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1. INTRODUCTION

Our purpose is to present algorithms for computing some invariants and
functors attached to algebraic D-modules by using Grobner bases for
differential operators. Let K be an algebraically closed field of character-
istic zero and let X be a Zariski open set of K" with a positive integer n.
We fix a coordinate system x = (x,,...,x,) of X and write ¢ = (J,,...,d,)
with d, == d/dx;. We denote by D, the sheaf of algebraic linear differen-
tial operators on X (cf. [3], [6]).

Let M be a coherent left Dy-module and u a section of M Suppose
that f = f(x) € K[x] is an arbitrary nonconstant polynomial of n vari-
ables. If Mis holonomic, then for each point p of Y :={x € X | f(x) = 0},
there exists a germ P(x, d,s) of Dy[s]at p and a polynomial b(s) € K[s]
of one variable so that

P(x,9,s)(f*"'u) =b(s)f'u (1.1)

holds with an indeterminate s (cf. [17]). More precisely, (1.1) means that
there exists a nonnegative integer m so that

Q=f""(b(s) = P(s,3,5)f)f* € Dyls]

satisfies Qu = 0in Ms] == K[s] ® M The monic polynomial b(s) of the
least degree that satisfies (1.1), if any, is called the (generalized) b-function
for f and u at p. The b-function in this sense was first studied by
Kashiwara [17] (cf. also [44]). Some of its applications were given by
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Kashiwara and Kawai [20]. In particular, when M coincides with the sheaf
O, of regular functions and u = 1, we get the classical b-function (or the
Bernstein—Sato polynomial) of f. An algorithm for computing the
Bernstein—Sato polynomial has been given in [33] (see also [44, 34] for
examples, and [38, 4, 25] for algorithms in some special cases).

Suppose that a presentation (i.e., generators and the relations among
them) of a coherent left Dy-module Mand a section u of Mare given.
Then we are concerned with algorithms for solving the following problems:

(A1) to determine whether there exists and to find, if it does, the
b-function for f and u;

(A2) to obtain presentations of the algebraic local cohomology
groups I-{{,]( M) (j = 0,1) as left D,-modules (cf. [17] for the definition);

(A3) to obtain a presentation of the localization M=Y) = Mf ']
of Mby f as a left D,-module;

(A4) to obtain a presentation of the left Dy[s]-module

Y Dy[s](f* ® uy).

i=1

where u,,...,u, are generators of Mand f° ® u; is regarded as a section

of (Ols, f'1f%) ®y M

It turns out that these problems are closely related with one another not
only from theoretical but also from algorithmic point of view: Solutions to
(A2)—(A4) need the existence of and some information on the b-functions
for f and u,,...,u,; one can solve the problem (A3) by using a solution to
(A4) by specializing the parameter s to an appropriate negative integer. As
an application, for two polynomials f,, f, € K[s], we can obtain a presen-
tation of the left Dy,-module D,(f]'f?) for generic constants s,,s, € K.

Kashiwara [17] proved that I-{{,]( M) and M *Y) are holonomic if so M
is. In this case (more generally, under a weaker condition that the
b-functions for f and u,...,u, exist, which can be determined algorithmi-
cally), we can solve the problems (A1)—-(A4) completely except that we
need the condition I-{g]( M) = 0 to solve the latter part of (A1), (A3), and
(A4); even if this condition fails, we can obtain certain information
(estimates ‘from above’) on solutions of these problems. We solve the
problem (A4) by generalizing a method developed in [34] for computing a
presentation of Dy[s]f’. Note that Ginsburg [14] (see also [5]) gave
formulas which connect the characteristic cycles of H{( M) and Mx*Y)
with that of M, and which can also serve as algorithms at least in algebraic
case for computing those characteristic cycles via Grobner bases in the
polynomial ring (combined with an algorithm to compute the characteristic
cycle of M(cf. [30])), under the condition that M is regular holonomic.
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Our algorithms for (A1) and (A2) are actually obtained as applications
of algorithms for more general problems as follows: Now let M be a left
coherent Dg-module with X := K X X.Let u,,...,u, be generators of M
We identify X with the hyperplane {(t,x) € X |t = 0} of X. Then the
b-function of Malong X at p € X is the monic polynomial b(s) € K[s]
of the least degree that satisfies

(b(td,) +tP(t,x,t3,,9))u; =0  (i=1,...,r)

with germs P(¢,x,td,,d) of Dy at p, where we write d, = d/dt. M is
called specializable along X at p if such b(s) exists. On the other hand,
the restriction (also called the induced system or the tangential system) of
Mto X is the complex of left Dy-modules:

t

M :0 >M— M— 0.

It was proved by Laurent-Schapira [24] (and by Kashiwara [17]) that if M
is specializable along X (or holonomic), then the cohomology groups of
Mg are coherent left D,-modules (holonomic systems, respectively).

In the classical case K = C (the field of complex numbers), if X is
noncharacteristic for M (cf. [19]), or M is Fuchsian along X (cf. [23]), we
have an isomorphism

RHomp (M. G;")|, = RHOm, ( M, OF)
in the derived category, where O and (%" denote the sheaves of
holomorphic functions on X and on X respectively, and R Hom means the
right derived functor of the functor of taking homomorphisms between
sheaves (cf. [15]). This isomorphism is a generalization of the classical
Cauchy—Kowalevskaja theorem.

Assume now that a presentation of a coherent left Dg-module M is
given. Then we obtain a complete algorithm for solving the problem

(B1) to determine whether Mis specializable along X and to find, if
so, the b-function of Malong X.

This algorithm is obtained by generalizing a method of Grobner basis
computation (the Buchberger algorithm [7]) in the Weyl algebra with
respect to the so-called V-filtration ([18], [27]) developed in [31, 32, 33] (cf.
also [1]). We have solved (B1) for the case r =1 in [33]. Here we
generalize an algorithm of [33] so that we can compute the b-function as a
function of the point of X for arbitrary r > 1.

Under the condition that M is specializable along X, we also get an
algorithm to solve the problem
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(B2) to obtain presentations of the cohomology groups of M as left
Dy-modules.

It seems that no complete algorithm for (B2) used to be known (see [41,
42, 32] for partial algorithms). Note that M is specializable if M is
holonomic ([21]). Algorithms for (A1) and (A2) are obtained by applying
the algorithms for (B1) and (B2) to the module ( Dy 8(¢ — f(x)) ®, M for
a given D,-module M, where 8(¢ — f(x)) denotes the modulo class of
(t — f(x) " in Gyl(r — f(x))~']. Thus we can solve (A2) under the condi-
tion that ( Dy 6(¢ — f(x))) ®p, Mis specializable along X, and (A1), (A3),
(A4) under the additional assumption Hj,( M) = 0. We can also show that
( Dy 6(t — f(x)) ®,, Mis specializable along X if and only if there exists
the b-function for f and each generator of M in the sense of (1.1).

When K = C, we can consider the problems explained so far with Dy
replaced by the sheaf D" of analytic differential operators. Then our
algorithms yield correct solutions also in this analytic case if the left
Dy'-module M in question is written in the form M" =Dy © , M
with a coherent D,-module M whose presentation is given explicitly.

We have implemented the algorithms in the present paper by using
computer algebra systems Kan [43], developed by Takayama of Kobe
University, and Risa /Asir [29], developed by Noro et al. at Fujitsu Labora-
tories Limited. We use Kan for Grobner basis computation in Weyl
algebras, and Risa /Asir for Grobner basis computation, factorization, and
primary decomposition in polynomial rings.

2. V-FILTRATION AND INVOLUTORY GENERATORS

Let X be a Zariski open subset of K X K" with the coordinate system
(t,x) =(t,x,,...,x,). We denote by d, = d/dt and d = (d,,...,d,) the
corresponding derivations with d, = d/dx,;. Put X == X N ({0} X K"). Then
X can be identified with a Zariski open subset of K". Let O, and O; be
the sheaves of regular functions on X and on X respectively. We denote
by Dy and D, the sheaves of rings of algebraic linear differential
operators on X and on X respectively. Let Dg|x be the sheaf theoretic
restriction of Dy to X.Put Jy := O;t. Then for each integer k we put

Fi( Dy) = {P € Dylx | P( ) & (Jy) " foranyj >0}

Let M be a left coherent Dy-module. We assume that M has a

presentation M= ( Dy)' /N on X, where N is a left Dj-submodule of
( Dy)". Then let us put

F((N)==NNF(Dg). F(M)=F(Dg) /F(N)
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for each integer k € Z. These are called V-filtrations ([18, 27]). The
graded ring and modules associated with these filtrations are defined by

gr( Dy) = kajz Fi( Dy)/F-\( Dy),
gr(N) = kejz F,(N)/F,_\(N),
gr( M) = kEEBZ F,( M)/F,_\( M).

Then gr( M) is a coherent left gr( Dy)-module. Note that gr( Dy) is
isomorphic to Dy[t, d,], which consists of the sections of Dgy|y that are
polynomials in ¢.

For a nonzero section P of ( Dy)|x, let k = ord z(P) be the minimum
k € Z such that P € F,( Dy)". Then let &(P) be the modulo class of P in

Fi( Df()r/Fk—l( Df()r = ( DX[mt]Sk)r’

where S, == 9 if k>0 and S, :=t* otherwise. Moreover, we define
y(P)(s) € ( Dy[s]D" so that &(S_, P) = (P)td,) holds.

DEFINITION 2.1. Let U be a Zariski open subset of X. A subset G of
I'(U, Ny) is called a set of F-involutory generators of N on U if G
generates My as a left Dg|y-module on U and if 6(G) == {o(P) | P € G}
generates gr( N) as a left gr( Dy)-module.

The following two propositions are immediate consequences of the
definitions:

PrROPOSITION 2.2. Let G ={P,,...,P,} CT'(U, Nx) be a set of genera-
tors of Nlx on a Zariski open set U C X. Then G is a set of F-involutory
generators of Non U if and only if for an arbitrary nonzero element P of the
stalk N of Nat p € U, and for an arbiirary integer j, there exist Q,, ..., 0
€ N so that ord(Q,P) < ordz(P) (i = 1,...,m) and

P — Q1P1 - _Qum EF}( D)”();'

m

PROPOSITION 2.3.  Let G be a set of F-involutory generators of N. Denote
by ¢y (N the left Dyl[sl-submodule of (Dyl[s]) generated by {{/(P) | P € N.
Then (N) is generated by (G) == {¢(P) | P € G}.

3. GROBNER BASES WITH RESPECT TO THE
V-FILTRATION

The purpose of this section is to show that a set of F-involutory
generators of a given submodule Nof ( Dy)" can be provided by a Grobner
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basis in the Weyl algebra with respect to an appropriate term ordering,
which can be computed by the Buchberger algorithm [7]. See e.g. [2, 9, 10]
for Grobner bases of polynomial rings. The fact that the Buchberger
algorithm applies to the Weyl algebra (the ring of differential operators
with polynomial coefficients) was observed by Galligo [12] (cf. also
[8, 40].

