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Let f be a real-valued real analytic function in several variables. We associate with each al-
gebraic local cohomology class u with support in f = 0 a distribution (generalized function)
p(u) in terms of the residue of f2 with respect to A at a negative integer. Then p constitutes
a homomorphism of modules over the sheaf of analytic functions but not over the sheaf of
differential operators in general. We compare the annihilator of p(u) in the ring of differen-
tial operators with that of u: we give sufficient conditions, together with examples, for each
inclusion between the two annihilators.
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1. Introduction

Let f be a holomorphic function defined on a complex manifold X. The algebraic
local cohomology group supported by f = 0 is defined to be the sheaf

Hls_(Ox) = Ox[f7']/Ox

on X, where Ox denotes the sheaf of holomorphic functions on X. This consists of
residue classes [af %] modulo Ox with a holomorphic function a and a non-negative
integer k. Let Dx be the sheaf on X of differential operators with holomorphic
coefficients. Then H[lfzo]((’)x) has a structure of sheaves of left Dx-modules (cf.

[7]). An algorithm to compute its structure was given in [11] for the case f is a
polynomial.

Now let f be a real-valued real analytic function defined on a paracompact
real analytic manifold M. We may assume that f is extended to a holomorphic
function on a complexification X of M. Let Dbys be the sheaf of distributions
(generalized functions of L. Schwartz) on M. We first define an O x-homomorphism
p of H[lfzo](ox) to Dby as follows: For a residue class [af~*] with a holomorphic

function a and a positive integer k, we define p([af~*]) to be the residue of afi_k
at A = —1. For the systematic study of the distribution ffr‘, we refer to [5], [2], [3],
[8]. If f =0 is non-singular, then it is well-known (see [5]) that

—k—17y _ kb1 _ (CDF _
p([f7"77]) = Resy=o f o0 (f) (k=01,2,...) (1)
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holds with 6(*)(f) being the k-th ‘derivative’ of the delta function &(f) supported
by the real hypersurface f = 0.
Our main purpose is to compare the annihilators

Annp,,u:={P € Dy | Pu=0}, Annp,p(u):={P € Dy | Pp(u) =0}

as sheaves of left ideals of Dy, for a section u of H[lfzo](O x ), where Dy := Dx|m
denotes the sheaf theoretic restriction of Dx to M. Note that the sheaf of anni-
hilating ideals of a distribution is not necessarily coherent over Dy, (see Example
7.5.1 of [4]). If f =0 is non-singular, then it is easy to see, in view of (1), that the
two annihilators coincide. However, at singular points of the hypersurface f = 0,
the situation is more complicated in general.

In Section 2, we recall that both u € H[lfzo]((’) x) and p(u) satisfy regular holo-

nomic Dx-modules whose characteristic varieties are contained in the set W]? de-
fined by Kashiwara [6].

In Section 3, we give a sufficient condition (A) for Annp,, p(u) D Annp,,u to hold
(Theorem 3.1) and a sufficient condition (B) for the converse inclusion (Theorem
3.4). In Section 5, we give examples for which Annp,,p(u) = Annp,,u (Example
5.1), Annp,, p(u) € Annp,,u (Example 5.2) and Annp,, p(u) 2 Annp,,u (Example
5.3) hold respectively. We also give examples of normal forms of real hypersurface
singularities which satisfy the condition (B).

As a related problem, we notice in Section 4 a (probably well-known) sufficient
condition for the annihilator of the distribution fi to coincide with that of the
analytic function f*.

2. Algebraic local cohomology and residues of ffl‘_

If f is holomorphic on a neighbourhood of zg in a complex manifold X, the b-
function or the Bernstein-Sato polynomial of f at xq is, by definition, the monic
polynomial by, (s) in a variable s of the least degree such that a formal functional
equation P(s)f*™! = by, (s)f* holds with some P(s) € (Dx)q,[s], where (Dx ),
denotes the stalk of the sheaf Dx at xzg. If f(x¢) = 0, then by, (s) is divisible by
s+ 1 and by, (s) := bya,(s)/(s 4 1) is called the reduced b-function of f at x. It
was proved by Kashiwara [6] that by, (s) exists and its roots are negative rational
numbers. If f is a polynomial, then there is an algorithm to compute by, (s) and
P(s) (see [10]).

