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Holonomic distributions

Definition
Let C§°(U) be the set of the C* functions on an open set U of R”
with compact support. A distribution v on U is a linear mapping

u: CGP(U)s p+— (u,p) €C

such that lim;_(u, ¢;) = 0 holds for a sequence {¢;} of Cg°(V) if
there is a compact set K C U such that p; =0 on U\ K and

lim sup [0%pj(x)| =0 for any oo € N,

J=® xeU

where x = (x,...,X,) and 0% = 0" - - - 99" with 0; = 0/0x;. The
set of the distributions on U is denoted by D’'(U).
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The derivative O, u of u with respect to x is defined by

(Oku, o) = —(u, Oxp)  for any ¢ € C5°(U).

For a C* function a on U, the product au is defined by
(au, ) = (u,ap) for any ¢ € C§°(U).

In particular, by these actions of the derivations and the polynomial
multiplications, D’(U) has a natural structure of left D,-module,
where

D,,:C<x1,...,x,,,81,...,8,,)

is the ring of differential operators with polynomial coefficients.
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Definition

Let u be a C* function or a distribution defined on an open
subset U of R". Then we call u a holonomic function or a
holonomic distribution on U if u satisfies a holonomic system. In
other words, u is holonomic if and only if its annihilator

Annp u:={P € D,| Pu=0on U}

is a holonomic ideal. |

Example: Dirac’s delta function §(x) is the distribution defined by
(0(x), ¢(x)) = ¢(0) (Ve € G*(R)).

d(x) is holonomic since xd(x) = 0. (In fact, Annp,6(x) = Dix. )
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Power product of polynomials as distribution

Let fi,...,f, be polynomials with real coefficients. We assume that
the set {x e R" | fi(x) > 0(i=1,...,p)} is not empty. Then the
distribution v = (f)}* - -- (fp)i‘r" on R" is defined to be

(v, ) = / AL 00 e d

for ¢ € C§°(R™) if Re A\; > 0 for each i. Moreover, v, that is, (v, ¢)
for any ¢ € C5°(R"), is holomorphic in (A, ..., \,) on the domain

Qi ={(M\,...,)) €ECP|Re N, >0 (i=1,...,p)}

and is continuous in (A, ..., \,) on the closure of Q.
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Application to definite integrals

In particular,
(R)L--(F)L = Y(h)---Y(h),

where Y(t) is the Heaviside function; i.e., Y(t) =1 for t > 0 and
Y(t) =0 for t <0. Then for a holonomic function u(x), we have

V(le s ;and) = / U(X) an,d+1 s dX,,
£>0,....£,>0

_ /R Y)Y (£)u(x) dxoasr - dxs

if this integral is well-defined. A holonomic system for this v is
computable by the D-module theoretic integration algorithm if a
holonomic system for Y (f;)--- Y(f,)u(x) is obtained.
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Bernstein-Sato ideals

It is known that there exist a non-zero polynomial b(s) in
s =(s1,...,5m) and an operator P(s) € D,[s] such that

P(s)(R)T - ()T = b(s)(A)T - ()T

v

b(s) = H(C;151 + -+ CimSm + Ci)
i=1

with positive integers c; and positive rational numbers ¢;. (Sabbah,
1987) There are several algorithms to compute the ideal consisting of
such b(s), which is called the Bernstein-Sato ideal.
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By using this functional equation, we can extend v(x,s) to a
distribution in x which is meromorphic in (A1,...,\,) on the whole
CP; v(x, s) is holomorphic in (A1,...,\,) on

QA ... F) ={(M,....\,) €C”|
b(A1 + k. ..., A, + k) # 0 for any k € N}.