Let us denote by 4, and A4, ,, the Weyl algebras on the n variables x
and on the n + 1 variables (¢, x) respectively with coefficients in K (cf.
[3]). Let r be a positive integer and put L := N?*?" = N X N X N"” X N”"
with N =:{0,1, ...}. An element P of (A,.,)" is written in a finite sum

-
P=) Y. Ayapit "X 0] Pe, (3.1)
i=1 (p,v,a,B)EL

with a,,,5 € K, e, == (1,0,...,0),...,¢,=1(0,...,0,1), x* = x["" --- x 7,
g = 9P - 9P for a = (ay,...,a,), B=(B,,...,B,) € N"
Let <, be a total order on L X {1,...,r} which satisfies

O1D (a,i) <z (B,j) implies (a + y,i) <z (B + y,j) for any
a,B,ye L and i,j{l,...,r};

02) if v—pu<wv —u', then (u,v,a,B,i) <z (u',v',a’,B',))
for any o, B,a’',8' € N", u,v,u’,v' € Nand any i,j € {l,...,r};

(03) (p,m, a,B,i) = (0,0,0,0,i) for any w € N,a,BN", i €
{1,...,r}.

Note that <j is not a well order (linear ordering). However, through-
out the present paper, every order is supposed to satisfy (O1). Let P be a
nonzero element of (A4, )" which is written in the form (3.1). Then the
leading exponent lexp(P) € L X {1,...,r} of P with respect to < is
defined as the maximum element

max{( u,v, a, B,i) N 0}

with respect to the order < . The set of leading exponents E (N) of a
subset N of (A4, ,)" is defined by

Ep(N) = {lexpp(P) | P € N\ {0}}.

DEFINITION 3.1. A finite set G of generators of a left 4, ,-submodule
N of (A, . ) is called an FW-Grobner basis of N if we have

Er(N) = U (lexpp(P) + L),
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where we write
(a,i)+L={(a+B,i)| BeL}

fora € Land i< {l,...,r}.

LEMMA 3.2. For any integer k, the order <y restricted to the set
{(w,v,a,B,i) € L|v— u=k}isawell-order.

Proof. The conditions (O1) and (O3) imply that < is a well-order
restricted to {(u,v,a,B,i) € L | v— wu=k}. This implies the lemma
combined with (02). |

ProPOSITION 3.3. Let G be an FW-Grobner basis of a left A, ., -
submodule N of (A, , ). Then G is a set of F-involutory generators of the left
Dg-submodule N:= Dy N of ( Dy)" on X.

Proof. Put G ={P,,...,P,}. Let P be a nonzero element of I\é with
p € X. Then by definition there exists a(x) € K[x] such that a(p) # 0
and a(x)P € N. We have lexp(P) € E.(N) since G is an FW-Grobner
basis of N.Hence there exist i € {1,...,m} and a monomial Q € 4, (K)
such that lexp(P — QP) < lexp(P). Let j be an arbitrary integer.
Repeating this process a finite number of times, we can find, by virtue of
the preceding lemma, Q,,...,0Q, € A,, (K) so that lexp(Q;P,) <y
lexp(aP) if Q; # 0 and that

Cl(X)P B QIPI - _Qum EF;( Df()r

This completes the proof in view of Proposition 2.2. ||

Since the order < 1is not a well-order, the Buchberger algorithm for
computing Grobner bases does not work directly. We use the homogeniza-
tion with respect to the V-filtration in order to bypass this difficulty (cf.
[31, 32,33, 1]). The following arguments generalize those in [33], where the
case with r = 1 is treated. Since this generalization is straightforward, we
omit the proof.

DErFINITION 34. For A,u,v, A, u',v €N, «a,B,a’,B' € N", and
i,je{l,...,r}, an order <, on L, X{I,...,r} with L, =N XL is
defined so that we have (A, u,v,a,B,i) <z (XM, u',v',a’,B',)) if and
only if one of the following conditions holds:

(1) A <A,

@ A=N(p+Lv,a B, =< (u +1'v',a', B, j)with [,LI" €N
such that v—pu—[l=v'" — u —1';

BN v,a,B,D)=W\ v, a,B",)), u<pu.
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This definition is independent of the choice of [,I’ in view of the
condition (O1).

LEMMA 3.5. (1) < is a well-order.

Q) Ifv—pu—A=v' —u — X, then we have (A, u,v, a, B,i) <y
(A, w v a’, B )) ifand only if (u, v, a, B,i) <z (p/,v',a’, B',)).

For a nonzero element P = P(x,) of (A, [x,D", let us denote
by lexp,(P) € L, X {1,...,r} the leading exponent of P with respect
to <y .

DEFINITION 3.6. An element P of (A4, ,[x,]" of the form

r
— Ay qv 93
P = Z Z a)\,u,vaﬁixot X é)t Jd €;

i=1 A p,v,a,B

is said to be F-homogeneous of order m if a,,,,5; = 0 whenever v — u —
A # m.

DEFINITION 3.7. For an element P of (A,,,)" of the form (3.1), put
m == min{v — u | Ay,api 0 for some w,vE€N, a,BEN", and i€
{1,....7}}. Then the F-homogenization P" € (A, [x,])" of P is defined
by

.
Ph=3 ) AyyapiXy M TTEHX 0] 9 Pe,
i=1 p,v,a,pB

with a parameter x, which commutes with all the other variables and
derivations. P is F-homogeneous of order m.

LEmma 38. If Pe A, [x,] and Q € (A, [x,]D" are both F-
homogeneous, then so is PQ.

LEMMA 3.9. We have (PQ)" =P"Q" for P A,, [x,] and Q €
(A, [x D"

LEMMA 3.10. For P,,...,P.€(A,,,), put P=P, + -+ +P,. Then
there exist 1,1,,...,l, € N so that

x PP =xb(P)" + - +xb(P)".
Let us define w: L, X {1,...,r} = L X {1,...,r} by

w(A,pu,v,a,B,i)=(p,v,a,B,i).
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LEmMA 3.11. (1) If P(x,) € (A,  [x,D" is F-homogeneous, then we
have lexp (P(1)) = w(lexp, (P(x,))).

(2) Forany P € (A, ), we have lexp(P) = w(lexp, (P")).

PROPOSITION 3.12. Let N be a left A, |[x,]-submodule of (A, [x,])
generated by F-homogeneous operators. Then there exists an H-Grobner basis
(i.e. a Grobner basis with respect to <,; ) of N consisting of F-homogeneous
operators. Moreover, such an H-Grobner basis can be computed by the
Buchberger algorithm.

PROPOSITION 3.13.  Let N be a left A, , -submodule of (A, )" generated
by P,,...,P, € (A, ). Let us denote by N" the left A, , [ x,]-submodule of
(A, [x,D" generated by (P)",....(PD". Let G = {Q(x,),...,0.(x,)} be
an H-Grobner basis of N" consisting of F-homogeneous operators. Then
G(1) =1{Q,1),...,Q,(1)} is an FW-Grobner basis of N.

These two propositions, combined with Proposition 3.3, provide us with

an algorithm of computing a finite set of F-involutory generators of
N= DXN on X.

4. THE b-FUNCTION OF A D-MODULE

We retain the notation in the preceding section. Let M be a left
coherent Dg-module on X. We assume that a left A, ,-submodule N of
(A, )" is given explicitly so that M= Dy ®, M holds with M =
(A,+)'/N.Set N=Dy®, NcC(Dg). Let F(N), F,( M) be the V-
filtrations of Nand M respectively defined in Section 2 and put

gre( Dy) = F( Dy)/Fi-:( Dy),
gr(N) = F.(N) /F._,(N),
gr( M) = F (M) /F,_( M).

In particular, gr,( M) and gr,(N) are left gr,( Dy)-modules and we can
identify gr,( Dy) with Dy[z4,].

DEFINITION 4.1. The b-function b(s, p) € K[s] of M along X (with
respect to the V-filtration {F,( M)}) at p € X is the monic polynomial
b(s,p) € K[s] of the least degree, if any, that satisfies

b(td,,p)ere( M), = 0. (4.1)

If such b(s, p) exists, Mis called specializable along X at p.If M is not
specializable at p, we put b(s, p) = 0.
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It is known that if M is holonomic, then M is specializable at any
p €X ([21]. In the sequel, we describe an algorithm for computing
b(s, p) € K[s] as a function of p € X.

ProPOSITION 4.2. Put J:= y(N) N (Ols]", which is an Ols]-
submodule of (O[s])". Let Ann((O/[s]"/J) € Oyls] be the annihilator
ideal for (Ols]"/J. Then the ideal Ann(( Q([s])’/J)p N K[s] of K[s] is
generated by b(s, p) for each p € X.

Proof. By the identification td, = s, we have an isomorphism #(N) =
gro(N) as left Dy[s]-modules (cf. [33]). Hence we get an isomorphism

gro( M) = Dy[s] /¢(N).

We have an inclusion O[s]/J C Dyls]/¢(N) and O,[s]/J generates
D, [s]"/y(N) over Dy[s]. Since K[s] is the center of D,[s], this proves
the assertion of the proposition. [

A set of generators of y/( N) on X can be computed by using Proposi-
tions 2.3, 3.12, 3.13. Hence our first task here is to compute a set of
generators of J. Let <, be a total order on L, X {l,...,r} with
L, == N'*2" which satisfies (O1) with L replaced by L, and

(04) (a,i) >, (0,i) for any a € L,\ {0} and i € {1,...,r};
(05) |Bl <|B'| implies (w, a, B,i) <, (u', a’, B',j) for any
,u‘,l'l‘, ENa a,a,,B,B, ENH, iaje{la'--ar}'

Note that the order <, is a well-order.

PROPOSITION 4.3. Let G, be a finite subset of (A, [s])" which generates
W(N) as a left Dy[s]-module on X. Let G, be a Grobner basis with respect to
<p of the submodule of (A,[s]" generated by G,. Put G, = G, N K[s, x]".
Then J is generated by G, on X as an Oyl sl-module.

Proof. This proposition follows immediately from the fact that <, is
an order for eliminating ¢. This order can be also used for the computa-
tion of the characteristic variety of a D-module (cf. [30]). |

The final step will be devoted to the computation of b(s, p) with a set of
generators of Jas an input. For i = 1,...,r, put

JO={f=(fi.....f,) € JIf=0if j > i}.

Then J®/JY"Y can be regarded as an ideal of Oy[s] whose generators
can be computed via a Grobner basis with respect to an order < on
N'*" % {1,...,r} satisfying (a,i) < (B,)) for any a, B € N'*" if i <.
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So far we have used only the Buchberger algorithm, which does not
require field extension, for computing Grobner bases with respect to
various orders. Hence we do not need to assume that K is algebraically
closed from the viewpoint of algorithms. Thus, in the rest of this section,
we assume that K is an arbitrary field of characteristic zero so that the
inputs are defined over K. Since we will make use of primary decomposi-
tion, which is sensitive to field extension, we will have to pay attention to
the coefficient fields.

