Algorithms for *D*-modules applied to generalized functions

Toshinori Oaku

Tokyo Woman's Christian University

September 2013

Holonomic distributions

Definition

Let $C_0^{\infty}(U)$ be the set of the C^{∞} functions on an open set U of \mathbb{R}^n with compact support. A distribution u on U is a linear mapping

$$u: C_0^\infty(U) \ni \varphi \longmapsto \langle u, \varphi \rangle \in \mathbb{C}$$

such that $\lim_{j\to\infty}\langle u,\varphi_j\rangle=0$ holds for a sequence $\{\varphi_j\}$ of $C_0^\infty(U)$ if there is a compact set $K\subset U$ such that $\varphi_j=0$ on $U\setminus K$ and

$$\lim_{j\to\infty}\sup_{x\in U}|\partial^{\alpha}\varphi_{j}(x)|=0\quad\text{for any }\alpha\in\mathbb{N}^{n},$$

where $x = (x_1, \ldots, x_n)$ and $\partial^{\alpha} = \partial_1^{\alpha_1} \cdots \partial_n^{\alpha_n}$ with $\partial_j = \partial/\partial x_j$. The set of the distributions on U is denoted by $\mathcal{D}'(U)$.

The derivative $\partial_k u$ of u with respect to x_k is defined by

$$\langle \partial_k u, \varphi \rangle = -\langle u, \partial_k \varphi \rangle$$
 for any $\varphi \in C_0^\infty(U)$.

For a C^{∞} function a on U, the product au is defined by

$$\langle au, \varphi \rangle = \langle u, a\varphi \rangle$$
 for any $\varphi \in C_0^\infty(U)$.

In particular, by these actions of the derivations and the polynomial multiplications, $\mathcal{D}'(U)$ has a natural structure of left D_n -module, where

$$D_n = \mathbb{C}\langle x_1, \ldots, x_n, \partial_1, \ldots, \partial_n \rangle$$

is the ring of differential operators with polynomial coefficients.

Definition

Let u be a C^{∞} function or a distribution defined on an open subset U of \mathbb{R}^n . Then we call u a holonomic function or a holonomic distribution on U if u satisfies a holonomic system. In other words, u is holonomic if and only if its annihilator

$$\operatorname{Ann}_{D_n} u := \{ P \in D_n \mid Pu = 0 \text{ on } U \}$$

is a holonomic ideal.

Example: Dirac's delta function $\delta(x)$ is the distribution defined by

$$\langle \delta(x), \varphi(x) \rangle = \varphi(0) \quad (\forall \varphi \in C_0^{\infty}(\mathbb{R})).$$

 $\delta(x)$ is holonomic since $x\delta(x)=0$. (In fact, $\mathrm{Ann}_{D_1}\delta(x)=D_1x$.)

Power product of polynomials as distribution

Let f_1, \ldots, f_p be polynomials with real coefficients. We assume that the set $\{x \in \mathbb{R}^n \mid f_i(x) > 0 \, (i=1,\ldots,p)\}$ is not empty. Then the distribution $v = (f_1)_+^{\lambda_1} \cdots (f_p)_+^{\lambda_p}$ on \mathbb{R}^n is defined to be

$$\langle v, \varphi \rangle = \int_{f_1 \geq 0, \dots, f_p \geq 0} f_1(x)^{\lambda_1} \cdots f_p(x)^{\lambda_p} \varphi(x) dx$$

for $\varphi \in C_0^{\infty}(\mathbb{R}^n)$ if $\operatorname{Re} \lambda_i \geq 0$ for each i. Moreover, v, that is, $\langle v, \varphi \rangle$ for any $\varphi \in C_0^{\infty}(\mathbb{R}^n)$, is holomorphic in $(\lambda_1, \dots, \lambda_p)$ on the domain

$$\Omega_+ := \{(\lambda_1, \dots, \lambda_p) \in \mathbb{C}^p \mid \text{Re } \lambda_i > 0 \quad (i = 1, \dots, p)\}$$

and is continuous in $(\lambda_1, \ldots, \lambda_p)$ on the closure of Ω_+ .