Example 1 The Bernstein-Sato ideal for yz, zx, xy is generated by
(52 +53 + 1)(52 +S3 +2)(51 +S3+ 1)(51 +S3 +2)(51 +52 -+ 1)(51 +52+2)

Example 2 The Bernstein-Sato ideal for x3 — y2. y3 — 22 is

((s2+1)(6s2 +5)
( 2s1 + 18s, + 23
(12s; + 18s, + 31
(

65y + 7)(s1 + 1)(6s1 + 5)(6s1 + 7)(12s1 + 18s, + 19)
(125, + 18s, + 25)(12s; + 185, + 29)
(12s; + 18s, + 35)(12s; + 18s, + 37)
(1251 + 18s, + 43)(12s; + 18s, + 47))

—_ — — —

12s; + 18s, + 41
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Difference-differential equations

The distribution v(x,s) := (f)} -+ - (f,)7 satisfies a system of
difference-differential equations

(B, — f00xs) =0 (i=1.....p).
<8X,—ZSJ-ES;1§—)€> v(x,s)=0 (i=1,...,n)

with  Egv(x,si,...,5) =v(x,s1,...,5+1,...,5)

Note that the inverse shift Esjl ‘operates’ on v(x, s) but it reduces
the domain of v(x,s) w.r.t. s.
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Mellin transform

v(x,s) = (A)3 - (f,)7 can be expressed (at least formally) as the
Mellin transform

v(x,s) = /Rp(tl)fﬁ o (t)Pw(t, x) dty - - - dt,.

of
w(t,x) = 0(t1 — f(x))---0(tp, — fo(x)).
We have (at least formally)

EsjV(X’ S) = o (tl)j} T (tp)jl-)tJ'W(t’X) dty - - dtp

sjv(x,s):—/ (t)% - ()70 tjw(t, x) dty - - - dt,
RP
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Let D, (s,
by (x,0,s, .
Dpip = D,(t,0:) be the Weyl algebra over the variables

(x,t) = (X1,..., Xn, t1, ..., t,). We define a ring homomorphism

p: Dy(s, Es) — Dinip

by u(sj) = —0yt;, u(Es) = tj. Since p is injective, we regard
D,(s, E;) as a subring of D, ,. Moreover, we can regard

D,(s, Es) C Dpyp C Do(s, Es, ESY)

with identifications t; = Eg;, 0y, = —SjEs;l-
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A holonomic system for v(x;, s)

In terms of the ring extension E(s, E;) C D,p,
v(x,s) = (f)%---(f,)7 satisfies a holonomic system

(& = C)v(x,) =0 (G=1...,p),

@ﬁZ'ﬂ) s =0 (i=1,...,n)

The Bernstein-Sato polynomial for the variety f; = --- =1, =0
(Budur-Mustata-Saito 2006) can be computed as the b-function (or
the indicial polynomial) (with a shift) of this holonomic system along
the submanifold t; = --- =t, = 0.
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Example 1: The Bernstein-Sato polynomial of the variety
yz=2zx =xy =0O:

bfct_variety([y*z,z*x,x*y], [x,y,2]);
[[-1,1], [s+2,2], [2%s+3,1]]

Example 2: The Bernstein-Sato polynomial of the variety
X3_y2:y3_z220:

bfct_variety([x~3-y~2,y"3-z2"2], [x,y,2]);
[[-1,1],[s+2,1], [3*s+4,1], [3*s+5,1], [6%xs+11,1],
[6xs+13,1], [18*s+25,1], [18*s+29,1], [18*s+31,1],
[18*s+35,1], [18%s+37,1], [18*s+41,1]]

Computation was done by using Risa/Asir.
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A holonomic system for the product

Let u(x) be a holonomic function and suppose that the product
u(x)v(x,s) = u(x)(f)% - (f,)F is well-defined as distribution. Then
a holonomic system for u(x)v(x,s) is obtained as follows:

Input: A set Gy of generators of a holonomic ideal / of D,
annihilating a distribution u(x), and polynomials fi,. ... f, € R[x].
Output: A set G of generators of a holonomic ideal J of D, y,
annihilating u(f)% - -- ().