In what follows, we let f be a real-valued real analytic function defined on a
paracompact real analytic manifold M. Then for a complex number A\ with non-
negative real part (Re A > 0), the distribution fﬁ is defined to be the locally
integrable function

)N = exp(\log f(x)) if f(z 0
ey o= {0 = s SN 1) > 0

on M and is holomorphic with respect to A for Re A > 0. In particular, f?r =Y (f)
is the Heaviside function associated with f. By using the functional equation

brao (M3 = PN, (2)

which follows from the formal one above, we can extend f2 to a Dby (M )-valued
meromorphic function of A on the whole complex plane C.
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The real analytic function f can be extended to a holomorphic function on a
complexification (a complex neighbourhood) X of M.

Definition 2.1: We define a sheaf homomorphism
p i Hij—q(Ox) — Dby
by the residue

pllaf ) := Resogaf}

at A = 0 for a section a of Ox and a non-negative integer k.

Proposition 2.2: The map p is well-defined and gives rise to a homomorphism
of sheaves of Apr-modules, where Ayy := Ox|pyr denotes the sheaf of real analytic
functions. Moreover, the support of p(u) is contained in the set {x € U | f(x) = 0}
for any section u of ’H[lfzo](OX) over an open set U of M.

Proof: To prove that p is well-defined, it suffices to show that p([af~*]) =
p([(af)f~%71]) holds for any section a of Ox. This follows from

Resy—o (af) ifk*l = Resy—o afiik-

Moreover, we have f*p([af~*]) = Resy—o (af?) = 0. Hence the support of p([af~*])
is contained in f = 0. It is easy to see that p is a homomorphism of 4 ,/-modules.
|

Let us show that both u and p(u) satisfy regular holonomic Dx-modules. (See [8],
[4] for regular holonomic systems. ) First we recall the set W}? defined by Kashiwara
[6]:

Definition 2.3: For a holomorphic function f on X, the set /V[v/f is defined to be
the closure of the set

{(o;2,0dlog f(z)) € Cx T"X | f(x) # 0}

in C x T* X, where T* X denotes the cotangent bundle of X. Let w : C x T* X —
T*X be the canonical projection and set

W = w(Wr N ({0} x T*X)).

If f is a polynomial, then the defining equations of Wy, and hence those of WJ?
as well, can be computed as the ideal quotient by f of the radical of the ideal
generated by f& —odf/0x; (i =1,...,n). The theorem below should be classical,
to which we would like to give a ‘constructive’ proof. (See Theorem 7.6.1 of [4] for
a complex version.)

Theorem 2.4: Let u be a section of H[lfzo}(ox) defined on a neighbourhood of
g € M in X. Then

(1) Dxu = Dx/Annp, u is a regular holonomic Dx-module whose character-
istic variety is contained in W]? Nn{f =0}

(2) There exists a coherent sheaf T of left ideals of Dx defined on a neighbour-
hood of ¢ in X such that Dx /T is regular holonomic with the characteristic
variety contained in W?ﬂ{f = 0} and that Z|ps is a subsheaf of Annp,, p(u).
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Proof: Set N' = Dx|[s|f*. Then N'(\) := N/(s—A)N is a regular holonomic Dx-
module whose characteristic variety is contained in W}) for any A € C (Theorem
2.2 of [8]). Set v = [af~*] with a € Ox. The surjective Dx-homomorphism of
N(—1) to Ox[f~!] implies that Ox[f~!]/Ox and its submodule Dxu are regular

holonomic and their characteristic varieties are contained in WJQ N{f =0}
Let

a j\__k = Z /\j’l)j (Uj S DbM)

j=—m

be the Laurent expansion around A = 0. By using the functional equation (2), we
can find a nonzero polynomial b(s) and Q(s) € Dx|s] such that

BN = QVE.

Factoring b(s) as b(s) = c(s)s! with ¢(0) # 0, we obtain

a

p(u) =v_y = Wl

' 9 -1 - -1 ‘
i (55) € = X Qi tos )
! =
with ); € Dx.