Application to definite integrals

In particular,

$$(f_1)^0_+\cdots (f_p)^0_+=Y(f_1)\cdots Y(f_p),$$

where Y(t) is the Heaviside function; i.e., Y(t) = 1 for t > 0 and Y(t) = 0 for $t \le 0$. Then for a holonomic function u(x), we have

$$v(x_1,\ldots,x_{n-d}) = \int_{f_1 \ge 0,\ldots,f_p \ge 0} u(x) dx_{n-d+1} \cdots dx_n$$
$$= \int_{\mathbb{R}^d} Y(f_1) \cdots Y(f_p) u(x) dx_{n-d+1} \cdots dx_n$$

if this integral is well-defined. A holonomic system for this v is computable by the D-module theoretic integration algorithm if a holonomic system for $Y(f_1) \cdots Y(f_p) u(x)$ is obtained.

Bernstein-Sato ideals

It is known that there exist a non-zero polynomial b(s) in $s=(s_1,\ldots,s_m)$ and an operator $P(s)\in D_n[s]$ such that

$$P(s)(f_1)_+^{s_1+1}\cdots(f_m)_+^{s_m+1}=b(s)(f_1)_+^{s_1}\cdots(f_m)_+^{s_m},$$

$$b(s)=\prod_{i=1}^{\nu}(c_{i1}s_1+\cdots+c_{im}s_m+c_i)$$

with positive integers c_{ij} and positive rational numbers c_i . (Sabbah, 1987) There are several algorithms to compute the ideal consisting of such b(s), which is called the Bernstein-Sato ideal.

By using this functional equation, we can extend v(x,s) to a distribution in x which is meromorphic in $(\lambda_1,\ldots,\lambda_p)$ on the whole \mathbb{C}^p ; v(x,s) is holomorphic in $(\lambda_1,\ldots,\lambda_p)$ on

$$\Omega(f_1,\ldots,f_p):=\{(\lambda_1,\ldots,\lambda_p)\in\mathbb{C}^p\mid \ b(\lambda_1+k,\ldots,\lambda_p+k)
eq 0 ext{ for any } k\in\mathbb{N}\}.$$

Example 1 The Bernstein-Sato ideal for yz, zx, xy is generated by

$$(s_2+s_3+1)(s_2+s_3+2)(s_1+s_3+1)(s_1+s_3+2)(s_1+s_2+1)(s_1+s_2+2)$$

Example 2 The Bernstein-Sato ideal for $x^3 - y^2$, $y^3 - z^2$ is

$$\langle (s_2+1)(6s_2+5)(6s_2+7)(s_1+1)(6s_1+5)(6s_1+7)(12s_1+18s_2+19)$$

 $(12s_1+18s_2+23)(12s_1+18s_2+25)(12s_1+18s_2+29)$
 $(12s_1+18s_2+31)(12s_1+18s_2+35)(12s_1+18s_2+37)$
 $(12s_1+18s_2+41)(12s_1+18s_2+43)(12s_1+18s_2+47) \rangle$

Difference-differential equations

The distribution $v(x,s):=(f_1)_+^{s_1}\cdots(f_p)_+^{s_p}$ satisfies a system of difference-differential equations

$$\begin{split} &(E_{s_j} - f_j(x))v(x,s) = 0 \quad (j = 1, \dots, p), \\ &\left(\partial_{x_i} - \sum_{j=1}^p s_j E_{s_j}^{-1} \frac{\partial f_j}{\partial x_i}\right) v(x,s) = 0 \quad (i = 1, \dots, n) \\ &\text{with} \quad E_{s_j} v(x,s_1, \dots, s_p) = v(x,s_1, \dots, s_j + 1, \dots, s_p) \end{split}$$

Note that the inverse shift $E_{s_j}^{-1}$ 'operates' on v(x,s) but it reduces the domain of v(x,s) w.r.t. s.