1. For each P = P(x,0x,...,0x,) € Gy, set

()—P<x8X1+Z fat,..., i ’5 )

2. Set G:={r(P)| P G} U{ti—f(x)|j=1,...,p}

Toshinori Oaku (Tokyo Woman's Christian UAlgerithms for D-modules applied to generali September 2013 14 / 36




Difference-differential equations for integrals

Consider the integral

i(x',s) := / u(x)v(x,s) dxp_gs1 -+ - dx,
Rd

with X’ = (x1,...,X,—q). A ‘holonomic system’ of
difference-differential equations for {i(x’, s) can be computed as
follows:

1. Compute the D-module theoretic integration ideal

J:= (aandJrl Dn+P + -+ 0Oy, Dn+P + J) N D”_d"‘P

with D,_g4p = C(x’, 0, t, 0;) and the holonomic ideal J annihilating
u(x)v(x,s).

2. Compute the intersection J N D,_4(s, Es), which annihilates

i(x', s).
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An example of the local (-function

i(s) :== /2 e (X3 — y®)3. dxdy
R
satisfies a difference equation

(—32E2 4+ 16(4s + 13)E2 + 4(s + 3)(27s + 154s + 211)E?
—6(s +2)(s + 3)(36s + 162s + 173)E,
+3(s+ 1)(s +2)(s + 3)(6s + 5)(6s + 13))di(s) = 0.

It follows that v(s) is holomorphic (at least) on

Q’;:{56C|x7é—y’ —_ =V, —— =V (1/21,2,3,...)}.
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2nd Part:
An algorithm for Laurent coefficients of £

For a polynomial f(x) = f(x, ..., x,) with real coefficients and
A € C with Re A >0,
f) € S'(R") (the set of tempered distributions on R") is defined by

(o) = / et o

for ¢ € S(R"): the set of rapidly decreasing functions, i.e.,
SUPern [X20Pp(x)] < 00 (Va, B € N").
In particular, Y(f) := £ is the Heaviside function w.r.t. f.
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Functional equations

e D,: the ring of differential operators with polynomial coefficients:
Dy={P =" a.(x)9" (finite sum) | a,(x) € C[x] =

aeNn

Clxt, ..., %]} with 8% = 8 .. 9%, 9, = 9/dx;

Theorem (J. Bernstein)
There exist P(s) € D,[s] and b¢(s) € C[s] such that

P(s)ftt = be(s)f*

holds formally and b¢(s) # 0 is of minimum degree (the
Bernstein-Sato polynomial, or the b-function of f).

Theorem (Kashiwara)

The roots of b¢(s) are negative rational numbers.
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Comparison between f° and ff

Proposition
Assume that A = X € C is not a pole of f{* and the set
{x € R" | f(x) > 0} is non-empty. Consider the following three
conditions on P € D,:
(1) There exists Q(s) € D,[s] such that Q(s)f* =0 and
P = Q(Xo)-
(2) Pf} =0 as distribution on R".
(3) Pf* =0 as multi-valued analytic function on
{ze C" | f(z) #0}.
Then (1) = (2) = (3) holds. Moerover, if be(Ag — 1) # 0 for
Vv =1,2,3,..., then (3) = (1) holds.

September 2013
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Comparison between f* and fﬁ — examples

(3) = (2) does not hold in general.

Example 1 Consider f = x = x; with n = 1. Then 9f® = 91 =0 as
analytic function but 9 = 6(x).

Example 2 (cf. Bjork: 'Rings of Differential Operators’) Consider
f=x+ x5+ x3 + xi with n = 4. The b-function is

br(s) = (s + 1)(s + 2). The distribution f;* is holomorphic in
C\{—2,-3,—4,...} with respect to \. Set P = 97 + 05 + 05 + 03.
Then Pf~! = 0 as analytic function but Pf+—1 is not zero.
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Analytic continuation and Laurent expansion

Let A1, ..., Ay be the distinct roots of bs(s) = 0. Then by using the
functional equation b(\)f} = P(A\)f}*!, the distribution £ is
extended to a §'(R")-valued holomorphic function on