For a non-negative integer k, let us introduce a free Ox[f~!]-module

Ly, = Ox[f 11 @ Ox[f(flog ) @ - ® Ox[f1(f* (log £)).

Then L has a natural structure of left Dx|[s]-module. Let N}, be the left Dx[s]-
submodule of £; generated by f*(log f)7 for j = 0,...,k. Then it is easy to see
that My and Ny /Nj_1 are isomorphic to N as left Dy [s]-module. Set

Nk()\) = Nk/(s - )\)Nk for A € C.

Then Ny(A) and Ng(N)/Ng_1(A) are isomorphic to A (\) as left Dx-module. Hence
Ni(A) is regular holonomic and its characteristic variety is contained in WJ(?.
Now set

i = Qolflo & Qulf* log flo & -+ & Qua[f*(log £)' o € Ni—1(0),

where [f*(log f)’]o denotes the modulo class of f*(log f)7 in Nj_1(0). Then Dx1
is regular holonomic as a left Dx-submodule of A;_1(0). There exists a surjective
homomorphism of Dyt to Dyrp(u) of left Dys-modules which sends @ to p(u). In
particular, Annp,, % annihilates p(u). This completes the proof. O

Remark 1: In the same way as the proof above, one can show that every coef-
ficient (as a distribution) of the Laurent expansion of f _’~\_ with respect to A about
an arbitrary point in the complex plane satisfies a regular holonomic system whose
characteristic variety is contained in W}) .

Remark 2: If f is a polynomial, then the proof above combined with an algo-
rithm to compute the structure of NV (Algorithm 2 of [12]) yields an algorithm to
compute Annp,, %, which is a subsheaf of Annp,,p(u). However, we do not know
any general algorithm to compute Annp,, p(u) exactly.
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3. Comparison of annihilators via p
Theorem 3.1: Let f be a real-valued real analytic function defined on M. As-
sume

(A) For any positive integer k, X = —k is al most a simple pole of fi as a
distribution on M with the meromorphic parameter .

Then p is a homomorphism of sheaves of left Dyr-modules. In particular, Annp,,u
is a subsheaf of Annp,,p(u) for any section u of H[lf:m((’)XHU.

Proof: Let P and a be germs of Dx and of Ox respectively at a point yy of U.
There exist p(x,s) € (Ox)y,[s] and a non-negative integer [ such that P(af*) =
p(z, s) £*~* holds formally. Then we have

p(Plaf™1) = p([p(x, k) f~*7']) = Resa—o p(x, —k) f1 7
= Resy—op(z, A — k)fi‘_k_l = Resy—o P(a J);_k)
= PResy—gaf? " = Pp(laf "))

since A = 0 is at most a simple pole of fi_k_l. O

Corollary 3.2: Assume
(A") l;f’mo(—k) does not vanish for any positive integer k with xo € M.

Then we have an inclusion

Annep,), v C Annep,), p(u)

x g

for any germ u of H[lfzo]((’)x).

Proof: By the functional equation (2), it is easy to see that (A) is satisfied with
M replaced by a neighbourhood of zg. Hence p is a Dx-homomorphism on a
neighbourhood of xy. This implies the inclusion. O

Lemma 3.3: Let f be a real-valued real analytic function defined on a neigh-
bourhood of xo € M such that its differential df does not vanish at xqo. Suppose that
a(z, A) is an analytic function in x, \ defined on a neighbourhood of (x¢,0) € M xC
and that

Res)—g a(z, \) ifk =0

holds on a neighbourhood of xo with a non-negative integer k. Then a(x,0) is
divisible by f* in the stalk (Ox)qy, -

Proof: By a real analytic local coordinate system z = (z1,...,x,), we may as-
sume f(z) = x1 and xg = 0 with M = R"™. In view of the functional equation

1
A k Ak
= 0
(xl)-i- (A—‘rl)()\—i-k') 1($1)+ )
A = —k is a simple pole of (:L‘l)ﬁ\r with residue
-1 k—1
Res/\:_k (:Cl)i = LafY(xl)