Mellin transform

 $v(x,s)=(f_1)_+^{s_1}\cdots(f_p)_+^{s_p}$ can be expressed (at least formally) as the Mellin transform

$$v(x,s)=\int_{\mathbb{R}^p}(t_1)_+^{s_1}\cdots(t_p)_+^{s_p}w(t,x)\,dt_1\cdots dt_p.$$

of

$$w(t,x):=\delta(t_1-f_1(x))\cdots\delta(t_p-f_p(x)).$$

We have (at least formally)

$$egin{aligned} E_{s_j} v(x,s) &= \int_{\mathbb{R}^p} (t_1)_+^{s_1} \cdots (t_p)_+^{s_p} t_j w(t,x) \, dt_1 \cdots dt_p \ s_j v(x,s) &= -\int_{\mathbb{R}^p} (t_1)_+^{s_1} \cdots (t_p)_+^{s_p} \partial_{t_j} t_j w(t,x) \, dt_1 \cdots dt_p \end{aligned}$$

Let $D_n\langle s, E_s\rangle$ be the ring of difference-differential operators generated by $(x,\partial,s,E_s)=(x_1,\ldots,x_n,\partial_{x_1},\ldots,\partial_{x_n},s_1,\ldots,s_p,E_{s_1},\ldots,E_{s_p})$. Let $D_{n+p}=D_n\langle t,\partial_t\rangle$ be the Weyl algebra over the variables $(x,t)=(x_1,\ldots,x_n,t_1,\ldots,t_p)$. We define a ring homomorphism

$$\mu: D_n\langle s, E_s\rangle \longrightarrow D_{n+p}$$

by $\mu(s_j) = -\partial_{t_j} t_j$, $\mu(E_{s_j}) = t_j$. Since μ is injective, we regard $D_n\langle s, E_s \rangle$ as a subring of D_{n+p} . Moreover, we can regard

$$D_n\langle s, E_s\rangle \subset D_{n+p} \subset D_n\langle s, E_s, E_s^{-1}\rangle$$

with identifications $t_j = E_{s_j}$, $\partial_{t_j} = -s_j E_{s_j}^{-1}$.

A holonomic system for v(x, s)

In terms of the ring extension $E\langle s, E_s \rangle \subset D_{n+p}$, $v(x,s) = (f_1)_+^{s_1} \cdots (f_p)_+^{s_p}$ satisfies a holonomic system $(t_j - f_j(x))v(x,s) = 0 \quad (j=1,\ldots,p),$ $\left(\partial_{x_i} + \sum_{j=1}^p \frac{\partial f_j}{\partial x_i} \partial_{t_j}\right) v(x,s) = 0 \quad (i=1,\ldots,n)$

The Bernstein-Sato polynomial for the variety $f_1 = \cdots = f_p = 0$ (Budur-Mustata-Saito 2006) can be computed as the *b*-function (or the indicial polynomial) (with a shift) of this holonomic system along the submanifold $t_1 = \cdots = t_p = 0$.

Example 1: The Bernstein-Sato polynomial of the variety vz = zx = xv = 0:

Example 2: The Bernstein-Sato polynomial of the variety

$$x^3 - y^2 = y^3 - z^2 = 0$$
:

Computation was done by using Risa/Asir.

A holonomic system for the product

Let u(x) be a holonomic function and suppose that the product $u(x)v(x,s)=u(x)(f_1)_+^{s_1}\cdots(f_p)_+^{s_p}$ is well-defined as distribution. Then a holonomic system for u(x)v(x,s) is obtained as follows:

Input: A set G_0 of generators of a holonomic ideal I of D_n annihilating a distribution u(x), and polynomials $f_1, \ldots, f_p \in \mathbb{R}[x]$.

Output: A set G of generators of a holonomic ideal J of D_{n+p} annihilating $u(f_1)_+^{s_1} \cdots (f_p)_+^{s_p}$.