Qe ={AeC|AX#)\—-v (1<j<N rv=0,12,...)}
with each \; — v being at most a pole. Choose A\g € C\ Q. Then fj‘

can be expressed as a Laurent series

o0

fj\ = Z()\ — /\0)juk

k=—1

with v € S'(R") and / € N. In particular, u_; is called the residue
of £ at Ao, which we denote by Res)_,, f}.
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Non-singular case

e If f = 0 is non-singular, then f has only simple poles at negative
integers with

—1)k
Resy_ k-1 f} = %5(“(7() (k=0,1,2,...).

d(f) represents the layer (the Dirac delta function) associated with
the hypersurface f = 0,

S (f) = §'(f) represents the double layer (dipole),...
Cf. Gelfand-Shilov: ‘Generalized Functions, Vol. 1'
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Singular case

Definition
For a non-negative integer k, set
S(F) == (=1)kKk! Resy—_y_1 7,

SU(F) == kI Resy—__1 = k1 Resy—_s_1 (—F)} = (=1)k8(=F).

Then we have

Proposition
(1) A58 =0 (k>0).
0 of :
(2) a—XiY(:lzf) = 8—Xi<5i(f) fori=1,...,n.

(3) f3(f) = —ks¢V(F) (k> 1).
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Algorithm

Aim
Compute a holonomic system for the Laurent coefficient uy (k € Z)

for fj‘ about \g. (i.e. to find a left ideal | C Annp, uy such that D,//
is holonomic.)

.

Step 1
(1) Take me N={0,1,2,...} such that Re A\g + m > 0.
(2) Find a functional equation b¢(s)f* = P(s)fsT.
(3) Q(s):=P(s)P(s+1)---P(s+m—1),
b(s) := bs(s)bs(s +1)---be(s+m—1).
Then we have b(A\)f} = Q).
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Step 2
Factorize b(s) as b(s) = c(s)(s — Xo)/ with c(A\g) # 0 and / € N.
Then we have

oo

2= (A= 20) (V)R = 3 (A = ho)u(x),

k=—1

where uy(x) € S'(R") are given by

L (2™ contomem
w) = g | (55) - o0 )]
= Q" (log )

| 1 9 I+k—j -
with Q= m [(5) (c(N) Q()\))] .
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Algorithm (continued)

Step 3
Compute a holonomic system for (£, ..., f(log f)**') as follows:
(1) Compute a set G of generators of the annihilator Annp, 5f°.

(2) Let e =(1,0,...,0), ---, ety = (0,...,0,1) be the canonical
basis of Z**'*1. For each P(s) € Gy and an integer j with
0<j<k+1 set

PU(s) = z () 25 es e @,

s/

(3) Set Gy :={PUW(Ng+m)|P(s) € Gp, 0 <j < k+1}.
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The output G; of Step 3 generates a left D,-module N such that
(D,)**'*1 /N is holonomic and

Pof20t™ 4+ Py(F2t ™ log £) + - - - + Py (£ (log )< = 0

holds for any P = (Py, ..., Pxy/) € Gi.

Remark Step 3 is essentially differentiation of the equations

P(S)f_i =0 (P(S) € AnnDn[s]fs)

with respect to s.
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Algorithm (the final step)

Step 4

Let N be the left D,-submodule of (D,)"***1 generated by the
output G of Step 3 and let Qp, @1, ..., Q) be the operators
computed in Step 2. Compute a set G, of generators of the left ideal

| :={P e D,|(PQ,PQi,...,PQ1«) € N}

by using quotient or syzygy computation.

Output

The ideal / annihilates the distribution uy and D, /! is holonomic.
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Holonomicity of the output

Theorem

Let | be the left ideal of D, computed by the preceding algorithm.
Then D,/! is holonomic.

Sketch of the proof:
(1) The left D,-module (D,)**'*1/N is holonomic. In fact, set

N; == {(Po,...,P;,0,...,0) € N}.