Let K be the algebraic closure of K and suppose that X is a Zariski
open subset of K". We denote by O, the sheaf of regular functions on X.
In particular, O, is a sheaf of K—algebras. In general, for an ideal Q of
Kls,x]and p € K", let us denote by b(s,Q, p) € K[s] a generator of the
ideal K[s] N O[s],Q. We may assume that b(s,Q, p) is monic if it is not
zero. Put

Vi (Q) ={xeX|f(x) =0forany fe QO NK[x]}.

Note that V,(Q) can be computed by eliminating s by means of a Grobner
basis of Q.

LEMMA 4.4. In the above notation, the ideal Q([s]pQ N K[s] ofI?[s] Is
also generated by b(s,Q, p).

Proof. Let b(s,Q,p) be of degree d. Then it suffices to show that
deg f = d for any nonzero element f of Q([s]pQ N K[s]. Then there exist
fi»e-onf, €Qand a,,...,a,,q € K[x] so that

m

q(x)f(s) = L a}(x)f;(s.x)

j=1

and g(p) # 0. Let 7: K — K be a projection, i.c., a K-linear map whose
restriction to K is an identity. We may assume, by multiplying elements of
K to g and f, that w(g(p)) # 0 and that f is monic. Since we have

m

m(@)m(f) = L 7(a)fi(s.x),

j=1
which implies that 7(f) € Q([s]pQ N K[s], we know that b(s,Q, p) di-
vides 7(f). Since the degree of 7 (f) is equal to that of f, we are done. |

PROPOSITION 4.5. Assume that Q is a primary ideal of K[s, x] and let h(s,
Q) be a generator of the ideal Q N K[s] of K[s].

(1) Case h(s,Q) # 0: In this case there exists an irreducible polynomial
ho(s,Q) € K[s] and v, € N so that h(s,Q) = hy(s,Q)". Put

Vi(Q) == {x € X f(x) =0 foranyf € K[x] N (Q: y(5.0)")}
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for each v € N, where : denotes the ideal quotient in K[s, x]. Then we have a
decreasing sequence of algebraic sets

XD Ve(Q) = W(Q) 2V (Q) > 2V (Q) =L

of X. If p € Vi '(Q)\ Vi(Q), then we have b(s,Q, p) = h,(s,Q)" for
v=0,...,v,, where we put Vi '(Q) = X.

(2) Case h(s,Q) = 0: In this case we have b(s,Q, p) = 0 if p € V,(Q)
and b(s,Q, p) = 1 otherwise.

Proof. First assume h(s,Q) # 0. The existence of hy(s,Q) and v, as
above follows from the fact that Q N K[s] is a primary ideal of K[s]. In
order to prove the assertion of (1), it suffices to show that b(s,Q, p) =
ho(s,Q)” with some v € N, which may depend on p € X. This follows
from the fact that b(s,Q, p) divides h(s,Q) in K[s] by definition.

Next assume (s, Q) = 0. Suppose p € V,(Q) and b(s,Q, p) # 0. Then
there exists a(x) € K[x] such that a(p) # 0 and a(x)b(s,Q,p) € Q. It
follows that there exists w € N so that b(s,Q, p)* € Q since a(x) & Q in
view of the condition p € V,(Q). This contradicts the assumption Q N
K[s] = 0.1If p & V,(Q), there exists a(x) € Q N K[x] such that a(p) # 0.
This implies b(s,Q,p) =1. 1

Note that A(s,Q) and the ideal quotient Q: h,(s,Q)” can be computed
also by Grobner bases ([9, 2, 10]).

PROPOSITION 4.6. Under the abouve qssumptions and notation, let J, be an
ideal of K[s, x] such that Ols]J, = JV/J""D fori=1,...,r. Let

J; = Qi,l AN Qi,mi

be a primary decomposition of J; in K[s, x]. Then the b-function b(s, p) of M
at p € X is the least common multiple of b(s,Q; ;, p)’s where (i, j) runs over
the set {(i,j)l 1 <i<r,1<j<m}.

Proof. 1t is easy to see that

Ann(Q([s]r/J) NK[s] = h Ann( Q[s]/(JV/J" D)) N K][s]

i=1
r

= N (&lsl N K[s]).

i=1
Hence the assertion of the proposition follows from
O[s]J; = OX[S]QM ARMNE Q([S]Qi,m,--

This completes the proof. |}
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Thus by combining Propositions 4.2, 4.3, 4.5 and 4.6, we have obtained
an algorithm to compute the b-function b(s,p) of M as a function of
p € X. In particular, note that b(s, p) belongs to K[s] for any p € X. Let
us assume that X is defined over K, i.e., there exists an ideal I, of K[x]
so that K"\ X is the set of the zeros of I, in K". Then the following
theorem provides us with an algorithm to determine whether M is special-
izable along X at every point of p € X, and to compute the set {s €
K | b(s, p) = 0 for some p € X}. This will be needed in order to compute
the restriction and the algebraic local cohomology groups globally on X in
the subsequent sections (cf. Proposition 5.2 below). Let us denote by
rad Q' the radical of an ideal Q' € K[x].

THEOREM 4.7. Let J; and Q;; be as in the preceding proposition.

(1) M is specializable along X at each point of X if and only if the
condition

Q;; N K[s] # {0} or rad(Ql-j N K[x]) Yy (42)

holds foreachi = 1,...,randj=1,...,m,.

(2)  Assume that (4.2) holds for each i and j. Let b,(s) be a generator
of Q;; N Kls] if rad(Q;; N K[xD 2 Iy, and put b;(s) =1 if rad(Q;; N
K[x]D > Iy. Let b(s) be the least common multiple of b, (s)’s with 1 <i <r
and 1 <j <m;. Then the b-function b(s,p) of M divides b(s) for any
p € X. Moreover, for any irreducible factor g(s) of b(s), there exists some
p € X so that g(s) divides b(s, p).

(3) Assume X = K". Then M is specializable along X at each point of
Xifand only if J. N K[s] # 0 forany i = 1,...,r. In this case let b.(s) be a
generator of J, N K[s] and let b(s) be the least common multiple of
b(s),...,b.(s). Then b(s) is the least common multiple of b(s, p)’s where p
runs over X.

Proof. (1) and the first assertion of (2) follow immediately from Propo-
sitions 4.5 and 4.6 since the condition rad(Qij N K[s]) D I, is equivalent
to Vy(Q;;)) = . To verify the latter assertion of (2), assume rad(Q,; N
K[x] 2 I. Then ho(s,Ql-j) divides b(s,Qij,p) if and only if p belongs to
VX(Ql-j), which is not empty. On the other hand, if rad(Qij NK[xD)>DI,,
then we have b;;(s) = 1 and b(s,Q;;, p) = 1 for any p € X,

(3) Assume that M is specializable at any p € X = K". Suppose
J. N K[s] = {0} for some i. Then we have Q; N K[s] = {0} for some j.
Then Vy(Q;,) is not empty. In fact, if V3(Q;;) would be an empty set, then
we should have 1 € Q;; N K[x], and hence 1 € Q;;» which contradicts the
assumption. This means that M is not specializable on Vy(Q;;). Hence we
must have J; N K[s] # {0} for i = 1,...,r. This proves the first statement



74 TOSHINORI OAKU

of (3). Note that Q[s]J/; is a sheaf of ideals of O[s] and we have
I'(X, Olsl).) = Kl[s,x]J. for X = K". Hence for f(s) € K[s] in general,
we have f(s) € K[s,x]J; if and only if f(s) € Ols] J ,J;» or equivalently

b(s,J;, p) divides f(s), for any p € X. This proves the latter part of (3). |

Algorithms for primary decomposition are known at least if the coeffi-
cient field is algebraic and finite over Q. See, e.g. [2, 11, 39] for recent
developments. Note that we do not need primary decomposition in order
to compute b(s, p) for a fixed p (cf. [33]). There is also a simple algorithm
for determining whether the condition rad(Qij N K[x]) D I, holds (cf. [9)]).

5. THE RESTRICTION OF A D-MODULE

We retain the notation of the preceding section. In particular, let b(s, p)
be the b-function of Mat p € X. The (D-module theoretic) restriction of
Mto X is the complex

M::0 > M

of left Dy-modules, where the homomorphism ¢ denotes the one defined
by t(u) = tu for each u € M We regard the right M to be placed at the
degree O in considering the cohomology groups of M. Put D, _ 3=
D;/t Dy. Then Dy , 5 is a ( Dy, Dg)-bimodule, and M is isomorphic to
L L

Dy . y ® , Min the derived category, where & denotes the left derived
functor of ® (cf. [15]). Let us denote by M, := H'( Mg) = M/t M the 0-th
cohomology group of the complex M.

t

> M— 0

LEMMA 5.1.  The homomorphism t: gr;, ( M), — gr,( M), is bijective if
b(k,p) #0 forp € X.

Proof. We write b(s) = b(s, p) for simplicity. First, let us prove that ¢
is injective. Let u be a section of F,, ( M) and denote by u its residue
class in gr,, ( M). Assume fu = 0 in gr,( M). Note that b(¢d,)gr,( M) = 0
implies b(td, + k)gr,( M) = 0 for any k € Z. Hence we have

0=>b(td, +k+ 1)u=>b(dt+k)u=>b(k)u.

Since b(k) # 0, we get u = 0.

Next, let us prove that 7 is surjective. Let u be an arbitrary element of
gr,( M). Then we have b(td, + k)u = 0. We can take c(¢,d,) € K[t]d,)
so that b(td, + k) = tc(z,d,) + b(k). Hence we get

= —b(k) 'tc(t,9,)a,

which implies that ¢ is surjective. |
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PROPOSITION 5.2. Assume that M is specializable along X at each point
of X. Let k, < k, be integers such that the b-function b(s, p) of M satisfies
b(k,p) # 0 for any p € X and for any integer k such that k < k, or k > k.
Then M is quasi-isomorphic to the complex

0 — F, . ( M)/F, (M) —t’Fkl( M)/F,-,( M) — 0

of left D,-modules on X. In particular, t: M— M is bijective if b(k,p) # 0
forany p € X and k € Z.

Proof. First, let us show that two homomorphisms

Fo (M) —> F (M), (5.1)
M/F, . ( M) —> M/F,( M) (5.2)

are bijective. To prove the injectivity of (5.1), suppose an element u €
F,( M)\ F,_ ,( M) with some k < k, satisfies fu = 0. Then we have & = 0
in gr,( M) since t:gr,( M) = gr,_,( M) is bijective. This contradicts the
assumption.

Next let us show that (5.1) is surjective. Let u € F,( M) with k < k, — 1.
Then there exists v, € F,, ,( M) so that u — tv, € F,_,( M). We can take
v, € F,( M) so that u — v, — tv, € F,_,( M). Hence by induction, we can
take vy, 0y,...,0; € Fi .y so that

u—t(vy+uv, + - +u) €F_|( M) =tF,( M).