1. For each $P = P(x, \partial_{x_1}, \dots, \partial_{x_n}) \in G_0$, set

$$\tau(P) := P\left(x, \partial_{x_1} + \sum_{j=1}^p \frac{\partial f_j}{\partial x_1} \partial_{t_j}, \dots, \partial_{x_n} + \sum_{j=1}^p \frac{\partial f_j}{\partial x_n} \partial_{t_j}\right).$$

2. Set $G := \{ \tau(P) \mid P \in G_0 \} \cup \{ t_i - f_i(x) \mid j = 1, \dots, p \}.$

Difference-differential equations for integrals

Consider the integral

$$\tilde{u}(x',s) := \int_{\mathbb{R}^d} u(x)v(x,s) dx_{n-d+1} \cdots dx_n$$

with $x' = (x_1, \ldots, x_{n-d})$. A 'holonomic system' of difference-differential equations for $\tilde{u}(x', s)$ can be computed as follows:

1. Compute the *D*-module theoretic integration ideal

$$\widetilde{J} := (\partial_{\mathsf{x}_{n-d+1}} D_{n+p} + \dots + \partial_{\mathsf{x}_n} D_{n+p} + J) \cap D_{n-d+p}$$

with $D_{n-d+p} = \mathbb{C}\langle x', \partial_{x'}, t, \partial_t \rangle$ and the holonomic ideal J annihilating u(x)v(x,s).

2. Compute the intersection $J \cap D_{n-d}\langle s, E_s \rangle$, which annihilates $\tilde{u}(x', s)$.

An example of the local ζ -function

$$\tilde{u}(s) := \int_{\mathbb{R}^2} e^{-x^2 - y^2} (x^3 - y^2)_+^s dxdy$$

satisfies a difference equation

$$(-32E_s^4 + 16(4s+13)E_s^3 + 4(s+3)(27s^2 + 154s + 211)E_s^2 - 6(s+2)(s+3)(36s^2 + 162s + 173)E_s + 3(s+1)(s+2)(s+3)(6s+5)(6s+13))\tilde{u}(s) = 0.$$

It follows that v(s) is holomorphic (at least) on

$$\Omega' := \{ s \in \mathbb{C} \mid x \neq -\nu, \ -\frac{5}{6} - \nu, \ -\frac{13}{6} - \nu \ (\nu = 1, 2, 3, \dots) \}.$$

2nd Part:

An algorithm for Laurent coefficients of f_+^{λ}

For a polynomial $f(x) = f(x_1, ..., x_n)$ with real coefficients and $\lambda \in \mathbb{C}$ with $\text{Re } \lambda \geq 0$, $f_+^{\lambda} \in \mathcal{S}'(\mathbb{R}^n)$ (the set of tempered distributions on \mathbb{R}^n) is defined by

$$\langle f_+^{\lambda}, \varphi \rangle = \int_{f(x)>0} f(x)^{\lambda} \varphi(x) dx$$

for $\varphi \in \mathcal{S}(\mathbb{R}^n)$: the set of rapidly decreasing functions, i.e., $\sup_{x \in \mathbb{R}^n} |x^\alpha \partial^\beta \varphi(x)| < \infty \quad (\forall \alpha, \beta \in \mathbb{N}^n)$. In particular, $Y(f) := f^0_+$ is the Heaviside function w.r.t. f.

Functional equations

• D_n : the ring of differential operators with polynomial coefficients:

$$D_n = \{ P = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha}(x) \partial^{\alpha} \text{ (finite sum)} \mid a_{\alpha}(x) \in \mathbb{C}[x] = C[x_1, \dots, x_n] \} \text{ with } \partial^{\alpha} = \partial_1^{\alpha_1} \cdots \partial_n^{\alpha_n}, \ \partial_i = \partial/\partial x_i$$

Theorem (J. Bernstein)

There exist $P(s) \in D_n[s]$ and $b_f(s) \in \mathbb{C}[s]$ such that

$$P(s)f^{s+1} = b_f(s)f^s$$

holds formally and $b_f(s) \neq 0$ is of minimum degree (the **Bernstein-Sato polynomial**, or the *b*-function of f).