(k—1)!
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Hence we have

a(z,0)08Y (x1) = (—=1)* "1 (k — 1)! Resy—_j, a(x, 0)(;1c1)ﬁ‘r
= (=1)*Y(k — 1)! Resy—g a(z, 0)(x1)j‘__k
= (=1)*1(k — 1)! Resy—p a(z, )\)(l’l)i\:k =0

on an open neighbourhood U of 0 in M. This implies

= (a(z,0)Y (1), p(x)) = (Y (21), (—01)"(a(z,0)¢(x)))
- (/ 1) (a(a:,O)go(a;))daq) dxo---dx,

= (—1)kt Z <k R 1> / ta(0,2',0)08 (0, 2) day - - - day,
i—0 \ ! Rt

—a) Y (m,())cp(x))} dws - - day,

$1:0

n—1

%

for any C*° function ¢(z) with compact support in U, where we use the notation
x' = (xa,...,2,). Choose an open interval I containing 0 and an open neighbour-
hood V' of 0 in R"~! such that I x V" is a subset of U. Let x(x1) be a C* function
of z; with compact support in I such that y(xz;) = 1 on a neighbourhood of 0.
Setting ¢(r) = 2! x(z1)1(2") with an arbitrary C* function (') with compact
support in V’/ and an integer [ with 0 <[ < k — 1, we get

/ 10,27, 0)(2") dag - - - da,, = 0.
Rn 1

Hence 9%a(0,2’,0) = 0 holds for 2/ € V/ and 0 < i < k— 1. Thus a(x,0) is divisible
by z¥. O

Theorem 3.4: Let f be a real-valued real analytic function defined on M such
that f(xo) = 0 with xo € M. We assume

(B) There exists a real analytic local coordinate system x = (x1,2') =
(x1,T2,...,2yn) of M around zqy such that xo corresponds to the origin and
f is written in the form

@) = c(@)(@]" + ar(a)2" ! + -+ am ("))
with m > 1, where c(x) and a;(z") are real-valued real analytic functions
defined on a neighbourhood of the origin such that c(0) # 0 and a;(0) =0

for 1 < j < m. Moreover, for any neighbourhood U of the origin in R"™,
there exists yyy € R"™! such that (0,y) € U and the equation

2+ ar(yo)x!" 4+ am(yh) =0

i x1 has m distinct real roots.

Under this condition,

Ann(px)mop(u) C Ann(Dx)xOu



April 22, 2012

13:18 Complex Variables and Elliptic Equations algcohomC

Complex Variables and Elliptic Equations 7
holds for any germ u of H[lf:m((f)x) at xg.

Proof: Set u = [af~*] with a € (Ox),, and a non-negative integer k. Let P be a
germ of Dx at x¢ and suppose Pp(u) vanishes on a neighbourhood of xy. There exist
p(z,s) € (Ox)z,[s] and a non-negative integer | such that P(af*) = p(z,s)f*~".
This implies

Pp(u) = Resy=g P(af} ™) = Resx—op(z, A — k) f2 7' =0 (3)

on a neighbourhood of zg.
By the Weierstrass preparation theorem, we can find ¢(z) € (Ox),, and r;(2') €
C{a'} such that

p(x, —k) = q(2) f(@)"* +r(z)  with f(2) = 27 + ar (@)™ + -+ am(@),
m(k+1)—1

r(x) = Z ri(x)xl.

1=0

There exist an open connected neighbourhood V” of the origin in C"~! and an open
connected neighbourhood V; of 0 in C such that aj(2’) and r;(2’) are analytic on
V', ¢(x) and q(z) are analytic on V := V; x V', ¢(x) does not vanish on V, the
set {z1 € C| f(x1,2') = 0} is contained in V; if 2/ € V', and Pp(u) = 0 holds on
VM.