It follows that (5.1) is surjective.

Let us show the injectivity of (5.2). Let u € M satisfy tu € F,( M). We
may assume u € F,( M)\ F,_,( M) with some k > k, + 2. Then we have
fu =0 in gr,_,( M), which implies # = 0 in gr,( M). This contradicts the
assumption. The surjectivity of (5.2) can be proved in the same way as for
(5.1).

Now let us turn to the proof of the proposition. First note that the
bijectivity of (5.2) implies that the vertical chain map

t

0 — Fle(M) - Fkl(M) — 0

l l (5.3)

0o — M _— M —s 0

is a quasi-isomorphism (i.e. induces isomorphisms between the correspond-
ing cohomology groups). In the same way, the bijectivity of (5.1) implies
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that the chain map

0 — Fi, (M) — Fi,( M) — 0

l l (5.4)
0 — F o (M/F (M) —— E(M/E (M) — 0

is also a quasi-isomorphism. Combining (5.3) and (5.4), we get the result. |i

REMARK 5.3. The optimal k,, k, in Proposition 5.2 can be determined
by b(s) defined in Theorem 4.7.

The following proposition provides a sufficient condition for the —1th
cohomology group H™'( M¢) to vanish.

PROPOSITION 5.4. Assume that there exists by(s) € K[s] and m € N so
that

by(1d,) 3" gro( M), = 0.
Assume, moreover, by(k) # 0 for any k € Z. Then the homomorphism
t: M, = M is injective.
Proof. Since

t"bo(td,)d" = by(td, — m)td,(td, — 1) - (td, —m + 1), (5.5)

we have only to show that ¢: gr,, ( M) — gr,( M) is injective for 0 < k <
m — 1 taking into account the proof of Proposition 5.2. Assume that an
element U of gr,, ,( M) satisfies /0 = 0. There exists u# € gr,( M) such that
0 = d}*"'u. Then we have

0 =by(1d,)d u=0"""""by(td, —m + k + 1)3 " 'a
= 9" kb (9t —m+ k) u= 9" " b,(-m + k)T

in view of td}*'u = 0. Hence we have

<

"o = =0 (5.6)
since by(—m + k) # 0. From (5.6) we get

[t,om o= -(m—k—-1)9" " 20=0.
Proceeding in the same way, we obtain 0 = 0. |}

An algorithm to determine if there exists, and to find if any, such b,(s)
as in the preceding proposition is given as follows: Let b(s, p) be the
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b-function of Mat p. In view of (5.5), we may assume
s(s = 1) (s—m+ 1)by(s —m) =b(s,p) (5.7)

by choosing a minimal b,(s) satisfying the assumption. There exists
b,(s) € K[s] which satisfies (5.7) and b,(k) # 0 for any k € Z if and only
if b(s,p) has 0,1,...,m — 1 as simple roots and has no other integral
roots. If such is the case, we can determine if bo(s) satisfies the condition
of Proposition 5.4 by using the following two lemmas.

LEMMA 5.5. Let N be a left A, . -submodule of (A, ) whose genera-
tors are given explicitly. Suppose also that Q € (A, . )" is given. Then there is
an algorithm to obtain a finite set of generators of the left ideal N: Q = {P
A, |1POEN}ofA,,,.

Proof. Let{Q,,...,0,,} be a set of generators of N and put

S(Q’Ql""an)
={(U.U,,....U,) € (A4,,)""1UQ + U,Q, + - +U,0,, = 0}.

Then by computing a Grobner basis of the left 4, -module generated by

0,0,,...,0,, we get a set of generators {U,,...,U;} of S(Q,0,,...,0,,)
(cf. [10, 40]). Let m:(A4,, )"*"' > A,,, be the projection to the first
component. Then it is easy to see that N:(Q 1is generated by
a(U),....,7mU). 1

LEMMA 5.6. Let N be the left A, , ,-submodule of (A, )" as above and
let (N) be the left A,[t, d,]-submodule generated by {o-(P) | P € N}. Then
we have b(td,)d" gro( M), = 0 if and only if the ideal

N (&(N):b(2d,)d/";)
i=1
of A, ., contains some a(x) € K|[x] such that a(p) # 0.

Now we shall give an algorithm to compute M, .Let P be an element of
F,( Dg)". Then we can write P in the form

r m
P = Z Z Pik(toqt’x"?)atkei t R
i=1 k=0
uniquely with P, € D,[td,] and R € F_ ( Dy)". Then we put

p(P.ky) =2 X Py(0,x,9)d/e,
i=1 k=k,

for each integer k, with 0 < k, < m.
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THEOREM 5.7. Assume that Mis specializable along X and let k,,k, be
as in Proposition 5.2. Redefine k, to be 0 if k, < 0. (We have k, = 0 and
k, = m — 1 under the assumption of Proposition 5.4.) Let G be a finite set of
F-involutory generators of Non X. Then we have an isomorphism

rk
M(:(@ D DX@kei)/M(

i=1 k=k,
of left Dy-modules, where N, is the left Dy-module generated by a finite set
Gy = {p(9/P.ky) IP€G,jENky<j+ordp(P) <k}

In particular, we have M, =0 if b(v,p) # 0 forany v N and p € X.

Proof. Put G ={P,,...,P,}. By Proposition 5.2, we have an iso-
morphism

M, = F, ( M)/(tFk]+l( M) + F, _( M)

Put
r k|

D(ko’kl) = @ @ DX é)tkel.
i=1 k=k,

Define a Dy-homomorphism ¢: D%o-k) — F.(M) by

roky rok
) Z Z Pk(x’a)é)tkei = Z Z Pk(x»3)(9tk”i

i=1k=k, i=1 k=k,

for P,(x,d) € Dy. We shall prove

GD_I(tFle( M) +Fk0—1( M)) = N.

Assume P = X[_, Xir, Px,d)dfe, belongs to ¢ '(tF , (M) +
F,-\( M). Then there exist B € F, . (Dg), ReF, (D), and
Q,,...,0, € (Dy) so that

d
P—tB—-R= ) QP (5.8)
j=1
and ord(Q,;P) <k, in view of Proposition 2.2. Put m; := ord (P). We
may assume that Q; are written in the form

kl_mj

Qj = Z ij(tﬁt’x’&)&tk + Rj
k=0



ALGORITHMS FOR D-MODULES 79
with R; € F_ (D) and Q;, € Dylt4,]. Then from (5.8) we get

P =p(P.k)

d
=p Z Qij’kO

j=1

kl_mj

d
=P Z Z ij(t&t,x,a)(?tkPj,ko
j=1 k=0

kl_mj

d
= 2 X 0u(0,x,9)p(dfP k).
j=1 k=0

Here note that p(9/P;,ky) =0 if k +m; <k,. Hence we have proved
¢ '(tF . (M) + F, _,( M)) € N;. The converse inclusion follows from

o(Gy) CtF (M) + F, _,( M). Since
o( D&y + 1 (M) + F (M) = F (M),

we are done. ||

In order to interpret the preceding theorem more concretely, let
u,...,u, be the modulo classes of e,,...,e, in M Then as is seen by the
proof of the preceding theorem, M, = Dy 3y ®, M is generated by
1 ® (9fu;) with k, <k <k, and 1 <i <r as left Dy-module. Moreover,
for P, € D,, we have

ro k
>, 2 Pi(1®dfu)=0
i=1 k=k,
if and only if ¥j_, X5, Pye; € N.

Our next aim is to give an algorithm for computing the structure of the
kernel H™'( M) of t: M— Mas a left Dy-module. Note that H™'( Mp)
has a structure of left Dy[¢d,]-module which is compatible with that of left
D,-module. For two integers k, < k,, put

r kl
Dkokd = @ @ Dy[td,] S,e,,
i—1 k=kq

where S, == g} if k>0, and S, ==¢t* if Kk <0.Let P be a section of
F,( Dg)". Then we can write P uniquely in the form

P= ) ) Py(td, x,3)Sye (5.9)
i=1 k

= — 00
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with P, € Dy[td,]. Then we define

T(P.ky) = ), Y. Pu(td,,x,d)Se,.
i=1 k=k,

PROPOSITION 5.8. Let G be a finite set of F-involutory generators of Non
X. Then, for any integers k, < k,, we have an isomorphism

Fkl( M)/Fko—l( M) = ~D(koa/’Cl)/G,(ko,kl)

of left Dyltd,]-modules, where G*o-*V is a left D,[td,]-module generated by
a finite set

Gko-k) = {T(S]-P,ko) | PeG,j€Z,ky<j+ordp(P) < kl}.

Proof. Let us define a left D,-homomorphism @: D%o-k) — F, (M) by

rok
o(P) = Z Z P (t,,x,9)Su,
i=1 k=k,

for P € D%o-k0) of the form (5.9) with m = k,, where u, denotes the
residue class of e; in M Then we have only to prove that

5! (Fiy (M) = G

It is easy to see that p( G*o-k)) Fy,—,( M). Suppose that P € D*o-kD of
the form (59) with m =k, satisfies @(P) € F, _(M). Put G =
{P,,...,P,}. Then there exist Q,,...,Q, € Dy and R EFkO_l( Dy)" so
that

d
P= ) QP +R (5.10)
j=1

and that ord (Q;P,) < ord;(P) < k,. Put m; = ordz(P)). Then Q; can be
written in the form

kl—mj

Q= ) Qu(td,x,3)S, +R, (5.11)

with R; € Fko_mj_l( D;)". From (5.10) and (5.11) we get

kl_mj

d
P = T(P,k()) = Z ij(tat’x’é))T(Sk})j’ko) = G(ko,kl).

This completes the proof. |}
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Let y: D*otlkit) — Pko-k) pe a left D, [td,]-module homomorphism
defined by

Fk Fok
x| 2 X Pi,k+1(t07wx"9)5k+1ei) = X P i(t9, — 1,x,09)T;e;
i=1 k=k, i=1 k=k,

with

k

Sy (k< —1)
{t&tSk (k=>=0).

THEOREM 5.9. Under the same assumptions as in Proposition 5.2, we have
an isomorphism

H—l( I\&) ~ X—I(G(ko,kl))/G(k0+1,kl+1)

as left Dy[td,]-modules. Moreover, x~'( G*o-*D) yGFo* 1K1+ 1) s q coherent
left D,-module.

Proof. First note that y '( G%o-*D) is a left D, [td,]-module since we
have x(td,P) = (td, — D) x(P) for P € D¥o*1-ki+1D) 1 et

)—(: D(k0+l,kl+1)/G(k0+l,kl+1) N b(ko,kl)/G(kO,kl)

be the homomorphism induced by y. Then ) represents the homo-
morphism

t:F o ( M/ (M) = F (M) /F, _( M)

via the isomorphism of Proposition 5.8 since

ro k ro kK

t 2 2 Piai(td,x,9)Se;= 2 2 Praei(td, — 1,x,9) S, e
i=1 k=k, i=1 k=k,

and tS,,, = T,. This implies the first assertion of the theorem.