Theorem (Kashiwara)

The roots of $b_f(s)$ are negative rational numbers.

Comparison between f^s and f_+^{λ}

Proposition

Assume that $\lambda = \lambda_0 \in \mathbb{C}$ is not a pole of f_+^{λ} and the set $\{x \in \mathbb{R}^n \mid f(x) > 0\}$ is non-empty. Consider the following three conditions on $P \in D_n$:

- (1) There exists $Q(s) \in D_n[s]$ such that $Q(s)f^s = 0$ and $P = Q(\lambda_0)$.
- (2) $Pf_+^{\lambda_0} = 0$ as distribution on \mathbb{R}^n .
- (3) $Pf^{\lambda_0} = 0$ as multi-valued analytic function on $\{z \in \mathbb{C}^n \mid f(z) \neq 0\}.$
- Then (1) \Rightarrow (2) \Rightarrow (3) holds. Moerover, if $b_f(\lambda_0 \nu) \neq 0$ for $\forall \nu = 1, 2, 3, \ldots$, then (3) \Rightarrow (1) holds.

Comparison between f^s and f_+^{λ} — examples

 $(3) \Rightarrow (2)$ does not hold in general.

Example 1 Consider $f = x = x_1$ with n = 1. Then $\partial f^0 = \partial 1 = 0$ as analytic function but $\partial f^0_+ = \delta(x)$.

Example 2 (cf. Björk: 'Rings of Differential Operators') Consider $f = x_1^2 + x_2^2 + x_3^2 + x_4^2$ with n = 4. The b-function is $b_f(s) = (s+1)(s+2)$. The distribution f_+^{λ} is holomorphic in $\mathbb{C} \setminus \{-2, -3, -4, \dots\}$ with respect to λ . Set $P = \partial_1^2 + \partial_2^2 + \partial_3^2 + \partial_4^2$. Then $Pf^{-1} = 0$ as analytic function but Pf_+^{-1} is not zero.

Analytic continuation and Laurent expansion

Let $\lambda_1, \ldots, \lambda_N$ be the distinct roots of $b_f(s) = 0$. Then by using the functional equation $b(\lambda)f_+^{\lambda} = P(\lambda)f_+^{\lambda+1}$, the distribution f_+^{λ} is extended to a $\mathcal{S}'(\mathbb{R}^n)$ -valued holomorphic function on

$$\Omega_f := \{ \lambda \in \mathbb{C} \mid \lambda \neq \lambda_j - \nu \quad (1 \leq j \leq N, \ \nu = 0, 1, 2, \dots) \}$$

with each $\lambda_j - \nu$ being at most a pole. Choose $\lambda_0 \in \mathbb{C} \setminus \Omega_f$. Then f_+^{λ} can be expressed as a Laurent series

$$f_+^{\lambda} = \sum_{k=-1}^{\infty} (\lambda - \lambda_0)^j u_k$$

with $u_k \in \mathcal{S}'(\mathbb{R}^n)$ and $l \in \mathbb{N}$. In particular, u_{-1} is called the *residue* of f_+^{λ} at λ_0 , which we denote by $\operatorname{Res}_{\lambda=\lambda_0} f_+^{\lambda}$.

Non-singular case

ullet If f=0 is non-singular, then f_+^λ has only simple poles at negative integers with

$$\operatorname{Res}_{\lambda=-k-1} f_+^{\lambda} = \frac{(-1)^k}{k!} \delta^{(k)}(f) \quad (k=0,1,2,\dots).$$

 $\delta(f)$ represents the layer (the Dirac delta function) associated with the hypersurface f=0,

 $\delta^{(1)}(f) = \delta'(f)$ represents the double layer (dipole),...