Take a y) € V' NR"! such that the equation

fl@1,y0) = o1 + a1 (yo)al ™ + - + am(yp) = 0

in 21 has distinct real roots 1 = §; (j = 1,...,m). Since f is non-singular at
(&5, 95), Lemma 3.3 and (3) imply that p(z, —k) is divisible by f**! in (Ox) gm0
for each j = 1,...,m. Hence there exists an analytic function e(z) defined on a
neighbourhood of V7 x {y} such that p(z, —k) = e(x) f(x)**!. Consequently

7’(1') = e(a:)f(;c)kﬂ _ q(a:)f(:c)kH _ (e(x)c(x)kJrl _ q(x))f(x)kH (4)

holds on a neighbourhood of V; x {y(}.

Let us show that r(z) is divisible by f(z)**! in the ring C{z’ — y}}[z1], where
C{z' — y,} denotes the ring of convergent power series in 2’ — yj. Since f/dx;
does not vanish at (&j,y), the implicit function theorem assures the existence of
real-valued real analytic functions ¢;(z’) defined on a neighbourhood of y{, such

that ¢;(y() = &; and
flz) = H(331 — ("))
j=1

holds on a neighbourhood of V; x {y{}. Division in C{z’ — y{}[x1] yields
k-1 .
r(z) = qx)(x1 — o1 (@) + D Fi(al)ad
i=0

with ¢i(z) € C{z' — y,}[z1] and 7;(2") € C{a’ — yj}. On the other hand, r(x)
is divisible by (x1 — ¢1(2"))** in (Ox)(¢1,y) by (4). This implies, by virtue of
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the uniqueness statement of the Weierstrass preparation theorem (applied with x;
replaced by 21 — &), that 7;(2') =0 for 0 < i < k41— 1. In the same way, we can
show that §i(z) is divisible by (21 — @a(2'))¥*! in C{2’ — y}}[x1]. Repeating this
argument, we conclude that r(z) is divisible by f(z)¥*" in C{z’ — yo}[z1]. Hence
r(z) = 0 holds on a neighbourhood of V; x {y;}, and hence on V, since the degree
of r(x) in z; is smaller than that of f(z)**!. Thus we have Pu = [p(z, —k)fF 1] =
[q(z)c(x)™"~!] = 0 on V. This completes the proof. O

Corollary 3.5: Assume (A) and (B) for any xo € M. Then p induces an injec-
tive sheaf homomorphism H[lfzo](OX) — Dby of left (Dx )z, -modules. In particu-
lar,

Ann(Dx)zOp(u) = Ann(Dx)zou

holds for any section u of H[lfzo](OX)xo-

4. Comparison of annihilators of f* and of fj‘_

Let f be a real-valued real analytic function defined on a neighbourhood of g € M.
We present some elementary facts on the annihilator of f}r, which will be useful in
the computation of the annihilator of p([f~*]) as well.

Regarding s as an indeterminate and f® as a ‘formal’ function, set

Annp,( f° = {P(s) € Dx[s] | P(s)f* = 0},

which is a coherent sheaf of left ideals of Dx/[s] (cf. [6]).

Lemma 4.1:  Let P(s) be a germ of Annp_ (4f° at zo. If A = Ao € C is not a
pole of fi as a distribution near x = xg, then P()\o)fio =0 holds.

Proof: If Re A is sufficiently large, then P()\) fj} is locally integrable near x = x.
Moreover, it vanishes where f(z) # 0 by the assumption. Hence P())f? vanishes
near z = xg if Re A is sufficiently large. The assertion follows from the uniqueness
of analytic continuation. O

Lemma 4.2: Assume that Ao is not a pole of ff; near x = xg and that for any
neighbourhood V' of xo in M there exists y € V' such that f(y) > 0. Under these
two assumptions, if P € (Dx)y, satisfies Pfj:" = 0, then Pf* = 0 holds as a
multi-valued analytic function.

Proof: Since f = 627“/?1]6/\0]0_,'):0 holds with some integer k where f(z) is pos-
itive, we have Pf* = 0 as multi-valued analytic function in view of the second
assumption. O

Proposition 4.3: Assume that A = A\g is not a pole of fi near * = xg and
that bg z, (Ao — v) # 0 holds for any positive integer v. Assume moreover that for
any neighbourhood V' of xo in M there exists y € V' such that f(y) > 0. Then the
following three conditions on P € (Dx)z, are equivalent:

(1) Pf =0.