The coherency of y 'G¥ok)/G*0-kD over D, follows from the
existence of the b-function (cf. [24]). See the proof of Theorem 5.11
below for an algorithmic proof of this fact. |

A presentation of H™ '( M) as a left coherent D,-module can be
obtained by the following algorithm. Put

r ky

Akk) = @ D A[t3,]S,e,
i=1 k=k,

We regard A%o*) ag a free left A [td, ]-module of rank k, — k, + 1.
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ALGORITHM 5.10. Input: a finite set G € (A4, )" of F-involutory gen-
erators of N on X, and integers k,,k, satisfying the assumption of
Proposition 5.2.

(1) Let N, be the left A,[¢d,, z]-submodule of

r k,
A%k z] = B D A4,[td,,z]S,e,
i=1 k=kg
which is generated by
r kl
U U {(1 —2)Te} u{zP | P e GHoFv}
i=1 k=k,

with an indeterminate z.

(2) Let G, be a Grobner basis of N, with respect to a well-order <,
on L X{1,...,r} for eliminating z, ie., satisfying (u,v,a,B,i) <,
(u',v',a’,B',j) whenever w < u'; here (u,v,a,B,i) € L X{1,...,r}
corresponds to the monomial z*s*x“ dPe; with s = ¢4,.

(3) Each element P of G, N A%%) can be written uniquely in the
form

-~

1

P= ) Q. (29,)Tye;
i=1 k=k,

with Q,.(td,) € A,[td,]. Then we define y '(P) € A%*1-KitDh py

ro ky

X_](P) = Z Z Qu(1d, + 1)S, e,

i=1 k=kg
Put
G, ={x"(P)IPe G, nA% W}

Then G, generates the left D,[td,]-module y'( G¥o-*D),

(4) Suppose G, ={P,,...,P,;} and G¥o*1-ki*D) =(p P} and
put

l
ZQ]'PJ‘=O .

j=1

S = (Ql’---’Ql) E/ln[té)t]l

Compute a set of generators G, of S by means of a Grobner basis. Let
;A [t ] —> A [td,]° be the projection to the first d components. Then
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we have an isomorphism
_ d
X 1( G(ko’k]))/G(kOH’k]H) = Dy[t4,] /( Dy[td,] ®4,119,] 77'd(S))

of left Dy[td,]-modules and Dy[td,] ®, ,,, m,(S) is generated by m,(G).

(5 Put G, ={P(—1)|P(t3,) € m,(G;)} and let N;' be the left
D,-module generated by G,. Then we have an isomorphism

X—l( G(ko,kl))/G(ko-i-l,kl-l—l) ~ D?/M(—l

of left Dy-modules.

THEOREM 5.11. The statements in the above algorithm are correct if Mis
specializable along X at each point of X.

Proof. In steps (1) and (2), G, N A%-k) is a set of generators of
the intersection of the left module generated by G*o-*) and the left
module generated by T,e; with 1 <i <r and k, < k < k,. In fact, the
argument for the intersection of two ideals of a polynomial ring (cf.
[9, 2, 10]) applies without modification. Hence G, N A%o*) generates
x( Dot t-kit Dy n Gko-kD  This implies that G, generates y  '( G¥o-*D)
since y is injective. This proves the correctness of the step (3). The step (4)
is easy to verify.

Now let us verify the step (5). Since we have

(13, + D)X~ (GFoH0) /GR+HRTD) = g0 H (M) = 0,
the homomorphism
pP—1- DX[to')z]d - D)?

defined by p_,(P(¢d,)) = P(—1) induces an isomorphism

DX[Mz]d/( Dy[13,] ® 110, Wd(S)) — D{/N;'

of left Dy-modules. This completes the proof. |

In particular, we have proved in an algorithmic and constructive way
that H/( M¢) (j = 0, —1) are coherent Dy-modules if M is specializable
along X.

The following is a rather simple example for illustrating how the
algorithms proceed.
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EXAMPLE 5.12. Let Nbe a left ideal of Dy with X = K* and X = K*
generated by
P, =x,0, +x3;9; —a,,

and put M:= D;/N, where a,,a,,a, are regarded as parameters with
values in K. In fact, this is a rather simple case of the A-hypergeometric
D-module defined by Gelfand et al. [13]. The following computation (and
the other examples as well) has been performed by using a computer
algebra system Kan [43].

We get G == {P,, P,, P, P,, Ps} with

as a set of F-involutory generators of N by computing an FW-Grobner
basis in the Weyl algebra. The ideal J of O[s] of Proposition 4.2 in this
case is generated by a single element s®+ a,;s — a,s. Hence the b-
function along the hyperplane X = {t = 0} is s(s + a, — a,) at any point
of X and for any values of parameters a,,a,,a;. Actually, we can find by
an algorithm given in [33] that ¢ + (a, — a, + 1)d, — x; 4,9, is a sec-
tion of Non X, and the indicial polynomial of this Fuchsian operator with
respect to ¢ is the same as the above b-function.

Under the condition that a, — a, is not a nonzero integer, we can take
ko, =k, =0 in Theorems 5.7 and 59. By Theorem 5.7, we have M, =
D, /N, with the left ideal N, of D, generated by P,, x,d, —a,, P;,
—x,d7 + (a, — a, — 1)d;. Actually, N, is generated by

x,d, +a, —a, —a,, X,0, — a,, X3y —a;, +a,.

Roughly speaking (we assume K C C), this means that if u(z,x) is a
multi-valued analytic function which is holomorphic in ¢ and satisfies
Pu =0 for i = 1,2,3,4, then we have u(0,x) = cx;“17 %2 %:x52x{17%2 with
some ¢ € C.

From the F-involutory generators P,,..., P;, we know that in Proposi-
tion 5.8, G°? is the left ideal of Dy[s] with s = ¢d, generated by

X,d, + X305 —ay, s +x,0, —a,, X0, +x305 —ay,
sdy,  —x3d7 + (a, —a, — 1)d;,
while G is the left D,[s]-submodule of Dy[s]d, generated by
(x,d, +x595 —a,)d,, (s +x,0, —a, +1)4,,

(x,0), +x39; —a;)d,, d39,.
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By executing Algorithm 5.10, we conclude that
H' (M) = x ' (GO) /G =0

on X aslongas a, — a, is not a nonzero integer. Actually, we can perform
the Grobner basis computation for this example with the field of rational
functions Q(a,, a,, a;) as the coefficient field; afterward we can detect the
exceptional values of a,,a,,a; for which the output may fail to be correct
(cf. [34]). In this case, we can verify that there are no exceptional values.
Hence we have only to take into account the condition on the integral
roots of the b-function. See [37] and [36] for the theoretical determination
of the b-function and restrictions of some classes of A-hypergeometric
D-modules.

6. ALGEBRAIC LOCAL COHOMOLOGY GROUPS

In this section, let X be a Zariski open set of K" and put X = K X X.
We identify X with the subset {0} X X of K"*' as in the preceding
sections. In the sequel we consider a Dy,-module M instead of a Dg-
module. Let N be a left A,-submodule of (A4,)" and put M = (A4,) /N
and M:= Dy, ® M. Then we have M= ( Dy)"/N with N:= DyN.

Let f=f(x) € K[x] be a nonconstant polynomial and put Y :={x €
X | f(x) = 0}. Then the algebraic local cohomology group H{( M) has a
structure of left D,-module and vanishes for j # 0,1 ([17]. Our purpose is
to give an algorithm of computing I-{{,]( M) as a left Dy-module. In
general, for an O,-module F, put

[y (F) = {u € F | fu = 0 for some k € N}.

Then HY{(F) is defined as the j-th derived functor of Iy,

Put Z:={(t,x) e KX X |t —f(x) =0}. Let J, be a left ideal of Dy
generated by ¢ — f(x), 9, + (df/dx,)d,,...,d, + (df/dx,)d,, and put
B,;, = Dy/J,. We denote by 8(¢ — f) the residue class of 1 € Dy in B,

Put L:= O,[f',s]f*, where f* is regarded as a free generator. Then
L has a natural structure of left D,[s]-module. As was observed by
Malgrange [26], L has a structure of left Dy-module so that

t(g(s)f) =g(s+ D)f*",  a(8(s)f*) = —sg(s — 1)f*~ " (6.1)

for g(s) € O,[f ', s]. This implies that there exists an injective homomor-
phism ¢: B[Z]IX — L of left Dy-modules such that «(8(z — f)) = f* ([26]).
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LEMMA 6.1. We have an isomorphism ( B;)% = R, (O] in the
derived category of left Dy-modules, where Ry, denotes the right derived
functor of Ty, and [1] the translation functor ([15]).

Proof. In view of Theorem 1.2 of [17], we have

( B[Z]);(

L
Dy x ®p, Bz

I

Dix ® D, RF[Z]( %)[1]

l

L
= RF[Z]( Dy ® b, QY)[I]

= RF[Y]( OX)[I] |

Now let 7: X — X be the projection. Then the tensor product
B, ®,10, ™ 'M has a structure of sheaves of left Dgz-modules. Let
and 7, be the projections of X X X to X and to X respectively defined
by 7 ,(¢t,x,y) = (t,x) and 7,(t,x,y) =y for t € K and x,y € X. Put

A={(t,x,y) €XXX|x=y)}
and
D xxx= Df(xX/((xl =) Dysx + - +(x, =) Df(xX)-
LEMMA 6.2. Let F be a left Dyg-module. Then we have

L L
F® 7771Q(7T_IM: DAHXXX ®D)}XX(F® M)

with
= e -1 -1
F® M:= Di, x ®, DXMEIDX(W1 F &, ) M).

Proof. In the same way as the proof of Proposition 4.7 of [17], we have
L R L R
DA*XXX ®D)"(Xx(F® M) = Q ®qr><x(F® M)
L
=Q Q 77! Oy 731 O, (WIIF O WEIM)

L
=FQ W—IQ(W_IM.
The last equality follows from
= G & ) 'O/ = yi X, =)

This completes the proof. |}
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LEMMA 6.3. The i-th torsion group TOI 1 Ox( B, ;. m~ ' M) vanishes for
i #0.
Proof. By definition, we have
(/% = f(x)3)(8(t =) ®u) =0 in Bz & M
for any section u of M Hence A is noncharacteristic for B, ® M This

implies the assertion of the lemma (cf. [19]). |}

THEOREM 6.4. We have isomorphisms

Hj(( B[Z] ®,-10, T ) ) I_{]+l( M)

of left Dy-modules for j = —1,0.
Proof. We have by Lemma 6.1

= RF[Y]( Mmi[i]. 1

More elementary and concrete proof of this theorem is possible (cf.
Remark 6.12 below). In what follows, we shall denote F ® - o, 7'M by
F ®o, M for a Dg-module F.In view of Theorems 5.7,5.9,5.11 and 6.3,
we obtain an algorithm for computing the algebraic local cohomology
groups I-{{/]( M) for j=0,1 if there is an algorithm for computing
B;z; ®, M as a left Dg-module. In fact, this tensor product can be
computed as follows:

LEMMA 6.5. Let J, be as above. Then we have an isomorphism B,
M= ( Ds, ) /N, wzth N =J,®(D) + D; ®N.