Cf. Gelfand-Shilov: 'Generalized Functions, Vol. 1'

Singular case

Definition

For a non-negative integer k, set

$$\begin{split} \delta_+^{(k)}(f) &:= (-1)^k k! \operatorname{Res}_{\lambda = -k - 1} f_+^{\lambda}, \\ \delta_-^{(k)}(f) &:= k! \operatorname{Res}_{\lambda = -k - 1} f_-^{\lambda} = k! \operatorname{Res}_{\lambda = -k - 1} (-f)_+^{\lambda} = (-1)^k \delta_+^{(k)}(-f). \end{split}$$

Then we have

Proposition

- (1) $f^{k+1}\delta_{\pm}^{(k)}(f) = 0 \quad (k \ge 0).$
- (2) $\frac{\partial}{\partial x_i} Y(\pm f) = \frac{\partial f}{\partial x_i} \delta_{\pm}(f)$ for $i = 1, \ldots, n$.
- (3) $f \delta_{\pm}^{(k)}(f) = -k \delta_{\pm}^{(k-1)}(f) \quad (k \ge 1).$

Algorithm

Aim

Compute a holonomic system for the Laurent coefficient u_k $(k \in \mathbb{Z})$ for f_+^{λ} about λ_0 . (i.e. to find a left ideal $I \subset \operatorname{Ann}_{D_n} u_k$ such that D_n/I is holonomic.)

Step 1

- (1) Take $m \in \mathbb{N} = \{0, 1, 2, \dots\}$ such that $\operatorname{Re} \lambda_0 + m \geq 0$.
- (2) Find a functional equation $b_f(s)f^s = P(s)f^{s+1}$.
- (3) $Q(s) := P(s)P(s+1)\cdots P(s+m-1),$ $b(s) := b_f(s)b_f(s+1)\cdots b_f(s+m-1).$ Then we have $b(\lambda)f_+^{\lambda} = Q(\lambda)f_+^{\lambda+m}.$

Step 2

Factorize b(s) as $b(s) = c(s)(s - \lambda_0)^I$ with $c(\lambda_0) \neq 0$ and $I \in \mathbb{N}$. Then we have

$$f_+^{\lambda} = (\lambda - \lambda_0)^{-1} c(\lambda)^{-1} Q(\lambda) f_+^{\lambda+m} = \sum_{k=-1}^{\infty} (\lambda - \lambda_0)^k u_k(x),$$

where $u_k(x) \in \mathcal{S}'(\mathbb{R}^n)$ are given by

$$u_k(x) = \frac{1}{(l+k)!} \left[\left(\frac{\partial}{\partial \lambda} \right)^{l+k} (c(\lambda)^{-1} Q(\lambda) f_+^{\lambda+m}) \right]_{\lambda = \lambda_0}$$

$$= \sum_{j=0}^{l+k} Q_j (f_+^{\lambda_0 + m} (\log f)^j)$$
1 \[\left(\delta \right)^{l+k-j} \]

with
$$Q_j := rac{1}{j!(l+k-j)!} \left[\left(rac{\partial}{\partial \lambda}
ight)^{l+k-j} (c(\lambda)^{-1}Q(\lambda))
ight]$$
 .

Algorithm (continued)

Step 3

Compute a holonomic system for $(f_+^{\lambda}, \dots, f_+^{\lambda}(\log f)^{k+l})$ as follows:

- (1) Compute a set G_0 of generators of the annihilator $\mathrm{Ann}_{D_n[s]}f^s$.
- (2) Let $e_1=(1,0,\ldots,0), \cdots, e_{k+l}=(0,\ldots,0,1)$ be the canonical basis of \mathbb{Z}^{k+l+1} . For each $P(s)\in G_0$ and an integer j with $0\leq j\leq k+l$, set

$$P^{(j)}(s) := \sum_{i=0}^{j} {j \choose i} \frac{\partial^{j-i} P(s)}{\partial s^{j-i}} e_{i+1} \in (D_n[s])^{k+l+1}.$$

(3) Set
$$G_1 := \{ P^{(j)}(\lambda_0 + m) \mid P(s) \in G_0, 0 \le j \le k + l \}.$$

The output G_1 of Step 3 generates a left D_n -module N such that $(D_n)^{k+l+1}/N$ is holonomic and

$$P_0 f_+^{\lambda_0 + m} + P_1 (f_+^{\lambda_0 + m} \log f) + \dots + P_{k+l} (f_+^{\lambda_0 + m} (\log f)^{k+l}) = 0$$

holds for any $P = (P_0, \ldots, P_{k+l}) \in G_1$.

