 — 1360x + 325)92 + (105x — 75)0,.



Appendix: Integration ideal

Let / be a holonomic ideal of D, 4 which annihilates a
function u(x, t) in (x,t) = (X1,...,Xn, t1, ..., tg), Wwhere Dy 4
denotes the Weyl algebra in (x, t). Set

v(x) = / u(x,t) dty - dt,.
Rd
The integration ideal of / is the left ideal
J1dt:=(04Dnig+ -+ 0¢,Dnra+1)ND,

of D,. Then Pv(x) = 0 holds for all P € [ I dt. Moreover,
D,/ [ I dt is holonomic.



Appendix

Appendix: Integration algorithm

Input: A set Gy of generators of /.

(1) Compute a Grobner basis G; of | with respect to a
monomial order which is compatible with the weight
vector w = (0,...,0,1,...,1,0,...,0,—1,...,—1) for
the variables (x, t, O, 0;).

(2) Compute the b-function of / with respect to w, which is
a nonzero univariate polynomial b(s) of the minimum
degree such that b(—0yt; — -+ — O, tq) + P belongs to /
with some P € D, 4 of order < —1 with respect to the
weight vector w.

(3) Let ky be the maximum integral root of b(s) = 0 if any; if
there is none or else k; < 0, then set G := {1} and quit.



Appendix

Appendix: Integration algorithm (continued)

(4) For P € Gy and a € N9 such that ord,, (P) + |a| < kq,

one has
P = ZOtQ + ) Rst’

1B|<k

with Q; € Dp1q and unique Rg € D,. Set
X(EP) == 3" 51<k Rst?. Let N be the left D,-submodule

of @\ﬁlgkl D,t% generated by
{x(t*P) | P € G, |o| + ord,,(P) < ki }.

(5) Compute a set G of generators of the ideal N N D,,.
Output: G generates [/ dt and D,/ [ I dt is holonomic.



Appendix

Thank you for your attention.

Merci beaucoup!
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