(2) Pf* =0 holds as a multi-valued analytic function.
(3) There exists a germ Q(s) of Annp  (qf° such that P = Q(Xo).
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Proof: By the preceding two lemmas we have implications (3) = 1 and (1) =
(2). The equivalence of (2) and (3) follows from Proposition 6.2 of [6] in view of
the assumption on by, (s). O

5. Examples

Example 5.1 Set f = x%x%+x§ with M = R3 and an odd integer p > 3. Then the
reduced b-function b 70(s) of f at the origin does not have integral roots as is seen
by Example 4.20 of Yano [13]. It is easy to see (e.g., by the weighted homogeneity)
that the reduced b-function of f at a point other than the origin is a factor of
bso(s). Hence the assumption (A’) is satisfied for any =g € M.

By a coordinate transformation y; = x1 + %2, Y2 = x1 — X2, y3 = x3, f takes the
form

f=Wl—v)?+yh =yl —2uiy3 + s + 5.

Hence the equation f = 0 in y; has four distinct real roots if and only if y3 < 0 and
Y3 +yh > 0. Hence the assumption (B) is satisfied at each point z¢ = (zo1, Zo2, Zo3)
belonging to the the singular loci 1 = x3 = 0 or x93 = x3 = 0. It is easy to see
that the assumption (B) is always satisfied at a non-singular point. In conclusion
we have Annp,, u = Annp,,p(u) for any section u of H[lfzo](OX)| M in view of
Corollary 3.5.

We conjecture that Annp, [f~!] is generated by

m%x% + zg, paz3 81 — 2331:10283, pxg 32 — 2x1x283,
pxr101 + 22303 + 2p, prols + 22305 + 2p
for any integer p > 1. We have verified it for 1 < p < 290 by using an algorithm in

[11] with a computer algebra system Rlsa/ Asir ([ |). For example, if p = 3, then
the characteristic cycle of H; f:o}(o x) = Dx|[f~!] is given by

* 3 * 3 * 3 * 3
2T = =2s=0}C T ==\ (0} © + T =z s=op (0 & + Ty C

with Y/ .= {(xl,an,xg) | x%x% —+ x% = 0} \ {($1,x2,x3) | T1Ty = T3 = 0}
Example 5.2 Set f = z125 with M = R? and consider a section u := [(z122)!]
of H[lfzo}((f)x)- The assumption (B) is satisfied at every point of f = 0 as is seen

by the coordinate transformation y; = x1 + 2, yo = 21 — 2. Hence Annp,, p(u) C
Annp,,u holds by Theorem 3.4. It is easy to see that Annp, u is the left ideal of
Dx generated by x1x9, 101 + 1, 2902 + 1. In fact, suppose P € Dx annihilates u
on a neighbourhood of 0 = (0,0). We can write P in the form

P = Qo(x1,x2;01,02)x 122 + Q1(21; 01, 02)x1 + Q2(2; 01, 02)x2 + R(01,02).

Then on a neighbourhood of a point (z1,0) with |z1]| > 0 sufficiently small, we
have

(Q1(x1;01,02) + R(D1,02)z1 [z '] = 0.

In view of the Laurent expansion with respect to z1, this implies that R = 0 and
that @ is written in the form @1 = @Q}0;. Likewise Q3 is written in the form
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Q2 = Q402. Hence P belongs to the left ideal generated by xix2, O121, Jaxa.

On the other hand, the annihilator of p(u) is generated by x1z9 and 210 — 2205.
This can be shown as follows: Assume P € (Dx)o annihilates p(u). Then P is
written in the form

P = Qo(x1,x2;01,02)x122 + Q1(21,T2; 01, 02)0121 + Q2(x1, T2; 01, O2) D22,

which can be verified in the same way as above, or else follows from Theorem 3.4.
Since

Ox1p(u) = Daxap(u) = 26(x1,x2) (5)

holds, where §(x1,x2) = d(x1)d(x2) is the Dirac delta function with support at the
origin, Pp(u) = 0 implies

(Q1(x1,2; 01, 02) + Qa2(x1, 23 01, 02))0(x1)6(22) = 0.
Let us rewrite Q1 and ()2 in the form
Qi(71, 9501, 02) = Si(x1,w2; 01, 02)21 + Ti(w2; 01, 02) 72 + Ri(01,02) (i = 1,2).
Then R; + R = 0 follows from (R + R2)d0(z1)d(z2) = 0. Summing up we get
P = (Qo+T101 + Sa00)z172 + S1210171 + T2120272 + R1 (171 — Da2).