Remark Step 3 is essentially differentiation of the equations

$$P(s)f_+^s = 0 \quad (P(s) \in \operatorname{Ann}_{D_n[s]}f^s)$$

with respect to s.

Algorithm (the final step)

Step 4

Let N be the left D_n -submodule of $(D_n)^{l+k+1}$ generated by the output G_1 of Step 3 and let $Q_0, Q_1, \ldots, Q_{l+k}$ be the operators computed in Step 2. Compute a set G_2 of generators of the left ideal

$$I := \{ P \in D_n \mid (PQ_0, PQ_1, \dots, PQ_{l+k}) \in N \}$$

by using quotient or syzygy computation.

Output

The ideal I annihilates the distribution u_k and D_n/I is holonomic.

Holonomicity of the output

Theorem

Let I be the left ideal of D_n computed by the preceding algorithm. Then D_n/I is holonomic.

Sketch of the proof:

(1) The left D_n -module $(D_n)^{k+l+1}/N$ is holonomic. In fact, set

$$N_j := \{(P_0, \dots, P_j, 0, \dots, 0) \in N\}.$$

Then $N_j/N_{j-1} \simeq \operatorname{Ann}_{D_n[s]} f^s/(s-\lambda_0-m) \operatorname{Ann}_{D_n[s]} f^s$ is holonomic.

(2) D_n/I with $I := \{P \in D_n \mid (PQ_0, PQ_1, \dots, PQ_{l+k}) \in N\}$ is holonomic since the map $h: D_n/I \to (D_n)^{k+l+1}/N$ defined by $h([P]) = (PQ_0, \dots, PQ_{k+l+1})$ is an injective homomorphism of left D_n -modules.

An example: $f = x_1^2 - x_2^2$

- The functional equation is $(\lambda + 1)^2 f_+^{\lambda} = \frac{1}{4} (\partial_1^2 \partial_2^2) f_+^{\lambda+1}$ $\Rightarrow f_+^{\lambda}$ has poles (of order at most 2) only at $\lambda = -1, -2, -3, \dots$
- The Laurent expansion around $\lambda = -1$ is

$$f_+^\lambda=(\lambda+1)^{-2}u_{-2}(x)+(\lambda+1)^{-1}u_{-1}(x)+u_0(x)+(\lambda+1)u_1(x)+\cdots$$
 with

$$u_{-2}(x) = \frac{1}{4}(\partial_1^2 - \partial_2^2)f_+^0 = \frac{1}{4}(\partial_1^2 - \partial_2^2)Y(f),$$

$$u_{-1}(x) = \frac{1}{4}(\partial_1^2 - \partial_2^2)(Y(f)\log f).$$

Differentiating

$$(x_2\partial_1 + x_1\partial_2)f_+^s = (x_1\partial_1 + x_2\partial_2 - 2s)f_+^s = 0$$

with respect to s, we get

$$(x_2\partial_1 + x_1\partial_2)f_+^s = 0, \quad (x_2\partial_1 + x_1\partial_2)(f_+^s \log f) = 0,$$

 $2f^s + (x_1\partial_1 + x_2\partial_2 - 2s)(f_+^s \log f) = 0,$
 $(x_1\partial_1 + x_2\partial_2 - 2s)f_+^s = 0.$

Hence $(Y(f), Y(f) \log f)$ satisfies a holonomic system

$$(x_2\partial_1 + x_1\partial_2)Y(f) = 0, \quad (x_2\partial_1 + x_1\partial_2)(Y(f)\log f) = 0,$$

 $2Y(f) + (x_1\partial_1 + x_2\partial_2)(Y(f)\log f) = 0,$
 $(x_1\partial_1 + x_2\partial_2)Y(f) = 0.$