Proof. 1t suffices to show
7' By & 7, 'M= (7' Dy & m,' Dy)/N,
with

N, = m'd, & m, ' ( Dy) + 7' Dy ® 5 'N.
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In fact we have
771_]B[Z] 9% WEIMZ (771_18[2] ® 77;1( DX)F)/(WTIB[Z] @ WEIN)

(Tffl Dy @ 7751( DX)r)/(WTIJZ ®x 7751( DX)r)
(77]1 D; ® WEIN)/(WIIJZ R 7T;1N)

= (WII Dy & 7751( DX)r)/I\é-

This completes the proof. |}

Fori=1,...,n, put
A= {(t.x.y) € XX X|x; =y forj=1,...i}.

Then we have

B z) ®, M= ( (( Bz, ® M)AI)AZ )An

by virtue of Lemma 6.2. Since A, is noncharacteristic for Bz, ® Min view
of the proof of Lemma 6.3, we can compute B;;; ®, M by applying
Theorem 5.7 repeatedly with k, = k, = 0.

LEMMA 6.6. If M is holonomic, then Bz, ®, M is specializable
along X.

Proof.  First, B;;; ®, M is holonomic as the restriction of the holo-
nomic system B, ® Mto A (cf.[17]). Hence B,7; ®, Mis specializable
along X by a theorem of Kashiwara-Kawai (cf. [21]). |

Thus we have obtained an algorithm for computing H{,( M) (j = 0,1)
by applying Theorem 5.7 and Algorithm 5.10 to B;;; ®, M under the
condition that B[Z] ®o, M s specializable along X. In particular, we have
proved the following statement effectively:

COROLLARY 6.7. If B, ® Mis specializable along X, then I-{§]( M)
(j = 0,1) are coherent left Dy-modules.

Let us describe Hy,( M) more concretely. First note that Hy,( M) =
Mf~'1/M with M f~']1:= Olf ']1®, M By applying Theorem 5.7 to
Bz, ®, M, we know that M f~'1/Mis generated by the modulo classes
v =[f*®ulin (Af'1®, M/Mwith ky<k <k, and 1 <i<r,
and the relations among the generators k! v,, are given by N, of Theorem
5.7. Actually, v, with 1 <i <r generate M f']1/M and the relations
among these generators can be obtained by eliminating v;, with k < k,.



ALGORITHMS FOR D-MODULES 89

Our next aim is to give an algorithm of computing the b-function for a
polynomial f and a section u of M Put Ms]:= K[s] ® M Then we
have

Note that an arbitrary element of L ®g M s] can be expressed in the
form f*~™ ® u with some m € N and u € Ms].

LEMMA 6.8. Let u be a section of Ms] and let m be a nonnegative
integer. Then we have f*~™" ® u = 0 in L ®q ;; Ms]if and only if ffu =0
holds in M s] with some k € N.

Proof. Since L is a free Ols,f ']-module of rank one, we have
ffmeu=0in L®,,, Ms]ifand onlyif 1 ® u =0 in Ms, '] =
Ols,f '] B0, 5] Ms]. Assume f*u = 0in Ms]. Then we have 1 ® u =

f*® (ffu) =0 in Ms,f ']. Letting o be a commutative variable
independent of s and x, define an O,[s]-homomorphism

¢: Qls.0] = Ols.f]
by ¢(h(s, o)) = h(s,f ') for h € OJs,o]. Let K be the kernel of ¢.
Then we have an exact sequence
e®1

K®o,sy Ms] — Os.o] &5 Ms]— Ms,f '] —o.

Now assume 1 ® u = 0in Ms, f']. Then in view of the exact sequence
above, there exist k(o) = LI k;;0/ € K(k;; € Ols] and u; € Ms] so
that

I
lou= ) k(o) ®uy,
i=1
in Ols, ol ®o, (57 M Since O/ls, o] is a free O[s]-module, this implies

u (j=0)
0 (j#0)

!
Z Kiji =
i=1

in Ms]. Put k := max{d,,...,d,;}. Since k(o) € K, we have

d;
Z fk_jKij :kai(f_]) =0
j=0
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in Os,f']. Thus we get

k l l d;
fku:kaijZKijui:Z kainij u; =0
j=0 i=1 i=1\j=0

in Ms]. This completes the proof. [

Let u be a section of Mand P a section of D,[s]. Then the identity
P(f*u) = 0 means by definition that there exists m € N so that Q =
f"°Pf* is contained in Dy[s] and that Qu = 0 holds in Ms] (cf. [17].

LEMMA 6.9. Foru € Mand P € D,[s], we have P(f*u) = 0 if and only
fP(f*eu)=0in L®, M

Proof. Fori=1,...,n,we have

g(freu)=f'e(sfi+fou=f""e(f 7 f)u
with f; == df/dx;. Thus by induction on the order of P, we can prove that
P(f @u) =" ® (f" Pf)u,

where m denotes the order of P. By virtue of the preceding lemma, we
have P(f* ® u) = 0 if and only if (f**™*Pf)u = 0 in Ms] with some
k € N, which is equivalent to P(f*u) = 0. |

- LeEmMa 6.10. Hy( M) =0 if and only if f: B;; ®, M- B, &, M
IS njective.

Proof. By Theorem 6.4, Hy ( M) =0 if and only if ¢: B, ®, M-
Bz, ®, Mis injective. For any v € B;;, ®, M, there exists m € N so
that (¢t — f)"v = 0. Hence if tv = 0, we get f"v = 0. Conversely, fo =0
implies t"v = 0. Hence #: B;; ® M— B;;; ®, M is injective if and
only if so is f: B,z ®, M- Bz, 8, M 1
. LEMMA 6.1%. Lgtp be a point of Y. Then any germ v of B, ®, Mat p
is uniquely written in the form

k
v=Y o 6(t—f)®u, (6.2)
i=0

with u; € M, and k € N.

Proof. By using the formula 9/ (¢t — f) = fd; 8(t — f) —ia/~"' 8(¢t —
f), we know that B, is generated by d/ 8(t — f) (i € N) over Q. Thus v
can be written in the form (6.2). In order to prove the uniqueness, it
suffices to note that ( B4, is a free (G;),-module generated by 4, 8(t —
f) with i € N. This fact follows from the isomorphisms

B, = Hu(O) = &l(t—-H7'|/6

since Z is a smooth hypersurface. This completes the proof. |}



ALGORITHMS FOR D-MODULES 91

REMARK 6.12. In terms of the expression (6.2), the homomorphism
t: Bz, ®, M- B;;®, Mis given by

S aist—f)ou| =X os(—1) @ (i, — (i + Duss).
i=0 i=0

This yields a more concrete proof of Theorem 6.4; to work it out is left to
the reader.

PROPOSITION 6.13. The homomorphism

' ®1: By 8, M- Le, M

is injective if and only if Hy( M) = 0.

Proof. Let v be a germ of B, ®, Mat p €Y given by (6.2). Then
by using (6.1) we obtain

k .
(te®1)(v) = 'g (-D's(s—=1) - (s—i+ 1) "®u

k
= e | Y (=Dis(s—1)(s—i+1)ful.
i=0

Now assume Hj,( M) =0 and (¢« ® 1)(v) = 0. Then by Lemma 6.8 there
exists m € N so that

k .
; (—=D)'s(s = 1) (s—i+ 1)f"* u,=0 in Ms]. (623)

Since u; € M, (6.3) is equivalent to f™** 'y, =0 for each i =0,...,k.
This implies u; = 0 since f: M— M is injective by the assumption. Thus
vt ® 1 is injective.

Conversely, assume Hy (M), # 0 with some p €Y. Then there
exists u € M and k € N such that u # 0 and f*u = 0. Then we have
8(t —f) ®u # 0 in view of Lemma 6.11 while (¢« ® 1)(8(t —f) ® u) =
f* ® u = 0. This completes the proof. |

THEOREM 6.14. Assume r = 1 and let u € M be the residue class of
1 € Dy. Let by(s) be the b-function of B, ®, Malong X with respect to
the filtration {F,(D3)(8(t — ) ® w)}, c , and let b(s) be the b-function for f
and u defined by (1.1), both at a point p of Y. Then we have the following:

(1) b(s) divides by(—s — 1),
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() If Hy( M), = 0, then we have b(s) = +by(—s — 1);
(3) A nonzero b-function b(s) for f and u exists at p € X if and only if
Bz, ®, Mis specializable along X at p.
Proof. (1) By definition, there exists P € F_,( Dg), so that

Writing P in a finite sum

[oe]

P=a(t,x) Y, P(t3,)t"
k=1

with P (t9,) € Dy[td,] and a(z, x) € K[¢, x] such that a(p) # 0, put

[e]

Q=a(t.x)”" ¥ P(-s—Df".

k=1

In view of (6.1), we get
(by(—=s—1) — Of)(f* ® u)

= (¢® 1)((by(13,) = P)(6(t = f) ® u)) = 0.
This implies (1).

(2) Now assume I-{,?]( M) = 0. There exists Q(s) € D[s]p so that
(b(s) — O ) f* ® u) = 0. It follows

(v@ 1)((b(=d,t) = Q(=9,0)t)(8(t = f) ® u))

= (b(s) = Q(s)f)(f ®u) =0.
Since ¢ ® 1 is injective and Q(—4,0)t € F_,( Dg), this proves that b, (s)
divides b(—s — 1).

(3) Assume that there exists a nonzero b-function by(s) for f and u
at p. Let & be the residue class of u in M = M/H( M). Then M
satisfies the condition of (2), and the b-function for f and u divides b, (s),
hence is nonzero. Thus we know that B, ®, M is specializable along
X at p by applying (2) to M. Since B, is Oflat (cf. the proof of
Lemma 6.11), we get an exact sequence

0 = gro( Biz) ®, Hyi( M))—>ero( Bz ®, M)
— gry( Bz ®, M) — 0.

It is easy to see that there exists some m € N so that §,"t™ gr,( Bz ®o,
Hy( M) = 0. It follows that B, ®, M is specializable along X. This
completes the proof. |
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REMARK 6.15. In general case r > 1, let us assume that u is given by
u=Pu, +--+Pu, with P, € A, given explicitly. Then we obtain an
algorithm to compute Dy u by means of Lemmas 5.5 and 5.6 based on the
fact that Pu = 0 holds if and only if (PP,,...,PP.) € N.

Thus we have obtained an algorithm for computing the b-function for f
and u € M under the assumption Hj,( Dyu) = 0, which can be deter-
mined by Algorithm 5.10. Note that we do not need this assumption for
deciding whether a nonzero b-function exists. This generalizes an algo-
rithm of computing the Bernstein-Sato polynomial given in [33].