Then N;/N;_1 ~ Annp, 4f°/(s — Ao — m)Annp,4f° is holonomic.
(2) D,/I with | := {P € D, | (PQo, PQ.,...,PQs) € N} is
holonomic since the map h: D,/ — (D,)**'*1/N defined by

h([P]) = (PQu, - .., PQxy/+1) is an injective homomorphism of left
D,-modules.
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CF 22
An example: f = x{ — x5

e The functional equation is (A + 1)2f} = (92 — 92)£)
= f} has poles (of order at most 2) only at A = —1,—2,-3,....

e The Laurent expansion around A = —1 is

2= (A +1)2ua(x) + (A + 1) ua(x) + uo(x) + (A + Dun(x) + -
with

1 1
U—2(X) = Z(af - 83)1:9 = Z(af - 5§)Y(f)7

wa(x) = (0 — )Y (F)log )
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Differentiating
(x281 + x182)fj = (x181 + Xp00 — 25)f_i =0
with respect to s, we get

(X281 —+ Xlaz)f_i = 0, (xz81 + x182)(fj |Og f) = 0,
2f° + (%01 + x20, — 25)(f log f) = 0,
(xlf)l + X2(92 — 2S)fj =0.
Hence (Y(f), Y(f)log f) satisfies a holonomic system
(01 +x0)Y(f) =0, (01 +x8,)(Y(f)logf) =0,

2Y(f) + (x101 + x202)(Y(f) log f) = 0,
(Xlal + x282)Y(f) =0.
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Let N be the left D,-submodule of D3 genererated by these vectors
of differential operators. Then

P-(?2—-02,00eN = Pu,=0,
P-(0,0?-03)eN = Pu_;=0.

By module quotient (via intersection or syzygy computation in D)

@ u_, satisfies
x1U_o(x) = xu_»(x) =0

Hence u_»(x) = cd(x) (3c € C).
@ u_; satisfies

(201 + x102)u_1(x) = (xf — x3)u_1(x) = 0.

(This coincides with Annp,u_;. )
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More concrete computation for isolated singularity

Assume that the origin 0 € C" is an isolated singularity of the
hypersurface {z € C" | f(z) = 0} and Ao = A\ — v with be(\) = 0 and
v=0,1,2,.... Assume moreover (1) A # —1,—2,... and k < —1,
or(2) A=-1,-2,... and k < —-2.

Then uy can be expressed, in a neighborhood of 0, as a finite sum

u(x) = c.0%5(x) (ck €C).

Aim: Compute this expression as explicitly as possible.
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Algorithm

Step 1. Let / be a left ideal of D, annihilating vy such that D,// is
holonomic.

Step 2. Compute the b-function b(s) of / w.r.t. the weight vector
(—1,...,—1;1,...,1). Thatis, there exists Q € D, with weight
ord(_1,1)@ < 0 such that b(x101 + - - - + x,0,) + Q € I.

Step 3. Let s = m be the greatest integer root of b(s) = 0 if any.
If m > —n, or there is no integer root, then uy(x) = 0.

Step 4. uk(x) is written in the form

w(x)= Y cd(x).

la|<—m—n
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Algorithm (continued)

Step 5. Let {Py,..., P/} be a set of generators of the left ideal /.
Then the differential equations

xXPPiuy = Z cax?P;0%5(x) =0
o] <—m—n

(.I = 1a"'7l7 |6| S m+0rd(_171)F)j)

yield homogeneous linear equations for c,.
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Example: f = x> — y?

The b-function of f is (s +1)(s 4+ 2)(s + &). u = Res,_ 1 £
satisfies
yu = (x0y + 2)u = x*u = 0.

The b-function with respect to (—1,1) is s + 3. Hence u is written in
the form

u= C05(X7y) + Claxé(xv.y) + C28y5(xv.y)‘
We get u = ¢10,0(x, y).
Hence

i(s) :== /2 e (X3 - y?)3. dxdy
R

7
is analytic at s = % (since Aye ¥ vanishes at (0, 0)).
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