This shows that P belongs to the left ideal generated by xixo and x101 — 2205
since

.’E181$1 = 1:1(81951 — 62932) + 82.T1£CQ.

Let Z be the sheaf of ideals of Dx generated by z1x2 and x10; — x202. Then Z|y,
coincides with the sheaf Annp,,p(u) of annihilating ideals on M = R?, which is
consequently coherent over Dj;. In fact, they coincide at the origin by the above
argument. At another point, say, (0,z2) with z9 # 0, it is also easy to see that Z
coincides with the annihilator of p(u). The characteristic cycle of Dxu is

Tt —r=0yC + T 00020y C + Tiy=0,0,20yCs
while that of Dx /7 is
QTE:,;l:zQ:o}(CQ + Tfmlzo,m;éo}(CQ + foz,:o,mgéo}cz-
Finally, let us verify (5). By using the functional equation
3132(551332)‘?1 = (s+ 1)2(x1$2)i,
we get

p(u) = Resy—q (z122)17" = 9105(Y (122) log(z122)).
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Let p(z) = ¢(x1,x2) be a C* function with compact support. Then we have

(0102(Y (2122) log(2122)), ()

= / / (log x1 + log x2) {(O1029) (x1, 22) + (O10290) (—x1, —x2)} dx1das.
o Jo

We rewrite the integral involving log z; as follows:
/ / log acl 8182(,0) (acl, xg) (alazgo)(—xl, —xg)} dmldl‘Q
0 0

/Ooo log x1) {(01¢)(x1,0) — (O1p)(—21,0)} day

/ (log 1)1 {¢(x1,0) + p(—21,0) — 2¢(0,0)} dx;

:/ ©(x1,0) + p(—x1,0) — 2¢(0,0)
0

I

[e=]

d!L‘l.

Hence if we define the distribution v(¢) on R by

[T + (=) —29(0)
£)) _/O t dt

for any C*° function 1 (t) with compact support, we have
p(u) = v(z1)d(x2) + 6(z1)v(w2).

It is easy to see that tv(t) = Y (t) — Y(—t), from which (5) follows.

Example 5.3 Set f = z1(23 + 23 + 23) with M = R* and set u := [f~1]. Then
f? satisfies a functional equation

3
*81(82 + 83 + 84)fs+1 (3 + 1) < 2) fs. (6)
Let
2=+ 1) 20 (@) + A+ 1) ooy (@) +volz) + -
be the Laurent expansion around A = —1. Then we have

1
U_Q(x) = 581(8% + 832, + BE)Y(ml) = 0,

1 ] 3\
v_1(x) = 181(8% + 0% +07) { lim LB (()\ + 2> f_l) }

1
= 101(8% + 8% + 02) {—4Y(:E1) +2Y (z1)(log z1 + log(:ﬁ% + x% + mi)}

= 5(3:1)(90% + x% + aﬁ)*l.

Thus A = —1 is a simple pole of fi and so is A = —k for any positive integer k in
view of (6). Hence (A) is satisfied.
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Let us show that Annp, u is generated by

r1(23 + 23 +23), 110 +1, 2209 + 2303 + 1404 + 2,

2903 — 2302, 204 — x402, T304 — 2405.

We have only to find P € Dx other than f which annihilates the rational function
ft = a7lg7! with g := 23 + 2% + 23. In fact, if P[f~!] = 0 then a := Pf~!
is analytic, which means that P — af annihilates f~!. The annihilator of g~ as
analytic function is generated by the operators listed above except the first two
since ¢ is homogeneous and g = 0 has an isolated singularity (see e.g. Theorem
2.19 of [13]). The annihilator of 27! is generated by x19; + 1. The assertion follows
from these observations.