Let N be the left D_2 -submodule of D_2^2 genererated by these vectors of differential operators. Then

$$P \cdot (\partial_1^2 - \partial_2^2, 0) \in N \quad \Rightarrow \quad Pu_{-2} = 0,$$

$$P \cdot (0, \partial_1^2 - \partial_2^2) \in N \quad \Rightarrow \quad Pu_{-1} = 0.$$

By module quotient (via intersection or syzygy computation in D_2)

u₋₂ satisfies

$$x_1u_{-2}(x) = x_2u_{-2}(x) = 0$$

Hence $u_{-2}(x) = c\delta(x)$ ($\exists c \in \mathbb{C}$).

u_{−1} satisfies

$$(x_2\partial_1+x_1\partial_2)u_{-1}(x)=(x_1^2-x_2^2)u_{-1}(x)=0.$$

(This coincides with $Ann_{D_2}u_{-1}$.)

More concrete computation for isolated singularity

Assume that the origin $0\in\mathbb{C}^n$ is an isolated singularity of the hypersurface $\{z\in\mathbb{C}^n\mid f(z)=0\}$ and $\lambda_0=\lambda-\nu$ with $b_f(\lambda)=0$ and $\nu=0,1,2,\ldots$ Assume moreover (1) $\lambda\neq -1,-2,\ldots$ and $k\leq -1$, or (2) $\lambda=-1,-2,\ldots$ and $k\leq -2$.

Then u_k can be expressed, in a neighborhood of 0, as a finite sum

$$u_k(x) = \sum_{\alpha} c_{\alpha} \partial_x^{\alpha} \delta(x) \quad (c_k \in \mathbb{C}).$$

Aim: Compute this expression as explicitly as possible.

Algorithm

Step 1. Let I be a left ideal of D_n annihilating u_k such that D_n/I is holonomic.

Step 2. Compute the *b*-function b(s) of I w.r.t. the weight vector $(-1,\ldots,-1;1,\ldots,1)$. That is, there exists $Q\in D_n$ with weight $\operatorname{ord}_{(-1,1)}Q<0$ such that $b(x_1\partial_1+\cdots+x_n\partial_n)+Q\in I$.

Step 3. Let s = m be the greatest integer root of b(s) = 0 if any. If m > -n, or there is no integer root, then $u_k(x) = 0$.

Step 4. $u_k(x)$ is written in the form

$$u_k(x) = \sum_{|\alpha| \leq -m-n} c_{\alpha} \partial^{\alpha} \delta(x).$$

Algorithm (continued)

Step 5. Let $\{P_1, \dots, P_l\}$ be a set of generators of the left ideal I. Then the differential equations

$$x^{\beta} P_{j} u_{k} = \sum_{|\alpha| \leq -m-n} c_{\alpha} x^{\beta} P_{j} \partial^{\alpha} \delta(x) = 0$$

$$(j = 1, \dots, I, |\beta| \leq m + \operatorname{ord}_{(-1,1)} P_{j})$$

yield homogeneous linear equations for c_{α} .

Example: $f = x^3 - y^2$

The *b*-function of f is $(s+1)(s+\frac{5}{6})(s+\frac{7}{6})$. $u:=\operatorname{Res}_{\lambda=-\frac{7}{6}}f_+^{\lambda}$ satisfies

$$yu=(x\partial_x+2)u=x^2u=0.$$

The *b*-function with respect to (-1,1) is s+3. Hence u is written in the form

$$u = c_0 \delta(x, y) + c_1 \partial_x \delta(x, y) + c_2 \partial_y \delta(x, y).$$

We get $u = c_1 \partial_x \delta(x, y)$.

Hence

$$\tilde{u}(s) := \int_{\mathbb{R}^2} e^{-x^2 - y^2} (x^3 - y^2)_+^s dxdy$$

is analytic at $s = -\frac{7}{6}$ (since $\partial_x e^{-x^2 - y^2}$ vanishes at (0,0)).