EXAMPLE 6.16. Put M:= Hy(O) and let u be the residue class of f~!
in M= O/Jf ']1/0;.Let p be a point of Y. Then the b-function for f and
u at p is 1 since fu =0 in M On the other hand, the b-function of
B, ®, Malong X at p is by(s) =s + 1.1In fact, since

(8(t— ) ®u) = 8(1 — f) @ (Ju) = 0,
we know that by (s) divides s + 1. If b, (s) = 1, then we should have
M= Hy,( M) = H_l(( Biz) ®o, M)x) =0

by virtue of Proposition 5.2 and Theorem 6.4, which is a contradiction.

EXAMPLE 6.17. Put X =K’ > (x,y,z) and write d,_ = d/dx, g, =
d/dy, d, = d/dz. The Bernstein-Sato polynomial for f:=x> —y?*z? (ie.
the b-function for f and 1 € Q) is

bi(s) = (s+ 1)(s+ 2)(s+2)(s+ (s + 3)
at (0,0,0);
bi(s) = (s+1)(s+ %)(s + %)

on {(x,y,z)lx =yz=0}\{0,0,0} b(s)=s+1 on {(x,y,2) | x3 —
y?z? =0, x # 0}; and b;(s) = 1on{(x,y,2) | x*> — y?z? # 0}. This compu-
tation is based on Propositions 4.5 and 4.6. In practice, we have used a
primary decomposition program of Risa/Asir which is based on the
algorithm of [39] as well as Kan for the computation in the Weyl algebra.
We can also find an operator P € Dy[s] which satisfies Pf**! = by(s)f* at
(0,0,0) in the form P = (1,/279936)P, with

P, = 72z*(108s* + 2525 + 145) 3.3
+ 2432(1085s> + 2525 + 145) 379
+ 72z(144s> + 900s* + 15085 + 755) 9.9,
— 972(s + 1)(72s* + 1445 + 65) .,

+ 8(1296s* + 7776s> + 18072s* + 185765 + 6985) 4,
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by Algorithm 5.4 of [33] On the other hand, we have Hy,(Q;) = Dy/I/

with Y == {(x,y,2) | x° = 0}, where | is a left ideal of Dy gener-
ated by
x® —z%y?, 2xd, + 3yd, + 6,
5 Y 5 Y —yé’y +zd,,
22%yd, + 3x79,, 22%9, + 3x7%,,

3 3 2
x9, —z’yd, —2z°y,
392 442 3 2 y z
22°9,0, + 3x%9] +22%,, x%] —29] — 429, — 227,

It is also possible (in generic cases) to compute H{,( M) for algebraic set
Y of codimension greater than one. For example, let f,(x), f,(x) be two
polynomials and put

Y = {xelel.(x) =O} (i=1,2),

1

Y=Y, NY,.
Assume that I-{{,l]( M) = 0 for j # j,. Then we can compute
Hi( M) = Hi P (Hi( M)

explicitly by applying the above method first to f; and M, then to f, and
Jo (M
Y] )

EXAMPLE 6.18. Put X = K°, f, ==x* —y?, f, ==y? — z°, and consider
the space curve Y= {(x,y,2) € X | fi(x,y,z) = f,(x,y,2) = 0}. Then we
have H{(O) =0 for j # 2 and

I'{)%](Q() = Dy/I,
where [ is the left ideal of D, generated by f,, f, and
9xd, + 6yd, + 4zd, + 30,  9y’z%, + 6xz°%9, + 4xyd,.

Let u; be the residue class of f;' in I-{Y(Q() = Q/lf'1/0; with
{(x y,2) | fi(x,y,2) = O} Then the b-function for f, and u, is

(s+ (s +=)(s+3)(s +2)(s +5)(s + 2)(s +5)
at (0,0,0), and s + 1 on Y\ {(0,0,0)}. The b-function for f, and u, is
(s + (s + 55)(s + )(s + )(s + 5)(s + i)
X(s+3)(s +6)(s +

at (0,0,0), and s + 1 on Y\ {(0,0,0)}.
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7. LOCALIZATION OF A D-MODULE

We retain the notation of the preceding section. Our primary goal in
this section is to obtain an algorithm for computing the localization
Mf'l=Olf '1®, Mas a left Dy-module under the assumption
Hy( M) = 0. For this purpose, we shall first compute

P = Di[s](f* ®u) + - +De[s](f" ®u,),

which is a left Dy[s]-submodule of L ®p, M. and then specialize the
parameter s.

PROPOSITION 7.1.  Assume Hy( M) = 0. Then there is an algorithm to
compute a set of generators on X of the left D,[s]-module

Q= {(0,.....0) € (Ds]) | T Q(s)(f* & u) = 0.

i=1

Proof. By using Lemmas 6.2,6.5 and Theorem 5.7 with k, = k;, = 0, we
get an algorithm of computing

B ®, M=Dy(8(t—f)®u)+ - +Dz(8(t—f)®u,)

as a left Dg-module. More concretely we can get a finite subset G =
{P,,...,P;} of (4,,,) which generates the left Dg-module

Q=1{(0,.....0,) € ( D)’ _Z 0.(8(t—f)®u)=0}.

By making use of the injectivity of ¢ ® 1 (Proposition 6.13) and the
relations (6.1), we get

Q- (). 0.()) = (BLYY
= ( Dx[mt])r nQ

(Q(~,0). .0 (~d1)) < Q)

Now that we have a set of generators G of C?, we can obtain a set of
generators of Q as follows: Let x, and y, be new commutative variables
independent of #,x and their derivations. For each i=1,...,d, let
(P)" € (A, [x,]D" be the F-homogenization of P,. Let G be a Grobner
basis (with respect to a term order for eliminating x, and y,) of the left
A, \[x,,y,]-submodule of (A, [x,,y,])" which is generated by (P))"

(j=1,...,d) and (1 —x5y0)e; GG =1,...,r). Put G, =GN
(A, [x5,y,]D". Then Q= ( Dy[t3,])" N Q is generated by (G,) with the
substitution s = —fd, — 1. The proof is similar to that of Theorem 18 of

[34], where the case with r = 1 is treated. |]
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Now let us fix an arbitrary element s, of K and consider the specializa-
tion s =s, of the parameter s. Let L(s,) == O/ f 'If*, where f* is
regarded as a free generator. Let p: L — L(s,) be the surjective homo-
morphism of left D,-modules defined by p(g(s,x)f*~") = g(s,, x)f0™"
for g(s,x) € OX[s,f_l] and m € N. Then it is easy to see that p induces
an isomorphism L(s)) = L/(s —s,) L as left D,-modules.

Since the proof of Lemma 6.8 is also valid with s specialized to an
element of K, we get the following:

LEMMA 7.2. Let u be a section of Mand let m be a nonnegative integer.
Fix s, € K. Then we have f*~™" ® u =0 in L(sy) ®, M if and only if
f*u = 0 holds in M with some k € N.

Consider the homomorphism
p®1: L& Ms]=L®, M- L(s) ®, M

and put P(s)) =(p® 1)(P). Our aim is to obtain an algorithm of
computing P(s,). Since (s —s,) P is contained in the kernel of p ® 1,
there exists a surjective homomorphism P/(s —s,) P — P(s,) induced
by p ® 1. A sufficient condition for this homomorphism to be an isomor-
phism is given as follows (cf. Proposition 6.2 of [16] for the case M= O,).

PROPOSITION 7.3. Assume that the b-function b(s,p) for f and u; at
p € Xexists fori = 1,...,r. Assume, moreover, that b(s, — v) # 0 for any
i=1,....,r,v=1,2,3,..., and p € Y. Then the homomorphism P /(s —
sq) P = P(sy) is a left Dy-module isomorphism. In particular, we have an

isomorphism P(s,) = ( Dy) /Q(s,) with Q(s,) == {Q(s,) | Q(s) € Q.

Proof. Let p be an arbitrary point of X and & = X/_, P(s)(f* ® u;)
be an arbitrary element of P with P(s) € Dy[s],. Let m be the maximum
of the order of each P/(s). Then there exists a germ v(s) € Ms], so that
it=f""" @ v(s). Suppose (p ® 1)(ir) = 0. Then there exist w(s) € Ms],
and k € N so that f*uv(s) = (s — s,)w(s) in view of Lemma 7.2. Thus we
have

=(s—s)f """ w(s). (7.1)

There exist W\(s),..., W, (s) € Dyls], so that w(s) = Xi_, Wi(s)u,. Let [
be the maximum of the order of each W,(s). Then, by induction on [, we
can easily verify that there exists W/(s) € D, [s] of order <! so that
fm k@ Wis)u; = W/ (s) " %' ® u;). Thus (7 1) reads

W= () D o)
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There exists Q,(s) € Dy[s], so that Q(s)(f*"' ® u;) = b(s,p)f’ ® u,.
Hence we have
Qs =1 Qi(s—m—k—=1)(f ®u,)

=b(s—1,p) = b(s—m—k—=1Lp)(f " "eu).
Since b(s, — v,p) # 0 for v = 1,2,3,..., there exist Q'(s) € DX[s]p and
B(s) € K[s] so that

B(s)fs "kl ou, =0(s)(f ®u;) (i=1,....r)
with B(s,) # 0. Summing up, we get
B = (s = 3) £ W) @),

Since there exists B'(s) € K[s] such that B(s) — B(s,) = (s — 5,)B'(s),
we get

B(so)i = (s —s,)| X W/ (5)Qi(s)(f* ®u;) = B'(s)7

i=1
€ (s—s,) P.

This implies that the kernel of p ® 1: P — P(s,) coincides with (s — s,) P
since B(s,) # 0. This completes the proof. |

Thus we have obtained an algorithm for computing P(s,) under the
conditions of the above proposition. Note that it amounts to computing
L(sy) ®, Mas follows.

PROPOSITION 7.4. Under the same assumptions as in the preceding pro-
position, we have P(s,) = L(sy) ®, M.

Proof. Let f*™ ® u be an arbitrary element of ( L(s,) ®, M), with
u € M and p €Y. Then by applying the proof of the preceding proposi-
tion with k =1 =0, we obtain Q(s) € DX[s]p and B(s) € K[s] so that
QG f @ u) =B(s)f* ™ ®uin L ®, Mand B(s,) # 0. Thus we get

fom @ u=B(s,)  Q(so)(f* ® u) € P(s,).
This completes the proof. |}

PROPOSITION 7.5. Assume that B, ®, M is specializable along X.
Then there exists a positive integer k, so that M '] is isomorphic to
( D,) /Q(=k) as left Dy-module for any integer k > k.

Proof. Let b(s,p) be the b-function for f and u; at p. In view of
Propositions 4.5, 4.6 and Theorems 4.7 and 6.14, there exists a nonzero
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b(s) € K[s] so that b,(s, p) divides b(s) for any i = 1,...,r and p € X.
Let k, be the greatest positive integer, if any, such that b(—k) = 0.
Otherwise, put k, = 0. Let k be an arbitrary integer with k > k,. Then by
Propositions 7.3 and 7.4, we have

L(—k) ®, M=P(—k)=P/(s+k)P=(Dy)/Q(—k).