On the other hand, the annihilator of p(u) = v_1(x) = 6(z1)g ! is generated by

the operators
x1, anQ + 1'383 + $484 + 2, 1'263 — 1’382, :B284 — .21?4(92, .%'384 — $463. (7)

We can verify this as follows: First note that ¢ is locally integrable for Re A >
—3/2. Since the b-function of g is (s + 1)(s + 3/2), Theorem 4.3 guarantees that
for a differential operator P in the variables 2’ = (2, x3,14), we have Pg;1 =0
as a distribution if and only if Pg~! holds as an analytic function. It follows that
Annp,, p(u) is generated by the operators listed in (7).

In conclusion, Annp,, p(u) is coherent on M = R*, of which Annp,,u is a proper
subsheaf. The characteristic cycle of H[lfzo](o x) = Dxu is

* 4 * 4 * 4
T10yC + Thos=ay=ai=op\(0}C + Tl =attag+az=on 0} C
* 4 * 4
T T =03 102402200 C + Taz1a21020,21 £0,(02,20,04)£(0,0,0)} C
whereas that of Dx /Z with Z being the sheaf of left ideals of Dx generated by the
operators in (7) is
4 * 4 4
Ty + Thaimagrazrat=on0C + Trzoap ot otz

Example 5.4 Among the normal forms of real hypersurface singularities in M =
R™ (see [1]), at least the following ones satisfy the condition (B) at the origin, where
q(xg,...,zy) denotes a non-degenerate quadratic form in the variables zy, ..., x,
and a is a real constant:

Dy : 2229 — 23+ q(23,...,7),

N

Er7: 113'? + l’lxg + CI(ZE?,, s 7$n)a

)
)
)
4) ]38i : f{’ + aw%@, + xlxg + x%xg +q(x4,...,x,) with —a’?+4 <0,
)
)

5) Jip o o3 4+ ax?ed + xiaf + (w3, ..., zn) with —a® £4 <0,

6 Jl:%Jrk o ad 4+ 232l + aaSTF 4 q(as, ..., x,) with k> 1 and (Fa < 0 or k:
odd),

(7) P8i+k s rddates + ey + ax§+3 +q(z4,...,2y) with £ > 1 and a # 0 and

(—ora<0or k:odd),
(8) Rim : r1(2? + 2973) :I:xlzztaxg”+q(az4,...,:1:n) with a 20, m > 1> 5,
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9) R, . a1(—2F + a3 +22) +ax] +q(24,...,2,) with a #0, m > 5,

(10) Eyo: 23 +af + 23 + avi2d + q(2g, ..., 1),

(11) Ey3: 23 + 223 £ 23 + axl + q(xg, ..., 20),

(12) By 2 £ 25+ z3 + ar17S + q(z4,. .., 70),

(13) Z11: a8xe + 25 £ l’% +az125 4+ q(T4, ... ),

(14) Z1a: x3x9 + 1175 & x% +az?ed + q(zy, ... 20),

(15) Z13: x3xg 2§ + 23 + am 23 + q(24, ..., 1),

(16) Wig: Fa]+ 23 £ 23 + ax?al + q(z4, ..., T),

(17) Wig: +a] + 125 + 23 + ax§ + q(x4, .. ., 20),

(18) Q11 : o3 + z3ws £ x123 + axd + q(w4, ..., 7).
Let us show that the polynomial f of P8jE satisfies the condition (B) if —a?44 < 0.
The discriminant of the cubic polynomial f(z1,x2,23,0,...,0) in z; is

D(x9,x3) = 27x523 + (4a® F 18a)zx3zs 4+ (—a® & 4)a$.
Substituting tx3 for xo we get
D(txz, x3) = (27t* + (4a® F 18a)t* — a® £ 4)z5.
Hence we have D(tx3,x3) < 0, which assures that the cubic equation
f(z1,tas, x3,0,...,0) =0

in 21 has three real roots, if —a? +4 < 0, 23 # 0, and ¢ is sufficiently small.
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