On the other hand, L(—k) = Q,[f '1f ¥ is isomorphic to O.[f '] as left
D,-module. Hence M f~'] is isomorphic to L(—k) ®p, Mas left Dy-
module. This completes the proof. |

Thus under the condition that B, ®, Mis specializable along X and
that Hj,( M) = 0, we have obtained an algorithm of computing Mf™']
combining Propositions 7.1 and 7.5. More concretely, we have

M= X Do/ eu).

i=1
and our algorithm computes a finite subset of (A4,)" which generates the
left Dy-module

7

Y P(f* e u) =0

i=1

Q(—k,) = {P e Dy

on X. In particular, by applying the above argument to M:= D, g*> with
another polynomial g € K[s] and a constant s, € K, we obtain an algo-
rithm for computing D, (f*1 f*2) for generic s,,s, € K as follows: First, we
can compute D, g2 if the Bernstein-Sato polynomial bg(s) of g satisfies
bg(s2 —v)# 0 for v=1,2,3,... (cf.[34]). Then we have

( Dy f™) ®OX( Dyg*) = Dy(f"g")

by virtue of Lemma 7.2, where D, (f*1g*2) is the left Dy-submodule of
Ol f ', g 'Ifg* generated by f* g*>. Thus by applying the arguments in
this section, we can compute D,(f*g*:) if, in addition to the above
condition, the b-function b,(s) for f and g*2 satisfies b ,(s, — v) # 0 for
v=1,2,3,... . Note that we always have I-{OY]( D,g*>) = 0.

Hence by choosing positive integers k,,k, so that s, = —k, and s, =
—k, satisfy the above conditions, we get an algorithm to compute the
localization O/[f',g7 'l = QJlf *,g7%2] as Dy-module.

If we regard s,,s, as indeterminates not as constants, then it is also
interesting to consider the left Dy[s,s,l-module Dy[s,s,]f*g*>. An
algorithm for computing this module can be obtained by generalizing a
method used in [34], or also by modifying the arguments in this section so
as to be adapted to the case where M is a Dy[s,]-module. We shall
discuss this problem elsewhere.
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EXAMPLE 7.6. Put X =K° > (x,y,z) and write d, = d/dx, g, =
d/dy, d, = d/dz. Put f, =x*—y> and f, =y* —z>. Let s,,5, € K be
constants. The Bernstein-Sato polynomial of f, at the singular point
(0,0,0) is b,(s) =(s + 1)(s + 2)s + £). We have D,f*> = D,/l with
the left ideal of D, generated by

d,,3yd, + 220, — 6s,, 3z%, +2yd,, (y>—2°)d, +3z%,

if b,(s, — v) # 0 for any v = 1,2,3,... . Then the b-function for f, and
f2 is
b,(s) =(s+ 1)(s + %)(s + %)(s + 25, + %)(s + 25, + %)

X(s+ 38, +R)(s+ 35+ F)s+ 35+ 5)(s+ 35, + )
at (0,0,0); while at the other points we have

(s+1D(s+2)(s+7%) on {(0,0,z) | z # 0},

bi(s) =(s+1 on {(x,y,z) [x* —y>=0,yz # 0},
1 on{(x,y,z)lxz—y3#0},
if s, satisfies b,,(s;, — v») # 0 for any v=1,2,3,... in addition to

the above condition on s,. Under the same assumptions, we have
D, (f!1f52) = Dy /1 (s,,s,) with the left ideal /(s,,s,) of Dy generated by

9xd, + 6yd, + 423, — 6(3s, + 25,),

(y* —2%)d, + 3z%s,,

(x* =y*)d, — 2s,x,

9y2z%), + 6x22<9y + 4xyd,,

3y(x2 —y?)a, + 2z(x2 —y?)a, + 3(—2s,x% + (35, + 25,) 7).
5262 y)d, + 29(x — )i, + 95,972

In particular the above assumptions are satisfied for s, =s, = —1.
Hence we have O,[f;'.f, '] = Dy/I1(—1,—1). By regarding s,,s, as in-
determinates not as constants, we have also Dy[s,,s,(f}'f5?) =
D,[s,,s,1/1(s,,s,). Then we can verify by elimination that the ideal
(1(s,,8,) + Dyls,,s,1f, f,)o N Kls,,s,] of K[s,,s,] is generated by a
single element

b(s,,s,) = (s, +1)(6s, +5)(6s, +7)(s, + 1)(6s, + 5)(6s, + 7)
X (1 + 19)(1 + 23)(I + 25)(1 + 29)(I + 31)(! + 35)
X (1 +37)(1 + 41)(1 + 43) (I + 47)
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with [ :== 18s, + 12s,. This means that b(s,,s,) is a minimum polynomial
that satisfies a functional equation of the form P(fi*!f:*1) =
b(s,,s,)f1f5> with some germ P of D,[s,,s,] at O (cf. [35, 28)).

8. CORRECTNESS OF ALGORITHMS IN
ANALYTIC CASE

Here we assume that K is the field C of complex numbers (or its
subfield for actual computation). Then we can work in the analytic cate-
gory rather than in the algebraic category as described so far. Let us
denote by " the sheaf of rings of holomorphic (complex analytic)
functions on X, and by D§" and Dg" the sheaves of rings of holomorphic
differential operators on X and on X respectively (cf. [19]). Replacing the
algebraic objects by these analytic objects, we can verify that the theoreti-
cal parts are still valid. Our purpose is to show that if the inputs are
algebraic, then the outputs of the algorithms presented so far provide us
with the correct answers also in the analytic category.

Let M= ( Dy) /Nbe a coherent Dg-module as in Sections 4 and 5 and
put M" = D" ®, M and N":= Dan ®p, N. Then the V-filtrations
F.(Dg), Fi( I\/F“) and F,(N") are defined in the same way as in the
algebraic case. The following lemma will be the key to the correctness
proof in the analytic case.

LEMMA 8.1. Under the notation above, we have an isomorphism

Fe( M™) /F (M) = DP[t6,] @p,q,5, (Fi( M) /Fi( M)

as left Dg"-modules for any integers k, < k,.

Proof. Since there is an exact sequence

0 = F,(N)/F, (N> F.( Dg)"/F.( Dg)’
— Fkl( M)/Fko( M) — 0

and Dg"[td,] is faithfully flat over Dgy[td,], it suffices to show the natural
homomorphism

Dy [£0,] ®pyq10 (Fi( N)/Fi (N)) = F (N") /F (N")  (8.1)

is an 1isomorphism. Since the injectivity follows from the faithfully flatness
mentioned above, we have only to show that (8.1) is surjective.

Let P be a section of Fk](N“‘) and let P,,...,P, be a set of F-
involutory generators of N. The proof of Theorem 3.16 of [33]
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(with trivial modification) guarantees the existence of Q,,...,Q, € D"
and P,,...,P, € Nso that P =X¢_, Q,P, and ord(Q;P,) < k,. Then we

1

can take Q) € Dy"[t, d,] so that (Q; — Q) P; € F, (N"). This proves that
the homomorphism (8.1) is surjective. This completes the proof. ||

PROPOSITION 8.2. The b-function of M along X defined in the analytic
category coincides with the b-function of Malong X in the algebraic category.

Proof. By putting k, = k, = 0 in the preceding lemma, we have an
isomorphism

gro( M™) = Dy"[19,] Bp, 14,1 gro( M).

In view of Definition 4.1, this isomorphism and the faithful flatness assure
the coincidence of the two definitions of the b-function. [}

In particular, the specializability does not depend on the (algebraic or
analytic) category which one works in. The restriction ( M™)$ of M*™
along X is defined as a complex of left Dg"-modules.

PROPOSITION 8.3. Assume that Mis specializable along X . Then we have
an isomorphism

HI(( M")%) = DY @, H/( M)
of left Dg"-modules forj = 0, —1.

Proof. By virtue of the above proposition, Proposition 5.2 holds also for
M with the same k, k,. Hence the above isomorphism is an immediate
consequence of Lemma 8.1. |

Now let M= ( D,)"/Nbe a coherent Dy-module as in Sections 6 and 7
and put M™ = D" ®, M Let f& K[s] be a nonconstant polynomial.
Then the algebraic local cohomology group I-{{,]( M) is defined and is a
left Dg"-module.

PROPOSITION 84. We have an isomorphism H{ ( M") = D§" ®p
f‘{ﬁ( M) if B,z ®, Mis specializable along X.

Proof. Put By, = D§" ®, B, Then the arguments in Section 6 are
valid with B, and Mreplaced by B/7, and M™ respectively. First, by
Lemmas 6.2 and 6.5 in the both categories and Proposition 8.3 applied to
A, instead of X, we get

B, ®gn M" = D§" ®p ( Bz ®, M).

Hence Theorem 6.4 in the both categories and Proposition 8.3 yield the
isomorphism needed. |
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Especially we have H{ ( M™) = 0 if and only if H{,( M) = 0 by virtue
of the faithful flatness of D" over Dy.Put L := O"[s,f 'If*.
PropoSITION 8.5. Letu,,...,u, be generators of Mon X. Put

Q:= {(Ql,---,Q,) € (Dy[s]) x Qi(f* ®u;) =0in L &, M}

i=1

@ = {(Q0) € (0L |E o ow) =0

i=1
in L* ®ou M }

Then we have an isomorphism Di[s] ®p ; Q= Q.

Proof. By replacing M by M/H}( M), we may assume Hy (M) =0
since we have L ®, Hy( M) =0.Put

¥ 0,50t~ ) ®u) =0

i=1

Q= {(Ql,---,Qr) e (D)

i Q,(8(t—f)®u)=0

i=1

Q" = {(Ql’--er) s (D)

in B7, ® M" }
Then by the proof of Proposition 7.1 and the faithful flatness, we get
@ = (D[14,]) N @
= D{[16,] ®p,110 (( Dxl16,]) N Q)
= D;n[l‘c?t] ®DX[t(9t] Q.
This completes the proof. |}
It follows immediately
Z D)E}n[s](fs ® ”i) = Dg"[s] ®p,[s] Z DX[S](fS ® ui) .
i=1 i=1

By specializing s, we also get Dg"f*° ®pn M= Di" ®, (Dyf" ®, M.
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COROLLARY 8.6. Let u be a section of M. Then the b-functions for f and

u in the algebraic and in the analytic sense coincide.

Proof. Let b*(s) and b(s) be the b-functions for f and u in the

analytic and in the algebraic sense respectively. By using the above
proposition with » = 1 and u, = u and the faithful flatness, we get

(b™(s)) = (@ + Dy"[s]f) N K[s]
= (Q+ Dy[s]f) N K[s]
=(b(s)).

This completes the proof. |}

Thus we have proved that the algorithms in the present paper are

correct also in the analytic category if the input D§"-module is written in

th
se

10.

11.

12.

13.

14.

15.

e form M" = Dy" ®, M with a coherent Dy-module M whose pre-
ntation is explicitly given.
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